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ABSTRACT
In theM INIMUM BOUNDED DEGREESPANNING TREE problem,
we are given an undirected graph with a degree upper boundBv on
each vertexv, and the task is to find a spanning tree of minimum
cost which satisfies all the degree bounds. LetOPT be the cost
of an optimal solution to this problem. In this paper, we present
a polynomial time algorithm which returns a spanning treeT of
cost at mostOPT anddT (v) ≤ Bv + 1 for all v, wheredT (v)
denotes the degree ofv in T . This generalizes a result of Furer
and Raghavachari [8] to weighted graphs, and settles a 15-year-old
conjecture of Goemans [10] affirmatively. The algorithm general-
izes when each vertexv has a degree lower boundAv and a degree
upper boundBv, and returns a spanning tree with cost at mostOPT

andAv − 1 ≤ dT (v) ≤ Bv + 1 for all v. This is essentially the
best possible. The main technique used is an extension of the it-
erative rounding method introduced by Jain [12] for the design of
approximation algorithms.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non
Numerical Algorithms and Problems—Computations on discrete
structures; G.2.2 [Discrete Mathematics]: Graph Theory—Net-
work Problems, Trees.

1. INTRODUCTION
TheM INIMUM BOUNDED DEGREESPANNING TREE problem

(MBDST) is defined as follows: Given a simple undirected graph
G = (V, E), a cost functionc : E → R and a degree upper
boundBv for each vertexv ∈ V , find a spanning tree of minimum
cost which satisfies all the degree bounds. LetOPTbe the cost of an
optimal solution to this problem. An(α, f(Bv))-approximation al-
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gorithm1 is an algorithm which returns a spanning treeT with cost
at mostα ·OPTanddT (v) ≤ f(Bv) for all v, wheredT (v) denotes
the degree ofv in T . When all degree bounds are2 (i.e. Bv = 2
for all v), the MBDST problem specializes to theM INIMUM COST

HAMILTONIAN PATH problem, and thus is NP-hard. In unweighted
graphs, Furer and Raghavachari [8] gave an elegant(1, Bv + 1)-
approximation algorithm for the MBDST problem. Goemans [10]
conjectured that this result can be generalized to weighted graphs.

CONJECTURE 1.1. In polynomial time, one can find a spanning
tree of maximum degree at mostk + 1 whose cost is no more than
the cost of a minimum cost tree with maximum degree at mostk.

Note that the above conjecture is formulated in the special case
whereBv = k for all v. Recently, Goemans [10] made a major step
towards this conjecture by giving a polynomial time(1, Bv + 2)-
approximation algorithm for the MBDST problem. In this paper,
we settle Conjecture 1.1 positively by proving the following result:

THEOREM 1.2. There exists a polynomial time(1, Bv + 1)-
approximation algorithm for theM INIMUM BOUNDED DEGREE

SPANNING TREE problem.

Theorem 1.2 also generalizes to the setting when there is a degree
lower boundAv and a degree upper boundBv for each vertexv ∈
V . In this case, the algorithm returns a spanning treeT such that
Av − 1 ≤ dT (v) ≤ Bv + 1 and the cost ofT is at mostOPT,
whereOPT is the minimum cost of a spanning tree which satisfies
all degree (upper and lower) bounds. Note that we do not assume
that the cost function satisfies triangle inequalities (or even non-
negativity). With this general cost function, it is not possible to
obtain any approximation algorithm if we insist on satisfying all
the degree upper bounds [9]2. Thus, Theorem 1.2 is essentially the
best possible.

1.1 Techniques
Polyhedral combinatorics has proved to be a powerful, coherent,

and unifying tool in combinatorial optimization (see [20]). In the
last two decades, polyhedral methods have also been applied very
successfully to the design of approximation algorithms (see [21]).
A standard approach to design approximation algorithms is to first
formulate the problem as an integer program, and then use the lin-
ear relaxation of this program as a way to lower-bound the cost of

1Notice that the first parameter is used to specify theratio, while
the second parameter is used to specify theactual bound.
2Assuming P6= NP, there is no(p(n), Bv)-approximation algo-
rithm for any polynomialp(n) of n wheren is the number of ver-
tices.



an optimal solution. We shall also use this approach. Given an
undirected graphG = (V, E) and a subsetS of vertices, we de-
noteE(S) = {e ∈ E : |e ∩ S| = 2}, i.e., edges which have
both endpoints inS. We also denoteδ(S) the edges which have
exactly one endpoint inS. Forx : E → R+ andU ⊆ E, we de-
notex(U) :=

