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Outline

– Review of some facts on SVM (seen in Lecture 2).

– From linearity to nonlinearity.

– (semi-)Positive Definite Kernels.

– Kernel methods in Statistical Learning.

– Some examples.
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Introduction

The computer scientist says: SVM is a linear classifier with large margin

in a kernel space .

The statistician says: SVM is a nonparametric estimator. It

is based on the minimization of a regularized empirical risk on a

Hilbert space of real functions with a piecewise linear penalty

function.
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Binary Classification

Inputs X ∈ X

Class Y ∈ {−1,+1}

Goal : find a classifier g : X → {−1,+1} presenting the smallest
generalization error

L(g) = E
[
1{g(X 6=Y }

]
The best possible classifier is the Bayes one g? and we aimed
estimating g? given an i.i.d. learning sample (Xi, Yi), i = 1, . . . , n.
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Linear Classifier

The case X = Rd

We would like to find a linear classifier, of the form

gw,b(x) = 1{〈w,x〉 > b} − 1{〈w,x〉 ≤ b}
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The principle of large margins
Assume that the two classes in the learning sample are perfectly
separated by means of a linear classifier. We select the one for
which the distance to the closest representatives in the two classes is
maximum, i.e. the classes are separated with a “maximum margin”.

Marge

Motivation: A larger margin allows a better control over the difference
between the empirical error and the generalization error.
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Optimization problem

Finding the best linear classifier (w, b) amounts in finding the maximum
of

min
i=1,...,n

|〈w,Xi〉+ b|,

under the constrains ‖w‖2 = 1 et ∀i, (〈w,Xi〉+ b)Yi > 0.

Trick : an equivalent way in tackling the problem is to search for the
minimum of ‖w‖2 under the constrains ∀i, (〈w,Xi〉+ b)Yi > 0.

This is a quadratic optimization problem under linear constrains and
there exists a large choice of good algorithms for solving it.
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The maximal margin hyper plane
We have seen (duality arguments) that the optimal vector w can be
written as

w =
∑

i∈SV

aiXi

where the coefficients ai are nonzero only for input points Xi that are
located exactly “on the margin” (the support vectors).

Marge

Vecteurs

de support
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Consequence
One may rewrite the optimization problem in terms of the ai’s:

‖w‖2 =
∑
i,j

aiaj〈Xi,Xj〉,

〈w,Xi0〉 =
∑

i

ai〈Xi,Xi0〉.

Note that from the (Xi)n
1 the pertinent information for solving the

problem is the Gram matrix

G = [〈Xi,Xj〉]i,j.

The previous formulation has two disadvantages : it is not applicable for
data that are not linearly separable and it is very sensitive to outliers.
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Corresponding optimization

A softer version consists in minimizing

‖w‖2 + C

n∑
i=1

ξi,

under the constrains ∀i, (〈w,Xi〉+ b)Yi > 1− ξi.

Note: constant C is a parameter of the algorithm. One has to choose
it from the data.

The solution w as a combination of support vectors is still valid in this
case.
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From linearity to nonlinearity

A second ingredient of the SVM’s is totally independent and maybe
more important than the first one. Moreover, it is not only limited to
classification. It is based on the trivial remark that one may transform
a nonlinear method to a linear one by sending the original data into a
space of a larger dimension.
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An example
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The first class is made with i.i.d observations from a Uniform distribution
on a disk of radius 0.9 and the second one from i.i.d. observations on
the circular band.
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• Consider Φ : R2 → R3 defined by

x = (x1, x2) → z = Φ(x1, x2) = (x2
1,
√

2x1x2, x
2
2).

• Using a linear SVM classifier to separate the two classes from data
transformed by Φ in R3 gives separating hyper planes of the form

〈w, z〉R3 + b = 0

• As functions of x these are ellipses. One therefore may use linear
SVM’s on a transformed version of the data to get a nonlinear
classifier with no much effort.
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Data representation

We have an algorithm A (classification (or regression)) that is able to
handle data in a space X . To deal with a data sample S, we have used
Φ : F → X and worked with A on the set:

Φ(S) = {Φ(x1), . . . ,Φ(xN)} ∈ X .

