
!

"

#

$

Boosting: more than an ensemble method for prediction

1

Anestis Antoniadis

!

"

#

$

Historically: Boosting is about multiple predictions

Data: (X1, Y1), . . . , (Xn, Yn) (i.i.d. or stationary),
predictor variablesXi ∈ Rp

response variables Yi ∈ R or Yi ∈ {0, 1, . . . , J − 1}

Aim: estimation of function f(·) : Rp → R, e.g.
f(x) = IE[Y |X = x] or f(x) = IP[Y = 1|X = x] with Y ∈ {0, 1}

or distribution of survival time Y givenX depends on some function f(X) only

“historical” view (for classification):
Boosting is a multiple predictions (estimation) & combination method

2

!

"

#

$

Base procedure:

data algorithm A
−→ θ̂(·) (a function estimate)

e.g.: simple linear regression, tree, MARS, “classical” smoothing, neural nets, ...

Generating multiple predictions:

weighted data 1
algorithm A

−→ θ̂1(·)

weighted data 2
algorithm A

−→ θ̂2(·)

· · · · · ·

weighted data M
algorithm A

−→ θ̂M (·)

Aggregation: f̂A(·) =
∑M

m=1 amθ̂m(·)

data weights? averaging weights am?

3

!

"

#

$

classification of 2 lymph nodal status in breast cancer using gene expressions from
microarray data:
n = 33, p = 7129 (for CART: gene-preselection, reducing to p = 50)

method test set error gain over CART

CART 22.5% –

LogitBoost with trees 16.3% 28%

LogitBoost with bagged trees 12.2% 46%

this kind of boosting: mainly prediction, not much interpretation

4

!

"

#

$

Boosting algorithms

AdaBoost proposed for classification by Freund & Schapire (1996)

data weights (rough original idea): large weights to previously heavily misclassified
instances (sequential algorithm)
averaging weights am: large if in-sample performance inmth round was good

Why should this be good?

5

!

"

#

$

Why should this be good?

some common answers 5 years ago ...

because
• it works so well for prediction (which is quite true)
• it concentrates on the “hard cases” (so what?)
• AdaBoost almost never overfits the data no matter how many iterations it is run
(not true)

6

!

"

#

$

A better explanation

Breiman (1998/99): AdaBoost is functional gradient descent (FGD) procedure

aim: find f∗(·) = argminf(·)IE[ρ(Y, f(X))]

e.g. for ρ(y, f) = |y − f |2 ! f∗(x) = IE[Y |X = x]

FGD solution: consider empirical risk n−1
∑n

i=1 ρ(Yi, f(Xi)) and
do iterative steepest descent in function space

7

!

"

#

$

Generic FGD algorithm

Step 1. f̂0 ≡ 0; setm = 0.

Step 2. Increasem by 1. Compute negative gradient− ∂
∂f ρ(Y, f)

and evaluate at f = f̂m−1(Xi) = Ui (i = 1, . . . , n)

Step 3. Fit negative gradient vector U1, . . . , Un by base procedure

(Xi, Ui)
n
i=1

algorithm A
−→ θ̂m(·)

e.g. θ̂m fitted by (weighted) least squares
i.e. θ̂m(·) is an approximation of the negative gradient vector

Step 4. Up-date f̂m = f̂m−1(·) + νsm · θ̂m(·)

sm = argminsn
−1

∑n
i=1 ρ(Yi, f̂m−1(Xi) + s · θ̂m(Xi)) and 0 < ν ≤ 1

i.e. proceed along an estimate of the negative gradient vector

Step 5. Iterate Steps 2-4 untilm = mstop for some stopping iterationmstop

8

!

"

#

$

Why “functional gradient”?
Alternative formulation in function space:

empirical risk functional: C(f) = n−1
∑n

i=1 ρ(Yi, f(Xi))

inner product: 〈f, g〉 = n−1
∑n

i=1 f(Xi)g(Xi)

negative Gateaux derivative:

−dC(f)(x) =
∂

∂α
C(f + α1x)|α=0, ! −dC(f̂m−1)(Xi) = Ui

if U1, ..., Un are fitted by least squares:
equivalent to maximize 〈−dC(fm), θ〉 w.r.t. θ(·) (if‖θ‖ = 1)

(over all possible θ(·)’s from the base procedure)
i.e: θ̂m(·) is the best approximation (most parallel)

to the negative gradient−dC(fm)

9

!