P
e∈U x(e). As in Goemans’ result [10], we use the

following natural linear programming relaxation for theM INIMUM

BOUNDED DEGREESPANNING TREE problem.

minimize c(x) =
X
e∈E

ce xe (1)

subject to x(E(V )) = |V | − 1 (2)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V (3)

x(δ(v)) ≤ Bv ∀ v ∈ V (4)

xe ≥ 0 ∀ e ∈ E (5)

Using a polyhedral approach, a general strategy is to construct a
spanning tree of cost no more than the optimal value of the above
linear program, and in which the degree of each vertex is at most
Bv + 1. This would prove Theorem 1.2. In fact, this general strat-
egy has been used in previous work, and different techniques have
been proposed to “round” the above linear program. An impor-
tant observation of Goemans is that abasic feasible solution(or
an extreme point solution) of the above linear program is charac-
terized by alaminar family (definitions will be provided later) of
tight constraints(inequalities that are satisfied as equalities), and
he exploited this fact cleverly in [10] to design an(1, Bv + 2)-
approximation algorithm for the MBDST problem.

We note that a very similar observation was made by Jain [12]
in his breakthrough work on theSURVIVABLE NETWORK DESIGN

problem, where he first introduced the idea ofiterative roundingto
the design of approximation algorithms. This potential connection
initiated our approach to theBOUNDED DEGREE SURVIVABLE

NETWORK DESIGN problem. Recently, in joint work [15] with
Naor and Salavatipour, we have extended Jain’s iterative round-
ing method to give the first constant factor (bi-criteria) approxima-
tion algorithm for bounded degree network design problems includ-
ing theM INIMUM BOUNDED DEGREE STEINER TREE problem,
BOUNDED DEGREE SURVIVABLE NETWORK DESIGN problem,
etc. Inspired by these results, we attempted Conjecture 1.1 using
the iterative rounding method.

The basic setting of the iterative rounding method for network
design problems goes as follows. First we solve the linear pro-
gram to obtain a basic optimal solutionx∗. We proceed by adding
the edges with the highest fractional value to the integral solution.
Then we construct theresidual problemwhere the edges added pre-
viously are fixed, and update the linear program appropriately. A
key feature of the iterative rounding method is to repeat this pro-
cedure: solve again the linear program for the residual problem to
obtain a basic optimal solution (instead of usingx∗), and add the
edges with the highest fractional value in this new fractional so-
lution to the integral solution. This procedure is iterated until the
integral solution constructed is a feasible solution. In theSURVIV-
ABLE NETWORK DESIGN problem, the crucial theorem in Jain’s
approach is that the edges picked in each iteration have fractional
value at least1/2, which ensures that the above algorithm has an
approximation ratio of 2. This theorem relies heavily on the prop-
erties of a basic solution, as in Goemans’ theorem.

The iterative rounding method can also be applied to solve prob-
lems optimally. For this purpose, we could only pick an edgee
with x∗e = 1 (we call such an edgee an1-edge). The above linear
program without the degree constraints (constraints from (4)) is the

standard linear programming formulation of theM INIMUM SPAN-
NING TREEproblem, and this iterative rounding approach (by only
picking 1-edges) can be used to construct a minimum spanning tree,
as we will show in Section 2.

For theM INIMUM BOUNDED DEGREESPANNING TREE prob-
lem, however, both approaches would not work directly. The for-
mer approach of picking an edgee with x∗e ≥ 1

2
would not work

because we could not guarantee the optimality (with respect to the
cost of the linear program) of the solution, while the latter approach
of picking 1-edges would not work because the algorithm may not
make progress in case there is no 1-edge.