Finding such transforms Φ is not easy in general. A better way is to look
at the problem using a similarity matrix.
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Similarites

Let K : X × X → R+ a similarity function. Using K, one may represent
the data sample S = {x1, . . . ,xN} by its similarity N ×N matrix :

Ki,j = K(xi,xj)

Such a representation of the data is universal whatever the nature of
the inputs is and the size is always N ×N .

We do not need anymore to define ad hoc algorithms for specific data:
algorithms made for square matrices are enough. We only need to
define appropriate similarity matrices.
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The kernel trick

An important observation is that for many linear classification
algorithms, including SVM’s, knowing the inner products between the
data points is sufficient for finding and computing the target function.

If one wishes to apply a method on the range of Φ(x) as before, he
doesn’t need to evaluate the Φ(x) explicitly. It is enough to compute the
K(x,x′) = 〈Φ(x),Φ(x′)〉.

Conversely: under what conditions K(x,x′) may be written as above?
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Positive definite kernels

Definition . A positive definite kernel (p.d.k.) on a set X is a function
K : X × X → R such that

• K is symmetric

K(x,x′) = K(x′,x), for all (x,x′) ∈ X × X .

• K is positive definite i.e. for all integer N , (x1, . . . ,xN) ∈ XN ,
(a1, . . . , aN) ∈ RN ,

N∑
i=1

N∑
j=1

aiajK(xi,xj) ≥ 0.

Namely for any sample S the similarity matrix K is positive definite.
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Examples of p.d. kernels

Let X = H a Hilbert space with scalar product 〈·, ·〉. Let the following
function from H2 into R defined by

K(x,x′) = 〈x,x′〉, ∀(x,x′) ∈ H ×H.

Then K is a p.d.k on H.

More generally let Φ be a function from X with values in a Hilbert space
H. Then K defined by

K(x,x′) = 〈Φ(x),Φ(x′)〉, ∀(x,x′) ∈ X × X ,

is a p.d.k.
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Elementary properties

• for all x ∈ X , K(x,x) ≥ 0.

• for all (x,x′) ∈ X × X ,

|K(x,x′)| ≤
√
K(x,x)

√
K(x′,x′).

• for all (x,x′) ∈ X × X ,

|K(x,x′)| ≤ K(x,x) +K(x′,x′)
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• If K1 and K2 are two p.d.k., then for any a1 ≥ 0 and any a2 ≥ 0,
a1K1 + a2K2 is a p.d.k.

• If K1 and K2 are two p.d.k., then K defined by

K(x,x′) = K1(x,x′)K2(x,x′)

is a p.d.k.

• If L is a p.d.k., then K defined by

K(x,x′) = exp(K(x,x′))

is a p.d.k.
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Examples

• Radial basis function (RBF)

K(x,x′) = exp
(
−‖x− x′‖2

σ2

)
.

• Polynomial kernel

K(x,x′) = (〈x,x′〉+ θ)d
, d ∈ N, θ ∈ R.

• Sigmoidal kernel

K(x,x′) = tanh (κ〈x,x′〉+ θ) , κ ∈ R+, θ ∈ R.
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Conversely . . .

Theorem . If K is p.d.k on a arbitrary set X , then there exists a Hilbert
space H with scalar product 〈·, ·〉H and a map Φ : X → H such that:

K(x,x′) = 〈Φ(x),Φ(x′)〉H, ∀(x,x′) ∈ X × X .

Many proofs of this Theorem exist. The proof is easy when X is finite;
Mercer (1909) has proved the Theorem for X = [a, b] and K continuous,
Kolmogorov (1941) for X countable, and Aronsjan (1944, 1950) in the
general case.
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Proofs

• The case X finite. Assume that X = {x1, . . . ,xN} and let K be a p.d.k
onX . The proof follows from the fact that the corresponding similarity
matrix K is positive definite and relies upon a SVD of K.

• Consider now the case where X is a compact metric space (typically
a bounded closed set of Rd) and let K be a continuous p.d.k on X ×
X . Such a kernel is called a Mercer kernel . The proof follows from
several lemmas that we are going to examine.
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Let µ the Borel measure on X and H = L2(X , dµ).

For any function K : X×2 → R set (when it is defined):

(LKf)(x) =
∫
K(x, t)f(t)dµ(t).