"

#

$

By definition: FGD yields additive combination of base procedure fits
ν

∑mstop

m=1 smθ̂m(·)

Breiman (1998):
FGD with ρ(y, f) = exp((2y − 1) · f) for binary classification yields the

AdaBoost algorithm
(great result!)

Remark: FGD can not be represented as some explicit estimation function(al):

f̂m(·))=argminf∈Fn−1
n

∑

i=1

ρ(Yi, f(Xi)) for some function class F

! FGD is mathematically more difficult to analyze but
generically applicable (as an algorithm!) in very complex models

10

!

"

#

$

L2Boosting
(see also Friedman, 2001)

loss function ρ(y, f) = |y − f |2

population minimizer: f∗(x) = IE[Y |X = x]

FGD with base procedure θ̂(·): repeated fitting of residuals

m = 1 : (Xi, Yi)n
i=1 ! θ̂1(·), f̂1 = νθ̂1 ! resid. Ui = Yi − f̂1(Xi)

m = 2 : (Xi, Ui)n
i=1 ! θ̂2(·), f̂2 = f̂1 + νθ̂2 ! resid. Ui = Yi − f̂2(Xi)

... ...

f̂mstop(·) = ν
∑mstop

m=1 θ̂m(·) (stagewise greedy fitting of residuals)

Tukey (1977): twicing formstop = 2 and ν = 1

11

!

"

#

$

Any gain over classical methods? (for additive modeling)

Ozone data: n=300, p=8

boosting iterations

M
SE

0 20 40 60 80 100

18
19

20
21

22

n = 300, p = 8

- magenta: L2Boosting with stumps

(horiz. line = cross-validated stopping)

- black: L2Boosting with componentwise

smoothing spline

(horiz. line = cross-validated stopping)

i.e: smoothing spline fi tting against the

selected predictor which reduces RSS most

- green: MARS restricted to additive modeling

- red: additive model using backfi tting

L2Boosting with stumps or comp. smoothing splines also yields additive model:
∑mstop

m=0 θ̂m(x(Ŝm)) = ĝ1(x(1)) + . . . + ĝp(x(p))

12

!

"

#

$

Simulated data: non-additive regression function, n = 200, p = 100

Regression: n=200, p=100

boosting iterations

M
SE

0 50 100 150 200 250 300

11
12

13
14

15
16

- magenta: L2Boosting with stumps

- black: L2Boosting with componentwise

- green: MARS restricted to additive modeling

- red: additive model using backfi tting and

fwd. var. selection

13

!

"

#

$

similar for classification

14

!

"

#

$

Boosting for binary classification

binary lymph node classification using gene expressions: data
(Xi, Yi), Xi ∈ R7129, Yi ∈ {−1, 1}

Various loss functions

ρ(y, f) = log2(1 + exp(−yf)): negative binomial log-likelihood
f∗(x) = log(p(x)

1−p(x))

ρ(y, f) = |y − f |2 = 1 − 2yf + (yf)2: squared error
f∗(x) = IE[Y |X = x] = 2p(x) − 1

ρ(y, f) = exp(−yf): exponential loss in AdaBoost
f∗(x) = 1

2 log(p(x)
1−p(x))

ρ(y, f) = I1[yf<0]: misclassification loss
f∗(x) = I1[p(x)≥1/2]

15

!

"

#

$

all these loss functions: ρ(y, f) = ρ(yf):

function of the margin value yf

−3 −2 −1 0 1 2 3

0
1

2
3

4
5

6
7

monotone

yf

lo
ss

exp
log−lik.
SVM
0−1

−3 −2 −1 0 1 2 3
0

1
2

3
4

5
6

7

non−monotone

yf

lo
ss

L2
L1
0−1

minimization of the non-convex misclassification loss: computationally infeasible
other loss functions: convex surrogate loss functions, dominating misclass. error

16

!

"

#

$

Conclusions

statistical view of boosting:
a regularization method for estimation and variable selection

mainly useful for high-dimensional data problems

• boosting is very generic
• boosting is computationally attractive: complexityO(p) for p + n

• simple statistical inference is possible, but more needs to be done

17

