
Approximation Algorithms Dept. of CS, Aarhus University

Homework 3
Lecturer: Nguyen Kim Thang Student: Morten Schaumburg (20033306)

Question 1
1. We note that the greedy algorithm from the assignment is the same as algorithm 10.2 from

the book. Theorem 10.3 proves that the algorithm is a factor 2 approximation, and we will
just modify the proof slightly in order to prove 2− 1

m
approximation.

Let L be the makespan of schedule that the algorithm outputs. Let Mi be a machine with
load L in the schedule, and let pj be the last job scheduled on Mi. Since Mi is the machine
that is scheduled, it must have the lowest load, which must be less than the average of the
sum of all jobs scheduled until now. The observation here is that since we are scheduling pj
it has not already been scheduled, and so we can lower the upper bound on the starting time
a bit.

L = startj + pj ≤
1

m

(
n∑

i=1

pi − pj

)
+ pj =

1

m

n∑
i=1

pi + (1− 1
m
) · pj

≤ OPT + (1− 1
m
) · OPT = (2− 1

m
) · OPT

As a tight example we can still use example 10.4. The algorithm gives a makespan of 2m
while OPT = m+ 1, and the approximiation factor promises

L ≤ (2− 1
m
)(m+ 1) = 2m+ 1− 1

m

2. We now sort the jobs in decreasing order of processing times instead of random order before
scheduling them. If n ≤ m then we schedule at most one job for each machine, which is
optimal. If n ≥ m+ 1, then at least one machine must get at least two jobs in all schedules.
Since the jobs are ordered by decreasing size, this gives us that pm+1 ≤ 1

2
· OPT.

There are now two possibilities, either Mi gets a single job scheduled or it gets more than
one. If it only gets a single job and still finishes last, pj must be the longest job and it’s
completion time is a lower bound so our schedule is optimal. If Mi gets multiple jobs
assigned we know that pj is the last of them which gives us that j ≥ m + 1, so pj ≤ pm+1.
This gives

L = startj + pj ≤
1

m

(
n∑

i=1

pi

)
+ pj ≤ OPT + 1

2
· OPT = 3

2
· OPT

1



Question 2
This is the same as bin packing with fixed number of object sizes from section 10.2.1 in the book,
except that our bins have size T instead of 1. We use the same method to compute first the different
groupings of processing times that can be executed on one machine in time T , and then recursively
compute the number of machines needed for any set of n tasks while keeping subresults in a table.
If our given tasks can be executed on m or fewer machines we report YES, otherwise we return
NO.

2