We then have:

Lemma 1 If K is a Mercer kernel, then LK is a compact bounded linear
operator on L2(X , dµ),self-adjoint and positive
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Proof of Lemma 1

• LK is obviously linear from L2(X , dµ) into L2(X , dµ)

• LK is bounded

• LK is compact (Ascoli)

• LK is self-adjoint

• LK is positive
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Spectral Theorem

Lemma 2 Let L a compact linear operator on a Hilbert space H.
There exists in H a complete orthonormal system {ψ1, ψ2, . . . } of
eigenfunctions of L. The corresponding eigenvalues {λ1, λ2, . . . } are
real if L is self-adjoint, and positive if L is positive.

For LK, the eigenfunctions ψk corresponding to the eigenvalues λk 6= 0
are continuous functions, since:

ψk =
1
λk
LKψk.
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Mercer’s Theorem

Lemma 3 Let X a compact normed space, ν a Borel measure on
X and K a Mercer kernel. Let {λ1, λ2, . . . } be the eigenvalues of
LK (in decreasing order) and {ψ1, ψ2, . . . } the o.n.s of corresponding
eigenfunctions. Then, for any x, x′ in X :

K(x,x′) =
∑

k

λkψk(x)ψk(x′),

(the convergence is absolute and uniform on X×2)
From the above, it follows that Φ : X → `2 given by Φ(x) =

{√
λkψk(x)

}
is well defined, continuous and such that

K(x,x′) = 〈Φ(x),Φ(x′)〉`2.
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A new construction

Let X be an arbitrary set, and (H, 〈·, ·〉H) a Hilbert space of functions on
X (H ⊂ RX ).

A function K : X×2 → R is a reproducing kernel (r.k.) iff:

• H contains all functions of the form

∀x ∈ X , Kx : x′ → K(x,x′)

• ∀x ∈ X et f ∈ H, we have:

f(x) = 〈f,Kx〉H

If a r.k.. exists, H is called a reproducing kernel Hilbert space (rkhs).

– Typeset by FoilTEX – 27



Properties of r.k.’s and rkhs’s

• if a r.k. exists, it is unique

• a r.k. exists iff the evaluation functional is continuous

• a r.k is a p.d.k .

• if K is a p.d.k there exists a rkhs having K for r.k.

• if K is a r.k., it has the reproducing property.
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Mercer kernel and rkhs

Assume that λ > 0 for all k ≥ 1. Let the Hilbert space:

HK =

{
f ∈ L2(X , dµ); f =

n∑
i=1

aiψi,
∑ a2

k

λk
<∞

}

with the scalar product 〈f, g〉K =
∑∞

k=1
akbk
λk

.

To show that HK is the rkhs associated to K, we must show that:
• it is a space of functions from X into R,
• for any x ∈ X , Kx ∈ HK,
• for any x ∈ X et f ∈ HK, f(x) = 〈f,Kx〉K.
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Representation Theorem
Theorem Le X be a set with a p.d.k. K, HK the corresponding rkhs,
and S ⊂ X a finite subset. Let Ψ : Rn+1 → R a function with n + 1
arguments, strictly increasing with respect to its las argument. Then
any solution to the problem:

min
f∈HK

Ψ(f(x1), . . . , f(xn), ‖f‖HK
) = min

f∈HK

ξ(f,S)

can be represented as:

∀x ∈ X , f(x) =
n∑

i=1

αiK(xi,x).

Often Ψ has the following form:

Ψ(f(x1), . . . , f(xn), ‖f‖HK
)) = c(f(x1), . . . , f(xn) + ν‖f‖HK

)
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kernel SVM for classification

• S = {x1,x2, . . . ,xn},xi ∈ X

• {y1, y2, . . . , yn}, yi ∈ {−1,+1} corresponding labels

• Classification : find f : X → {−1,+1} to predict Y by f(x).

• K kernel on X × X , H Hilbert space and Φ such that K(x,x′) =
〈Φ(x),Φ(x′)〉H.

• A linear classifier on H : perfect classification,

(〈w,Φ(xi)〉H + b)yi ≥ 1, i = 1, . . . , n.
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kernel SVM

The maximum margin linear classifier in the input space H is the
solution of the following quadratic problem

minimize 1
2‖w‖

2
H

under the constrains (〈w,Φ(xi)〉H + b)yi ≥ 1, i = 1, . . . , n.
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Maximum Margin SVM

Using the kernel trick and writing the dual problem we do not need the
explicit expression of w.

