Boosting: more than an ensemble method for prediction
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‘ Historically: Boosting is about multiple predictions I

Data: (X1,Y1),..., (X, Y,) (iid. or stationary),
predictor variables X; € RP
response variables Y; € RorY; € {0,1,...,J — 1}

Aim: estimation of function f(-) : R? — R, e.g.
f(x) =ElY|X =2x|or f(x) =IP[Y =1|X =z]withY € {0,1}

or distribution of survival time Y given X depends on some function f(X) only

“historical” view (for classification):

Boosting is a multiple predictions (estimation) & combination method
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@se procedure:

algorithm A A

Generating multiple predictions:

algorithm A

weighted data 1 — 01(-)
algorithm A »

weighted data 2 bt 02(-)
algorithm A -

weighted data M Rl Onr(-)

Aggregation: fA(-) — 2%21 amém(-)

\ data weights? averaging weights a,,, ?

data — (9() (a function estimate)

e.g.: simple linear regression, tree, MARS, “classical” smoothing, neural nets, ...

~
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microarray data:

classification of 2 lymph nodal status in breast cancer using gene expressions from

n = 33, p = 7129 (for CART: gene-preselection, reducing to p = 50)

~

method test set error | gain over CART
CART 22.5% —
LogitBoost with trees 16.3% 28%
LogitBoost with bagged trees 12.2% 46%

this kind of boosting: mainly prediction, not much interpretation




Boosting algorithms I

AdaBoost proposed for classification by Freund & Schapire (1996)

data weights (rough original idea): large weights to previously heavily misclassified
instances (sequential algorithm)

averaging weights a,,,: large if in-sample performance in mth round was good

Why should this be good?
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Why should this be good?

some common answers 5 years ago ...

because
e it works so well for prediction (which is quite true)
e it concentrates on the “hard cases” (so what?)

e AdaBoost almost never overfits the data no matter how many iterations it is run

(not true)
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A better explanation

Breiman (1998/99): AdaBoost is functional gradient descent (FGD) procedure

aim: find f*(-) = argmin;yE[p(Y, f(X))]
e.g.forp(y, f) = ly — fI* ~ [*(z) =E[Y|X = 2]

FGD solution: consider empirical risk n =" >~ . p(Y;, f(X;)) and

do iterative steepest descent in function space

.




/ Generic FGD algorithm

Step 1. fo = 0; setm = 0.

Step 2. Increase m by 1. Compute negative gradient — %p(Y, f)
and evaluate at f = f,,,_1(X;)=U; (i=1,...,n)

Step 3. Fit negative gradient vector U1, . . ., U,, by base procedure

n  algorithm A A
(Xi, Ui)izy — — Om ()

A

e.g. 0,, fitted by (weighted) least squares

i.e. 0,,,(+) is an approximation of the negative gradient vector

Step 4. Up-date fm — fm—l(') T VS - ém()
sm = argmingn 1Y p(Vi, fre1(Xi) + 8- 0 (X)) and 0 < v < 1
i.e. proceed along an estimate of the negative gradient vector

\Step 5. Iterate Steps 2-4 until . = M sy, for some stopping iteration 1m ¢4y
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Alternative formulation in function space:

Why “functional gradient”?

empirical risk functional: C(f) =n=t>"" | p(Y;, f(X)))
inner product: (f,9)=n"13" | f(X)g(Xy)

negative Gateaux derivative:

—AC(])(@) = -O(f + @l amo, = —dC(f1)(X,) = U,

if Uy, ..., U, are fitted by least squares:
equivalent to maximize (—dC'( f,,,),0) w.rt. 6(-) (if||@|| = 1)
(over all possible 6(-)’s from the base procedure)

i.e: ém() is the best approximation (most parallel)

to the negative gradient —dC( f,,,)




By definition: FGD yields additive combination of base procedure fits

v Zziip Smém ()

FGD with p(y, f) = exp((2y — 1) - f) for binary classification yields the
AdaBoost algorithm

(great result!)

Remark: FGD can not be represented as some explicit estimation function(al):

A

fm(-)#argminfej_—n_1 Z p(Y;, f(X;)) for some function class F
i=1

~~ FGD is mathematically more difficult to analyze but

generically applicable (as an algorithm!) in very complex models

o
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LoBoosting

(see also Friedman, 2001)
loss function p(y, f) = |y — f|°

population minimizer: f*(z) = E[Y|X = z]
FGD with base procedure é() repeated fitting of residuals
), = Vél

m 1 Al ~ resid. U; =Y, — f1 (Xz)
m=2: (X;,U)0y ~ 02(), fo=fi +vhy ~ resid. U; =Y; — fo(X;)

Feeo () =V 2237 0

it O () (stagewise greedy fitting of residuals)

Tukey (1977): twicing for mgtop, = 2and v =1

/
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Any gain over classical methods? (for additive modeling)

Ozone data: n=300, p=8

I I
40 60

boosting iterations

m=0

n =300, p =38
- magenta: LoBoosting with stumps

(horiz. line = cross-validated stopping)
- black: L2Boosting with componentwise
smoothing spline

(horiz. line = cross-validated stopping)

i.e: smoothing spline fi tting against the
selected predictor which reduces RSS most
- green: MARS restricted to additive modeling

- red: additive model using backfi tting

LBoosting with stumps or comp. smoothing splines also yields additive model:
stop /) S A N

~

/
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MSE
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Simulated data: non-additive regression function, n = 200, p = 100

Regression: n=200, p=100

I I I I I
100 150 200 250 300

boosting iterations

black: LoBoosting with componentwise

red: additive model using backfi tting and

fwd. var. selection
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similar for classification
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/ ‘ Boosting for binary classification I

binary lymph node classification using gene expressions: data
(X’iayi)y X’L S R71297 }/j& < {_17 1}

Various loss functions

logs (1 + exp(—y f)): negative binomial log-likelihood

log(23%)

(y, f) =
fr(z) =
(y, f) =y — fI? =1—2yf + (yf)?: squared error
f*(z) =E[Y|X =z] =2p(z) — 1
(y, f) = exp(—y[): exponential loss in AdaBoost
f*(x)
(y, f)
)

ex
= % log( 12(;():1;))

~
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/aH these loss functions: p(y, f) = p(yf):

function of the margin value yf

monotone non-monotone
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minimization of the non-convex misclassification loss: computationally infeasible
cher loss functions: convex surrogate loss functions, dominating misclass. error /
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\ Conclusions '

statistical view of boosting:
a regularization method for estimation and variable selection

mainly useful for high-dimensional data problems

® boosting is very generic
e boosting is computationally attractive: complexity O(p) for p > n

e simple statistical inference is possible, but more needs to be done

.
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