We propose a way to combine and extend the ideas of these re-
sults. In particular, we show that only adding 1-edges to the so-
lution can also be used to design approximation algorithms via the
iterative rounding method. Thus our algorithmdoes not round. Our
algorithm would keep adding 1-edges to the solution whenever pos-
sible. Of course, we cannot always guarantee the existence of an
1-edge, for otherwise we would have solved the problem optimally
and satisfied all the degree bounds. The key insight is that if an
1-edge does not exist, then there must be a vertex with degree up-
per boundBv and with at mostBv + 1 edges incident at it in the
support of a basic feasible solution. We call such a vertex aspe-
cial vertex. To proceed, weremovethe degree constraints of all
special vertices and re-solve the linear program again. The heart of
our analysis is to show that there is an 1-edge if there is no special
vertex. This is proved by a counting argument similar to that of
Jain [12], which relies heavily on the fact that a basic feasible so-
lution is characterized by a laminar family of tight constraints (as
in [12, 10]). In this way, eventually we construct a spanning tree
by picking only 1-edges, which ensures the optimality of the cost.
Observe that by removing the degree constraint of a special ver-
tex, the degree constraint at this vertex could only be violated by
at most an additive constant of one, and so Theorem 1.2 follows.
We remark that the idea of removing the degree constraint of a spe-
cial vertex comes from the joint work on bounded degree network
design problems [15]. These results demonstrate that the iterative
rounding method is quite general and powerful, and we hope that
our results will shed light on further applications of this method.

1.2 Related Work
TheM INIMUM BOUNDED DEGREESPANNING TREE problem

is a well studied problem and has been attacked using a variety of
techniques. Initial efforts on the problem were concentrated on ob-
taining bi-criteria approximation algorithms. Ravi et al [18] gave an
(O(log n), O(Bv log n))-approximation for the MBDST problem
using a matching-based augmentation technique. Konemann and
Ravi [13, 14] used a Lagrangian-relaxation based approach to ob-
tain an(O(1), O(Bv + log n))-approximation algorithm. Chaud-
huri et al [1, 2] presented an(1, O(Bv + log n))-approximation
algorithm, and an(O(1), O(Bv))-approximation algorithm based
on the push-relabel framework developed for the maximum flow
problem. Ravi and Singh [19] considered a variant of the prob-
lem in which the tree returned must be a minimum spanning tree.
They gave an algorithm that returns an MST in which the degree
of any vertexv is at mostBv + p, wherep is the number of
distinct costs in any MST. Recently, Goemans [10] presented an
(1, Bv + 2)-approximation algorithm using matroid intersection
techniques. This was the previous best guarantee for the MBDST
problem. In the special case where the graph is unweighted, Furer
and Raghavachari [8] developed an algorithm, based on a variant of
local search, to return a spanning tree in which the degree of each
vertexv is at mostBv + 1.

The iterative rounding technique that we use in our algorithm



was developed by Jain [12] for theSURVIVABLE NETWORK DE-
SIGN problem and has later been successfully applied to various
problems [4, 7]. Recently, this technique has been extended to give
constant factor bi-criteria approximation algorithm for theBOUND-
ED DEGREESURVIVABLE NETWORK DESIGN problem [15].

1.3 Organization
The rest of the paper is organized as follows. In Section 2, we

give an iterative procedure which shows the integrality of the span-
ning tree polyhedron. Then, in Section 3, we present a simple
(1, Bv + 2)-approximation algorithm for the MBDST problem via
iterative rounding. This matches the previous best result of Goe-
mans [10]. In Section 4, we present the main algorithm and the
proof of Theorem 1.2. Finally, in section 5, we extend the algo-
rithm to deal with degree lower bounds.

2. SPANNING TREE POLYHEDRON
In this section, we present an iterative procedure to find a min-

imum spanning tree from a basic optimal solution of a linear pro-
gram. This motivates the main result of the paper and illustrates
the basic proof techniques. LetG = (V, E) be a graph with a cost
function c on edges. A classical result of Edmonds [6] states that
the following linear program LP-MST(G) is integral, and a basic
optimal solution is always a minimum spanning tree.

minimize c(x) =
X
e∈E

ce xe (6)

subject to x(E(V )) = |V | − 1 (7)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V (8)

xe ≥ 0 ∀ e ∈ E (9)

The following is an iterative procedure to obtain a minimum
spanning tree ofG.

Iterative MST Algorithm

1. InitializationF ← ∅.
2. While V (G) 6= ∅ do

(a) Find a basic optimal solutionx∗ of LP-MST(G) and
remove every edgee with x∗e = 0 from G.

(b) Find a vertexv with at most one edgee = uv inci-
dent at it, and updateF ← F ∪ {e}, G ← G \ {v}.

3. ReturnF .

Figure 1: MST Algorithm

First assume that the above algorithm terminates. We claim that
the solutionF returned by the algorithm is a spanning tree ofG of
cost no more than the cost of the initial LP solutionx∗, and hence
a minimum spanning tree. The argument will proceed by induction
on the number of iterations of the algorithm.