Using the Lagrange multipliers λi, i = 1, . . . , n associated to each of the
constrains respecter, the Lagrange formulation is:

L(w, b,λ) =
1
2
‖w‖2H −

n∑
i=1

λi[(〈w,Φ(xi)〉H + b)yi − 1)]
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Dual program (1)

The dual problem is obtained by minimizing, for any fixed value of the
vector of multipliers λ, the Lagrangian

(w, b) → L(w, b,λ).

The vector of multipliers λ is admissible (for the dual) if λi ≥ 0 for i =
1, . . . , n et

∑n
i=1 λiyi = 0. For an admissible vector λ, the dual is given

by:
n∑

i=1

λi −
1
2

n∑
i,j=1

λiλjyiyjK(xi,xj)

computable using only the kernel.
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Dual program (2)
The dual program is

maximize
∑n

i=1 λi − 1
2

∑n
i,j=1 λiλjyiyjK(xi,xj)

under the constrains λi ≥ 0, i = 1, . . . , n.∑n
i=1 λiyi = 0.

which only depends on the similarity!! If the initial problem admits a
solution then, the KKT conditions show that the solution w? is given by

w∗ =
n∑

i=1

λ∗i yiΦ(xi),

where the λ∗i ’s are the optimal Lagrange multipliers.
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The optimal Lagrange multipliers are nonzero if the corresponding
inputs xi are on the margin, i.e.

(〈w?,Φ(xi)〉H + b∗)yi = 1,

outlining the important property of SVM’s : generally the solutions are
sparse!!!

The optimal value of b, b∗, is obtained by averaging the support vectors
indexed by I = {i ∈ {1, . . . , n}, λ∗i > 0},

b? =
1
|I|
∑
i∈I

yi −
n∑

j=1

yjλ
∗
jK(xi,xj)

 .
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Classification rule

The classifier is given by :

f(x) = sgn

(
n∑

i=1

yiλ
∗
i [K(xi,x) + b?])

)
,

with

b? =
1
|I|
∑
i∈I

yi −
n∑

j=1

yjλ
∗
jK(xi,xj)

 ,

computable by using solely the kernel K!!
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The nonseparable case

To relax the separability conditions we introduce again the slack
variables ξi and the constrains become

(〈w,Φ(xi)〉H + b)yi ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n.

The primal problem then is

minimize 1
2‖w‖

2
H + C

n

∑n
i=1 ξi

under the constrains (〈w,Φ(xi)〉H + b)yi ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n,

with a regularization constant C > 0.
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The dual

The dual problem is

maximize
∑n

i=1 λi − 1
2

∑n
i,j=1 λiλjyiyjK(xi,xj)

under the constrains 0 ≤ λi ≤ C
n , i = 1, . . . , n,∑n

i=1 λiyi = 0.
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KKT conditions
The KKT conditions are

λi = 0 ⇒ (〈w,Φ(xi)〉H + b)yi = 1 ξi = 0

0 < λi <
C

n
⇒ (〈w,Φ(xi)〉H + b)yi = 1 ξi = 0

λi =
C

n
⇒ (〈w,Φ(xi)〉H + b)yi ≤ 1 ξi ≥ 0.

and the optimal b∗ is computed by:

b? =
1
|I|
∑
i∈I

yi −
n∑

j=1

yjλ
∗
jK(xi,xj)

 ,

where I = {i ∈ {1, . . . , n}, 0 < λ∗i <
C
n}.
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A statistical view

When the data is embedded in a rkhs,the optimization problem

minimize 1
2‖w‖

2
H + C

n

∑n
i=1 ξi

under the constrains (〈w,Φ(xi)〉H + b)yi ≥ 1− ξi, i = 1, . . . , n

ξi ≥ 0, i = 1, . . . , n,

is equivalent to
minf∈HK,b∈R

(
1
n

∑n
i=1(1− (f(xi) + b)yi)+ + λ‖f‖2H

)
,

and the solution appears as a penalized nonparametric estimator with a
loss function of the form

γ(f, b,x, y) = (1− (f(x) + b)y)+.
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The loss function γ

Recall that
η(x) = P(Y = 1|X = x) = Ex(Y |X).

