
Kasper Dalgaard Larsen

20053122

Approximation Algorithms

Handin 3

1 Greedy Load Balancing Algorithm

In this section we study the greedy load balancing algorithm.

Part 1. Show that the greedy algorithm gives a 2-approximation, and give a
tight example.

First we recall the simple lower bound on OPT from the lecture:

OPT ≥ max{pmax,
∑

i

pi/m}

where pmax = maxi pi. Next we show that the solution computed by the greedy
algorithm has cost at most

2 · max{pmax,
∑

i

pi/m}

Assume first that pmax >
∑

i pi/m ⇒ m >
∑

i pi/pmax and assume for the sake
of contradiction that the greedy algorithm returns a solution of cost more than
2 · pmax. Let j be the index of any machine having a finishing time of at least
2 · pmax. Notice that if we remove the last job from machine j, then it still has
finishing time at least 2pmax − pmax = pmax. Now since the greedy algorithm
always assigns jobs to the machine with least current load, this implies that all
machines have load at least pmax. Thus

∑

i pi ≥ mpmax ⇒ m ≤ ∑

i pi/pmax,
a contradiction. Secondly assume that

∑

i pi/m ≥ pmax and that the greedy
algorithm returns a solution of cost more than 2 · ∑i pi/m. Again let j be the
index of a machine with finishing time more than 2 · ∑i pi/m and remove the
last job. By the same arguments as before, we know that all machines have a
finishing time of more than 2·∑i pi/m−pmax. Summing the processing times on
all machines we get that

∑

i pi > m · (2 ·∑i pi/m− pmax) = 2
∑

i pi −mpmax ⇒
∑

i pi/m < pmax, a contradiction.
The following example (almost) shows the tightness: We have n jobs and

m = (n − 1)/a machines where a is a parameter to be fixed later. We have
am jobs of cost 1 and 1 job of cost a. The arbitrary order chosen by the
greedy algorithm is to assign all the length 1 jobs first. This distributes all the
length 1 jobs evenly amongst the m machines, and finally the length a job is
assigned arbitrarely to one of the machines, giving a total cost of 2a. In the
optimal solution, the length a job is assigned to a machine first, and then the
remaining am jobs are assigned greedily. This gives a cost of a + ⌈a/m⌉, thus
the approximation ratio is

2a

a + ⌈ a
m
⌉

1



Choosing a =
√

n − 1 we have m = a =
√

n − 1, and the approximation ratio
becomes

2a

a + 1
=

2m

m + 1
=

1
1

2
+ 1

2m

=
2 − 2

m

1 − 1

m2

≥ 2 − 2

m

Part 2. Show that if jobs are ordered in decreasing length, then the approxi-
mation ratio is 3

2
.

Again, we use the lower bounds from above, giving

OPT ≥ max{pmax,
∑

i

pi/m}

We will assume that p1 ≥ p2 ≥ · · · ≥ pn, implying that jobs get assigned in this
order by the modified greedy algorithm. Assume first that pmax >

∑

i pi/m and
that the modified greedy algorithm gives a solution of cost more than 3

2
pmax.

Let j be the index of a machine with maximum load and consider the last job
assigned to it. This job has length pk for some k. Removing this job, we know
that after assigning the jobs of length p1 . . . pk−1, all machines have load more
than 3

2
pmax − pk. Since this is greater than pmax, we must have at least 2 jobs

on every machine, thus m ≤ k−1

2
. Summing all weights, we get that

∑

i

pi >

n
∑

i=k

pi + m · (3

2
pmax − pk) ⇒

3

2

∑

i

pi <

k−1
∑

i=1

pi + mpk ⇒

1

2

k−1
∑

i=1

pi +
3

2

n
∑

i=k

pi < mpk ≤ (k − 1)

2
pk ⇒

k − 1

2
pk +

3

2

n
∑

i=k

pi <
k − 1

2
pk ⇒

3

2

n
∑

i=k

pi < 0

which is a contradiction since all weights are positive. Secondly, assume
∑

i pi/m ≥
pmax and that the modified greedy algorithm gives a solution of cost more than
3

2

∑

i pi/m. Let j and k be as before and remove job k from machine j. The
load on all machines after assigning the jobs of length p1, . . . , pk−1 is then more
than 3

2

∑

i pi/m − pk ≥ 3

2
pmax − pk. Thus m ≤ k−1

2
and

k−1
∑

i=1

pi > m · (3

2

∑

i

pi/m − pk) =
3

2

∑

i

pi − mpk

We can now repeat the calculations from above and get our contradiction.

2



2 Question 2

First check if there are any jobs of length > T , in which case we return No.
Otherwise, define variables M(x1, . . . , xk) as in the hint. Notice that since ai <
T for all i, we have M(x1, . . . , xk) = 1 when

∑

xi = 1 and M(0, 0, . . . , 0) = 0.
We now compute the M variables in iterations, such that in the j’th iteration,
we compute the answer for all combinations of xi where

∑

xi = j. To fill out
entry M(x1, . . . , xk) in the j’th iteration, we “fix” the jobs on the last machine.
This is done by trying all combinations of values (y1, . . . , yk) such that

∑

yi > 0
and yi ≤ xi for all i. Intuitively, this corresponds to deciding how many jobs
yi of length ai to place on the last machine. For each such combination, if
∑

yi · ai < T , we let

M(x1, . . . , xk) := min{M(x1 − y1, . . . , xk − yk) + 1, M(x1, . . . , xk)}.

where M(x1, . . . , xk) = ∞ if it has not yet been assigned a value. Once we
reach the n’th iteration, we can read off how many machines are needed to
schedule the jobs given as input. If this is greater than the number of available
machines, return No, and otherwise return Yes. To also obtain a valid schedule,
one could store the jobs assigned to the last machine whenever overwriting the
M(x1, . . . , xk) variables. Backtracking through the variables would give a valid
schedule.

Analysis. First notice that there are
(

j+k−1

k−1

)

ways of choosing k integers
summing to j. Thus we have the following bound on the running time

n
∑

j=2

(

j + k − 1

k − 1

) j
∑

i=1

(

i + k − 1

k − 1

)

=

n
∑

j=2

j
∑

i=1

(

j + k − 1

k − 1

)(

i + k − 1

k − 1

)

where the inner binomial coefficient originates from choosing the yi’s and the
outer from choosing the xi’s. This sum is bounded by

n2

(

n + k − 1

k − 1

)2

≤ n2

(

(n + k − 1)e

k − 1

)2k−2

= n2

(

en

k − 1
+ e

)2k−2

which for k ≥ 4 and n ≥ e/(1 − e/3) is bounded by

n2n2k−2 = n2k

3