If the algorithm finds a vertexv of degree one (a leaf vertex)
in Step 2b with an edgee = {u, v} incident atv, then we must
havex∗e = 1 sincex(δ(v)) ≥ 1 is a valid inequality of the LP
(subtract the constraint (8) forS = V \{v} from the constraint (7)).
Intuitively, v is a leaf of the spanning tree. Hence, we adde to the
solutionF (initially F = ∅), and removev from the graph. Note
that for any spanning treeT ′ of G′ = G \ {v}, we can construct
a spanning treeT = T ′ ∪ {e} of G. Hence, the residual problem

is to find a minimum spanning tree onG \ v, and we apply the
same procedure to solve the residual problem recursively. Observe
that the restriction ofx∗ to E(G′), denoted byx∗res, is a feasible
solution to LP-MST(G′). Inductively, the algorithm will return a
spanning treeF ′ of cost at most the optimal value of LP-MST(G′),
and hencec(F ′) ≤ c · x∗res, asx∗res is a feasible solution to LP-
MST(G′). So, we have

c(F ) = c(F ′) + ce andc(F ′) ≤ c · x∗res

which imply that

c(F ) ≤ c · x∗res + ce = c · x∗

asx∗e = 1. Therefore, the spanning tree returned by the algorithm
is of cost no more than the cost of the LP solutionx∗, which is
a lower bound on the optimal cost. This shows that the algorithm
returns a minimum spanning tree of the graph.

It remains to show that the algorithm will terminate, or that we
can always finds a vertexv of degree one in Step 2b.

LEMMA 2.1. For any basic solutionx∗ of LP-MST(G) with
supportE∗ = {e | x∗e > 0}, there exists a vertexv such that
degE∗(v) = 1.

A basic solution is defined to be the unique solution ofm linearly
independent tight constraints (constraints which achieve equality),
wherem denotes the number of variables in the linear program.
For any edgee, if x∗e = 0, we can remove the edgee from the
graph and consider only the edges inE∗. Thus we can assume
that there is no tight constraints from (9). To prove Lemma 2.1,
we shall prove that there are at mostn − 1 tight constraints from
(7)-(8), wheren denotes the number of vertices in the graph. This
can be shown by an uncrossing technique. For a setS ⊆ V , the
corresponding constraintx∗(E(S)) ≤ |S| − 1 defines a vector in
R|E|: the vector has a 1 corresponding to each edgee ∈ E(S), and
0 otherwise. We call this vector thecharacteristic vectorof E(S),
and denote it byχE(S). LetF = {S | x∗(E(S)) = |S| − 1} be
the set of tight constraints from (7)-(8). Denote byspan(F) the
vector space generated by the set of vectors{χE(S) | S ∈ F}. We
say two setsX, Y areintersectingif X ∩ Y , X − Y andY − X
are nonempty. A family of sets islaminar if no two sets are inter-
secting. From standard uncrossing arguments (see e.g. Cornuejols
et al [5], Jain [12]) it follows that we can obtain a laminar family
L ⊆ F such thatspan(L) = span(F). For completeness we in-
clude a proof here to illustrate the uncrossing technique. First we
need an “uncrossing” lemma on intersecting sets.

LEMMA 2.2. [10] If S, T ∈ F and S ∩ T 6= ∅, then both
S ∩ T and S ∪ T are in F . Furthermore,χE(S) + χE(T ) =
χE(S∩T ) + χE(S∪T ).

PROOF. As S ∩ T 6= ∅, we have:

|S| − 1 + |T | − 1 = |S ∩ T | − 1 + |S ∪ T | − 1

≥ x∗(E(S ∩ T )) + x∗(E(S ∪ T ))

≥ x∗(E(S)) + x∗(E(T ))

= |S| − 1 + |T | − 1

and hence we have equality throughout. This implies thatS∪T and
S ∩ T are both inF , and furthermore there are no edgese ∈ E∗

betweenS \T andT \S. Therefore,χE(S)+χE(T ) = χE(S∩T )+
χE(S∪T ).

A basic solution is characterized by a set of linearly independent
tight constraints. The following lemma implies that a basic solu-
tion of LP-MST(G) is characterized by a laminar family of tight
constraints.



LEMMA 2.3. [12] If L is a maximal laminar subfamily ofF ,
thenspan(L) = span(F).