For any binary classifier g : X → {−1,+1}, the classification error

1{g(X) 6= Y } = (1− g(X)Y )+/2 = |Y − g(X)|/2

and the risk
L(g) = E ((1− g(X)Y )+) /2

Bayes rule, minimizes this risk is

g∗(x) = sgn(η(x)− 1/2).
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Examples of loss functions

• Squared hinge loss

γ(f, b,x, y) = [(1− (f(x) + b)y)+]2

• Squared loss
γ(f, b,x, y) = [(1− (f(x) + b)y]2

• Exponential loss

γ(f, b,x, y) = exp[−(1− (f(x) + b)y)]
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Hinge loss

0

1

y(f(x)+b)

(f,b,x,y)

Erreur

de classification

γ is convex upper bound of the classification error.
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Remark

If the r.k.h.s corresponding to the kernel K contains the constant
functions on X then

min
f∈HK,b∈R

(
1
n

n∑
i=1

(1− (f(xi) + b)yi)+ + λ‖f‖2H

)
,

is equivalent to

min
f∈HK

(
1
n

n∑
i=1

(1− f(xi)yi)+ + λ‖Pf‖2H

)
,

where Pf is the projection of f on the subspace of HK spanned by the
constant functions. If f̂ is a solution of such a problem, then sgn(f̂) is
the SVM corresponding classification rule.
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Solving the penalized problem

Since the loss is convex, we get an efficient algorithm for solving the
optimization problem. Using the representation Theorem, and ifHK

contains the constants, the solution f̂ can be written as

f̂(x) =
n∑

i=1

αiK(xi,x).

The solution belongs to HK.
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Controlling the error

If the kernel K is bounded above by a constant M , then for any δ > 0,

∀f, ‖f‖H ≤ R,

L(f) ≤ E(γ(f)) ≤ 1
n

n∑
i=1

max(γ(f, b,xi, yi), 1) + 2M
R+

√
log δ−1

√
n

,

which in terms of machine learning can be written as

L(f) ≤ 1
n

n∑
i=1

max(ξi, 1) + 2M
(1/ρ) +

√
log δ−1

√
n

,

where ρ is the margin.
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What is important

• In practice one may concentrate on the construction of an appropriate
kernel, the optimization being solved by a black box.

• The kernel trick allows to deal with several kinds of data.

• Research: choose the amount of regularization; model selection.
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Another classification method

The SVM algorithm may be formulated as

min
f∈HK

(
1
n

n∑
i=1

(1− f(xi)yi)+ + λ‖Pf‖2HK

)
,

which is very similar with Tikhonov regularization for inverse problems.

But for such inverse problems one may show that projection based
methods have more adaptive properties. This is the key remark in the
algorithm KPM of Blanchard and Zwald (2004).
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KPM (1)

Let K be a Mercer kernel on X × Xand let LK be the corresponding
operator

Lk : f(·) ∈ L2(X , µ) →
∫
X
K(x, ·)f(x)dµ(x) ∈ L2(X , µ)

Denote by ψ1, ψ2, . . . the normalized eigenfunctions of LK, ranked in
decreasing order of corresponding eigenvalues (λi)i≥1. For any integer
D, the subspace FD spanned by {1, ψ1, . . . , ψD} is a subspace of HK

and
HK = ∪∞D=1FD.
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KPM (2)
Instead of selecting the “best” ball in HK as for kernel SVM, consider
projection estimators f̂D defined by

f̂D = arg min
f∈FD

n∑
i=1

(1− f(xi)yi)+

f̂D(·) =
D∑

j=1

β?
jψj(·) + b?,

with

(β?, b?) = arg min
β∈RD,b∈R

n∑
i=1

1− yi

 D∑
j=1

βjψj(xi) + b


+
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KPM (3)

Since neither µ or the eigenfunctions are known such a method cannot
be applied as such.

When µ = PX is the marginal distribution of X, the idea is to replace
FD defined through LK by the corresponding ones defined through the
similarity matrix K.

