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1 Primal-Dual Formulation

Formulate and write the relaxed linear programs together with their dual for the following problems. For the
last problem (Shortest Super String), no dual is required. Remember to define the variables in the primal.
For example, in Vertex Cover, we defined foru ∈ V :

xu =

{

1 if u is in the vertex cover,

0 otherwise.

Set Cover Given an universeU = u1, . . . , un, a collection of subsetS = {S1, . . . , Sk}, and a cost
functionc : S → Q+. A set cover is a sub-collectionC of S that covers all element inU , i.e., for allu ∈ U ,
u ∈

⋃

S∈C S. Find a minimum cost set cover.

Minimum Spanning Tree Given an undirected graphG(V,E) and a weight functionw : E → Q+. Find
a minimum weight spanning tree, i.e., a tree spans all verticesV .

Steiner Tree Given an undirected graphG(V,E), a weight functionw : E → Q+ and a set of terminal
S ⊂ V . Find a minimum weight tree that spans all node inS.

Traveling Salesman tour Given a complete undirected graphG(V,E), a weight functionw : E → Q+.
Find a minimum weight simple cycle that visits all nodes inV .

Shortest Super String Given a set ofn strings{s1, . . . , sn} over a finite alphabet
∑

. Find a minimum
length stringt that contains eachsi as a substring.

2 Duality

Solve exercise 12.8 in theApproximation Algorithms.

3 Proof

3.1 Set Cover

Define for each setS ∈ S

xS =

{

1 if S is chosen,

0 o.w.
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We have the following LP primal-dual:

min
∑

S∈S

cSxS

s.t
∑

S:u∈S

xS ≥ 1 ∀u ∈ U , (1)

xS ≥ 0 ∀S ∈ S.

max
∑

yu

yu

s.t
∑

u:u∈S

yu ≤ cS ∀S ∈ S

yu ≥ 0 ∀u ∈ U .

where the constraint (1) in the primal says that each elementis covered by at least one set.

3.2 Minimum Spanning Tree

Define for each edgee ∈ E

xe =

{

1 if e is chosen,

0 o.w.

We have the following LP primal-dual:

min
∑

e∈E

cexe

s.t
∑

e∈E

xe ≥ |V | − 1, (2)

∑

e:e=(u,v),u∈S,v∈S

xe ≤ |S| − 1 ∀S ⊆ V, (3)

xe ≥ 0 ∀e ∈ E.

In the LP, the constraint (2) in the primal ensures that we have at least|V | − 1 edges in the solution (any
MST has exactly|V | − 1 edges). The constraint (3) makes sure there is no cycle by requiring that for any
subsetS of vertices, there are at most|S| − 1 edges between vertices ofS in the solution, so the vertices
of S are not on a cycle in the solution. Since that is applied for any subsets, the solution contains no cycle
and hence it is a forest. As it contains at least|V | − 1 edges, it only contains a single connected component,
therefore it is a tree.

Rewrite the primal, we get the following LP primal-dual.

min
∑

e∈E

cexe

s.t
∑

e∈E

xe ≥ |V | − 1,

∑

e:e=(u,v),u∈S,v∈S

−xe ≥ 1 − |S| ∀S ⊆ V,

xe ≥ 0 ∀e ∈ E.

max (|V | − 1)α +
∑

S⊆V

(1 − |S|)βS

s.t α −
∑

S:u,v∈S

βS ≤ ce ∀e = (u, v) ∈ S

βS ≥ 0 ∀S ⊆ V.

α ≥ 0
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3.3 Steiner Tree

A LP-formulation can be done similarly as STEINER FORESTin class. Here we present another LP. For any
subsetT ⊂ V , denoteδ(T ) the cut ofT . Define for each edgee ∈ E

xe =

{

1 if e is chosen,

0 o.w.

We have the following LP primal-dual:

min
∑

e∈E

cexe

s.t
∑

e:e∈δ(T )

xe ≥ 1, ∀T ⊂ V, S 6⊂ T (4)

xe ≥ 0 ∀e ∈ E.

max
∑

T :T⊂V,S 6⊂T

yT

s.t
∑

T :e∈δ(T ),S 6⊂T

yT ≤ ce ∀e ∈ E,

yT ≥ 0 ∀T ⊂ V, S 6⊂ T.

where the constraint (4) ensures that all nodes ofS are connected. We do not care about cycles since in any
minimal solution does not contain cycle.

3.4 Traveling Salesman tour

Define for each edgee ∈ E

xe =

{

1 if e is chosen,

0 o.w.

min
∑

e∈E

cexe

s.t
∑

e∈E

xe = |V |, (5)

∑

e:e=(u,v),u,v∈S

xe ≤ |S| − 1 ∀S ⊂ V, (6)

xe ≥ 0 ∀e ∈ E.

where the constraint (5) guarantees that the output has|V | edges, a necessary condition for a tour. The
constraint (6) (on proper subset ofV ) guarantees no cycle in the output graph except the tour itself.

Rewrite the primal, we have the following LP primal-dual:
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min
∑

e∈E

cexe

s.t
∑

e:e∈E

xe ≥ |V |,

∑

e:e∈E

−xe ≥ −|V |,

∑

e:e=(u,v),u,v∈S

−xe ≥ 1 − |S| ∀S ⊂ V,

xe ≥ 0 ∀e ∈ E.

max |V |(α − β) +
∑

S⊂V

(1 − |S|)γS

s.t α − β −
∑

S:S⊂V,u,v∈S

γS ≤ ce ∀e = (u, v) ∈ E,

α, β ≥ 0

γS ≥ 0 ∀S ⊂ V.

3.5 Shortest Super String

Assume that the first character index in a string is 1 (insteadof 0 as usual in programming). LetN be the
sum of all strings’ length, i.e.,N =

∑n
i=1 |si|. Clearly |t| ≤ N . Let skj denote thejth character ofsk and

ti is the character at positioni in the output stringt. Define the following variables. Variablexijk indicates
whetherti covers the occurrence ofskj. Variableyi indicates whether a specific locationi in the output
string is used to cover some character. The objective is to minimize the number of characters used in the
cover.

min
N

∑

i=1

yi

s.t
N

∑

i=1

xijk ≥ 1, ∀1 ≤ k ≤ n,∀1 ≤ j ≤ |sk| (7)

xijk + xi′j′k ≤ 1, ∀1 ≤ k ≤ n,∀j′ > j,∀i′ < i (8)

∑

i∈S

|sk|
∑

j=1

xijk ≤ |sk| − 1, ∀1 ≤ k ≤ n,∀S non-contiguous⊂ {1, . . . , N} with |S| = |sk| (9)

xijk + xi′j′k ≤ 1, ∀1 ≤ k ≤ n,∀j′ > j,∀i′ < i (10)

nyi ≥

n
∑

k=1

|sk|
∑

j=1

xijk ∀i (11)

xijk ∈ {0, 1} ∀i, j, k

yi ∈ {0, 1} ∀i

The constraint (7) says that each character in eachsk must be covered at least once. The constraint (8)
ensures that the order in which characters are covered is increasing. The constraint (9) guarantees that no
non-contiguous cover exists by restricting the number of characters covered by a non-contiguous subset of
size|sk| to be at most|sk| − 1 for eachk. The constraint (10) makes sure that covers are consistent,so if
thejth character ofsk and thejth character ofsk′ differ, then they cannot be covered by the same position
i. The constraint (11) says that positioni of the output string might cover a character ofn input strings.
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