PROOF. Let L be a maximal laminar subfamily ofF and as-
sume thatχE(S) /∈ span(L) for someS ∈ F . Choose one such
setS that intersects as few sets ofL as possible. SinceL is a max-
imal laminar family, there existsT ∈ L that intersectsS. From
Lemma 2.2, we have thatS ∩ T andS ∪ T are also inF and that
χE(S) +χE(T ) = χE(S∩T ) +χE(S∪T ). SinceχE(S) /∈ span(L),
eitherχE(S∩T ) /∈ span(L) or χE(S∪T ) /∈ span(L). In either
case, we have a contradiction because bothS ∪ T andS ∩ T inter-
sect fewer sets inL thanS; this is because every set that intersects
S ∪ T or S ∩ T also intersectsS.

The proof of Lemma 2.1 follows from Lemma 2.3.

Proof of Lemma 2.1: Suppose each vertex has degree at least two.
Then|E∗| ≥ 1

2

P
v∈V degE∗(v) = |V |.

Recall that a basic solution is the unique solution ofm linearly
independent constraints, wherem is the number of variables in the
linear program. Asx∗ is a basic solution and there are no tight
constraints from (9), we have|E∗| = |L|. A simple inductive
argument shows that a laminar family on a ground set of sizen
containing no singleton sets has at mostn − 1 sets. Hence,|L| ≤
|V | − 1 and so|E∗| = |L| ≤ |V | − 1, a contradiction. 2

REMARK 2.4. If x∗ is an optimal basic solution to LP-MST(G),
then the residual LP solutionx∗res, which isx∗ restricted toG′ =
G \ v, remains an optimal basic solution to LP-MST(G′). Hence,
in the MST Algorithm we only need to solve the original linear pro-
gram once and none of the residual linear programs. Alternatively,
Lemma 2.1 shows that|E∗| = n−1 and sincex(E∗) = n−1 and
x(e) ≤ 1 for all edgese ∈ E∗ (by considering constraints (9) for
size two sets), we must havexe = 1 for all edgese ∈ E∗ proving
integrality of the spanning tree polyhedron.

3. A +2 APPROXIMATION ALGORITHM
In this section we first present an(1, Bv + 2)-approximation al-

gorithm for the MBDST problem via iterative rounding. This algo-
rithm is simple, and it illustrates the idea of removing degree con-
straints. We use the following standard linear programming relax-
ation for the MBDST problem, which we denote by LP-MBDST(G,
B, W ). In the following we assume that degree bounds are given
for vertices only in a subsetW ⊆ V . LetB denote the vector of all
degree boundsBv one for eachv ∈ W .

minimize c(x) =
X
e∈E

ce xe (10)

subject to x(E(V )) = |V | − 1 (11)

x(E(S)) ≤ |S| − 1 ∀S ⊂ V (12)

x(δ(v)) ≤ Bv ∀ v ∈ W (13)

xe ≥ 0 ∀ e ∈ E (14)

Observe that LP-MBDST(G,B, W ) has an exponential number
of constraints. Cunningham [3] gave a polynomial time procedure
to separate over constraints (11)-(12) and (14). Separating over
constraints (13) is clearly in polynomial time. Hence, using the el-
lipsoid algorithm one can optimize over LP-MBDST(G,B, W ) in
polynomial time. An alternative is to write a compact formulation
for the above linear program [16] which has polynomially many
variables and constraints.

MBDST Algorithm

1. InitializationF ← ∅.
2. While V (G) 6= ∅ do

(a) Find a basic optimal solutionx∗ of LP-
MBDST(G,B, W ) and remove every edgee
with x∗e = 0 from G. Let the support ofx∗ beE∗.

(b) If there exists a vertexv ∈ V , such that there is at
most one edgee = uv incident atv in E∗, then up-
dateF ← F ∪ {e}, G ← G \ {v}, W ← W \ {v},
and also updateB by settingBu ← Bu − 1.

(c) If there exists a vertexv ∈ W such thatdegE∗(v) ≤
3 then updateW ← W \ {v}.

3. ReturnF .

Figure 2: MBDST Algorithm

Our(1, Bv +2)-approximation algorithm in Figure 2 is a simple
iterative rounding procedure for LP-MBDST(G,B, W ).