It is known that the svd of the matrix K is a good approximation of the
svd of the operator LK at the points xi, i.e., if V1, . . . , VD are the first
D eigenvectors of K corresponding to the eigenvalues λ̂1 ≥ · · · ≥ λ̂D,
then

Vi = (V (1)
i , . . . , V

(n)
i )T ' (ψi(x1), . . . , ψi(xn))T .
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The algorithm (1)

The empirical version of the algorithm is then

(β?, b?) = arg min
β∈RD,b∈R

n∑
i=1

1− yi

 D∑
j=1

βjV
(i)
j + b


+

and the solution has the form f̂D(·) =
∑D

j=1 β
?
jψj(·) + b?. SInce the ψj

are unknown we use instead

f̂D(·) =
D∑

j=1

α?
jK(xi, ·) + b?

– Typeset by FoilTEX – 53



The algorithm (2)

Restricting the equations to the points in S, we must solve

β?
1V1 + · · ·+ β?

DVD = Kα?

and the solution is (if the first D eigenvalues of K are > 0):

α∗ =
D∑

j=1

β?
j

λ̂j

Vj
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The algorithm (3)

• Given x1, . . . ,xn ∈ X and an p.d.k K on X × X , compute K, the
eigenvectors V1, . . . , Vn and the eigenvalues λ̂1 ≥ · · · λ̂n.
• For each dimension D such that λ̂D > 0 solve

(β?, b?) = arg min
β∈RD,b∈R,ξ

n∑
i=1

ξi

under the constrains ∀i, ξi ≥ 0, yi

(∑D
j=1 βjV

(i)
j + b

)
≥ 1− ξi.

• Compute α? =
∑D

j=1

β?
j

λ̂j
Vj and f̂D(·) =

∑D
j=1α

?
jK(xi, ·) + b?.

• Choose the dimension D̂ giving the best performance to f̂D̂ (model
selection with a penalty on the dimension).
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Example

Benchmark:

http://ida.first.gmd.de/ r̃aetsch/data/benchmarks.htm

Fichier KPM D SVM

Banana 10.73 (0.42) 15 11.53 (0.66)
Breast Cancer 26.51 (4.75) 24 26.04 (4.74)

Diabetis 23.37 (1.92) 11 23.53 (1.73)
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D=3,15,50
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Remarks

Zwald (thesis 2005) shows that a penalty proportional to the dimension
is good under the assumption of a low noise (∀x, |η(x)−0.5| > ρ) The
optimality depends on the way the margin ρ is allowed to tend to zero.
For a VC class the rate is of the order

√
V C/n.
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Some examples

Look

maximize
∑n

i=1 λi − 1
2

∑n
i,j=1 λiλjK(xi,xj)

under the constrains 0 ≤ λi ≤ C
n , i = 1, . . . , n,∑n

i=1 λiyi = 0.

w∗ =
n∑

i=1

λ∗i yiK(xi, ·), K(x,x′) = exp(−‖x− x′‖2/(2σ2))

Effects of σ and of C.
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Effect of σ

• 2-D data with two classes made with 20 samples each from
N((−1,−1), I2) and N(1, 1), I2).

• Learning an SVM on theses data

• plot the results for several values of σ
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code

randn(’seed’,1);
m=20;
d=1;
s=1;
x1=[randn(m,1) * s-d randn(m,1) * s-d]
x2=[randn(m,1) * s+d randn(m,1) * s+d]
d=data([x1;x2],[ones(m,1);-ones(m,1)]);
a=svm;
sigma=10;
a.child=kernel(’rbf’,sigma);
[r a]=train(a,d);
plot(a)
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σ = 0.1,0.25.0.5.0.75.1,10
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code

randn(’seed’,1);
m=20;
d=1;
s=2;
x1=[randn(m,1) * s-d randn(m,1) * s-d]
x2=[randn(m,1) * s+d randn(m,1) * s+d]
d=data([x1;x2],[ones(m,1);-ones(m,1)]);
a=svm;
sigma=10; (ou sigma=1)
a.C=1;
a.child=kernel(’rbf’,sigma);
[r a]=train(a,d);
plot(a)
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C = inf, 100,10,1
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C = 100,10,1, σ = 10; σ = 100, C = 1
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Choosing the kernel
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Implementations

• libSVM

• SVMlight

• Spider (Matlab)

• kernlab (R)
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