
We provide two strategies for setting up a Python environment on windows.

1. Bash on Ubuntu on Windows
2. Using a Virtual Machine

We recommend Strategy 1, as it will give you a development environment that is similar
enough to the macOS and Linux instructions that you will be able to act almost as if you
have a Linux computer.

We are fine with Strategy 2, although it is essentially just avoiding the problem by throwing
computational resources at it.

If Strategy fails horribly, Strategy 2 will definitely work, but is fairly resource intensive.

So, we recommend trying out Strategy 1 first. If that fails, decide whether you are willing to
allocate a nontrivial amount of computing resources to this course. If so, proceed with
Strategy 3.

Requires: 64-bit Windows 10, updated to the 2016 Anniversary build or later. If you regularly
download updates, you'll be fine.

Windows 10 has added a Ubuntu subsystem which we will use for development in this class.
In particular, we'll use the Ubuntu system to download Python and to create a virtual
environment for this course.

First, follow these instructions from HowToGeek in order to activate the "Windows
Subsystem for Linux," get Ubuntu from the Microsoft Store, and launch a bash shell on
Ubuntu.

One quick note here: Your Windows file system is located at /mnt/c in the Bash shell
environment.

Once you're in the bash shell, you can follow the Linux guide, which has more details. If
you're just getting started, you may also need to run the following commands:

Installing Python on Windows

(1) Bash on Ubuntu on Windows

https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://github.com/stanfordpython/python-handouts/blob/master/installing-python-linux.md

$ sudo add-apt-repository ppa:deadsnakes/ppa
$ sudo apt-get update
$ sudo apt-get install python3.8
$ sudo apt-get install python3.8-venv

You can check which version of Python you've installed by running:

$ python3 --version
Python 3.8.0

In broad strokes, you will need to run the following commands to set up a virtual
environment. The Linux and macOS handouts contain more detailed information.

$ python3 -m venv "${HOME}/py-env"
$ source "${HOME}/py-env/bin/activate"
(py-env)$ pip install "prompt-toolkit==2.0.10" "ipython[all]" jupyter
jupyterlab numpy scipy matplotlib nltk scikit-learn requests flask pyc
odestyle autopep8 Pillow
(py-env)$ deactivate

The command source "${HOME}/py-env/bin/activate" is especially important.
Every time you open a new bash shell, you will need to run
source "${HOME}/py-env/bin/activate" in order to activate your virtual

environment. The deactivate command deactivates an active virtual environment.

You can tell if a virtual environment is active by looking for the parenthesized (py-env)

prefix.

Working with Windows is complicated enough, so we're going to omit the instructions for how
to use virtualenvwrapper to set up managed virtual environments. If you're really
interested, you can follow the macOS instructions for virtualenvwrapper .

It can be very hard to properly set up development environments on Windows. We're going
to give up on Windows, and instead we'll use VirtualBox to run an entire Linux operating
system on your Windows computer. First, download VirtualBox 6.1.0. Make sure you know
where you have downloaded this file.

Great! We're halfway there.

Next, you'll need to download a Unix OS. We recommend using Ubuntu 18.04. Now,

1. Launch VirtualBox by double-clicking on the downloaded executable.

(2) Use a Virtual Machine

https://download.virtualbox.org/virtualbox/6.1.0/VirtualBox-6.1.0-135406-Win.exe
https://www.ubuntu.com/download/desktop/thank-you?version=18.04.1&architecture=amd64

2. Create a new VM instance and point the prompt to the Ubuntu ISO you just
downloaded.

3. VirtualBox will prompt you to configure lots of settings for your new virtual machine. You
can use the defaults, or you can adjust the settings if you know what you are doing.
Roughly speaking, the more resources you give to your VM, the fewer your normal non-
VM computer has. a. You can name your virtual machine something like cs41-vm

4. Click through the on-screen instructions to finish setting up Ubuntu.

Ubuntu is a Linux distribution, so from here you should follow the Linux guide that has
already been posted.

If you'd like to be oriented to VirtualBox itself, they have posted a manual (warning: it's pretty
long) that covers First Steps with VirtualBox. If you only read one section, we recommend
"Section 1.9: Running Your Virtual Machine."

Much of this guide was based on a similar handout written by Sam Redmond.

Credit

https://github.com/stanfordpython/python-handouts/blob/master/installing-python-linux.md
https://www.virtualbox.org/manual/ch01.html