Before we prove the correctness of the algorithm, we give a high-
level description and some intuition. First we remove all edgese
with x∗e = 0 and focus on the edges with positive fractional value,
i.e. x∗e > 0. In Step 2b, ifv is of degree 1 ande = uv is the only
edge incident atv, thenv is a leaf of the spanning tree. So, we add
e to the solutionF (initially F = ∅), removev from the graph, and
update the LP appropriately. Note that sincex∗e = 1, we maintain
the optimality of the cost and also do not violate any degree con-
straint. Of course, we cannot always guarantee such an edge exists,
otherwise we would have solved the problem exactly. The crucial
observation is that if there is no leaf vertex, then there must exist
a vertexv with at most three edges incident at it and the degree
constraint forv is present in the linear program (i.e.v ∈ W ). In
Step 2c, we remove the degree constraint of a vertexv if v has at
most three edges incident at it. By doing so, the degree constraint
of v is violated by at most an additive constant of two, since in the
worst caseBv = 1 and all the three edges incident atv are used in
the returned solutionF . In each iteration, we either remove a de-
gree constraint or include an edge in our solution. Therefore, in a
total of at mostn+n−1 = 2n−1 iterations, we construct a span-
ning tree by including only1-edges. These steps provide a simple
(1, Bv + 2)-approximation algorithm for the MBDST problem.

We start the proof by a characterization of a basic feasible solu-
tion of LP-MBDST(G,B, W ). We remove all edges withx∗e = 0
and focus only on the support of the basic solution and the tight
constraints from (11)-(13). LetF = {S | x∗(E(S)) = |S| − 1}
correspond to the set of tight constraints from (11)-(12), and let
T = {v ∈ W | x∗(δ(v)) = Bv} correspond to the set of tight
degree constraints from (13). The proof of the following lemma is
based on the uncrossing techniques used in Section 2; we shall also
prove it in a more general setting in Lemma 4.3.

LEMMA 3.1. Letx∗ be any basic solution of LP-MBDST(G,B,
W ) with supportE∗. Then there exists a setT ⊆ W and a laminar
familyL such thatx∗ is the unique solution to the following linear
system. �

x∗(δ(v)) = Bv ∀v ∈ T
x∗(E(S)) = |S| − 1 ∀S ∈ L

Moreover, the characteristic vectors{χE(S) : S ∈ L} ∪ {χδ(v) :
v ∈ T} are linearly independent. Furthermore,|E∗| = |L|+ |T |.



In the next lemma we prove (by a very simple counting argu-
ment) that in each iteration we can proceed by applying either Step 2b
or Step 2c; this will ensure that the algorithm terminates.

LEMMA 3.2. Any basic feasible solutionx∗ of LP-MBDST(G,
B, W ) with supportE∗ must satisfy one of the following.

(a) There is a vertexv ∈ V such thatdegE∗(v) = 1.
(b) There is a vertexv ∈ W such thatdegE∗(v) ≤ 3.

PROOF. Suppose for sake of contradiction that both (a) and (b)
are not satisfied. Then every vertex has at least 2 edges incident at it
and every vertex inW has at least 4 edges incident at it. Therefore,
|E∗| ≥ (2(n− |W |) + 4|W |)/2 = n + |W |, wheren = |V (G)|.

By Lemma 3.1, there is a laminar familyL and a setT ⊆ W of
vertices such that|E∗| = |L|+ |T |. AsL contains subsets of size
at least two,|L| ≤ n−1. Hence,|E∗| = |L|+|T | ≤ n−1+|T | ≤
n− 1 + |W |, a contradiction.

From Lemma 3.2 and the previous discussion, we obtain the fol-
lowing theorem of Goemans [10].

THEOREM 3.3. (Goemans [10])There exists a polynomial time
(1, Bv+2)-approximation algorithm for theM INIMUM BOUNDED

DEGREESPANNING TREE problem.

4. A +1 APPROXIMATION ALGORITHM
In this section we present an(1, Bv + 1)-approximation algo-

rithm for the MBDST problem. The general approach is simi-
lar to the MBDST algorithm in Figure 2. Observe that, in Step
2c of the MBDST algorithm, by removing the degree constraint
of a vertexv ∈ W only when a vertex has degree at most two
(or more generally, removing a degree constraint for a vertexv if
degE∗(v) ≤ Bv + 1), we could ensure that the degree of every
vertex is violated by at most one. However, it may no longer be
the case that there exists a leaf vertex if every vertex inW just has
degree at least three (instead of four), and so the algorithm may
not be able to proceed. To overcome this, in Step 2b we not only
look for 1-edges incident at leaf vertices but include any 1-edge in
our integral solution. However, the residual problem is no longer
an MBDST problem, since the endpoints of this edge are not nec-
essarily leaf vertices. Hence, we define the following more gen-
eral problem which isself-reducible, i.e. the problem in a later
iteration is still of the same form. We call this problem theM IN-
IMUM BOUNDED-DEGREECONNECTING TREE (MBDCT) prob-
lem, and we present an(1, Bv + 1)-approximation algorithm for
this more general problem by the iterative rounding method.

TheM INIMUM BOUNDED-DEGREECONNECTING TREEprob-
lem is defined as follows. We are given a graphG = (V, E), a
degree upper boundsBv for each vertexv in some subsetW ⊆ V ,
a cost functionc : E → R, and a forestF . We assume without
loss of generality thatE(F ) ∩ E(G) = ∅. The task is to find a
minimum cost forestH such thatH ∪ F is a spanning tree ofG
anddH(v) ≤ Bv. We call such a forestH anF -treeof G, and a
connected component ofF a supernode; note that an isolated ver-
tex of F is also a supernode. Intuitively, the forestF is the partial
solution we have constructed so far, andH is a spanning tree in the
graph where each supernode is contracted into a single vertex. We
denote this contracted graph byG/F . Observe that whenF = ∅
the MBDCT problem is just the MBDST problem.

We need some notation to define the linear programming relax-
ation for the MBDCT problem. For any setS ⊆ V (G) and a forest
F on G, let F (S) be the set of edges inF with both endpoints in
S, i.e., {e ∈ F : |e ∩ S| = 2}. Note thatF (V ) is just equal
to E(F ). We denoteC(F ) the sets of supernodes ofF . A setS

is non-intersecting withF if for eachC ∈ C(F ) we either have
C ⊆ S or C ∩ S = ∅. We denoteI(F ) the family of all subsets
which are non-intersecting withF .

(a) (b)

Figure 3: In Figure (a), the dashed edges correspond toF . In
Figure (b), the bold edgesH form an F -tree of G asF ∪ H is
a spanning tree ofG or equivalently, H is a spanning tree of
G/F .

The following is a linear programming relaxation for the MB-
DCT problem, which we denote by LP-MBDCT(G,B, W, F ). In
the linear program we have a variablexe for each edgee which has
at most one endpoint in any one component of forestF . Indeed
we assume (without loss of generality) thatE does not contain any
edge with both endpoints in the same component ofF .

minimize c(x) =
X
e∈E

ce xe (15)

s.t. x(E(V )) = |V | − |F (V )| − 1 (16)

x(E(S)) ≤ |S| − |F (S)| − 1 ∀S ∈ I(F ) (17)

x(δ(v)) ≤ Bv ∀ v ∈ W (18)

xe ≥ 0 ∀ e ∈ E (19)

In the linear program, the constraints from (16)-(17) and (19) are
exactly the spanning tree constraints for the graphG/F , the graph
formed by contracting each component ofF into a singleton vertex.
The constraints from (18) are the degree constraints for vertices
in W . Hence, from the discussion in Section 3, it follows that
we can optimize over LP-MBDCT(G,B, W, F ) using the ellipsoid
algorithm in polynomial time.

The algorithm in Figure 4 is an iterative rounding procedure for
LP-MBDCT(G,B, W, F ). For clarity of presentation and proof of
correctness, we present the algorithm as a recursive procedure.

For the correctness of the MBDCT Algorithm, we shall prove
the following key lemma in Section 4.2, which will ensure that the
algorithm terminates.

LEMMA 4.1. A basic feasible solutionx∗ of LP-MBDCT(G,B,
W, F ) with supportE∗ must satisfy one of the following.

(a) There is an edgee with x∗e = 1.
(b) There is a vertexw ∈ W such thatdegE∗(w) ≤ Bw + 1.

We first prove that Lemma 4.1 implies that the MBDCT Algo-
rithm returns aF -tree with the claimed guarantees.

THEOREM 4.2. Given a graphG, degree boundsB for vertices
v ∈ W for some subsetW ⊆ V , and a forestF , the MBDCT
Algorithm returns aF -treeH of cost at most the cost of the optimal
solution to LP-MBDCT(G,B, W, F ), anddH(v) ≤ Bv + 1 for all
v ∈ W .



MBDCT Algorithm (G,B, W, F )

1. If F is a spanning tree return∅ else letF̂ = ∅
2. Find a basic optimal solution x∗ of LP-

MBDCT(G,B, W, F ) and remove every edgee with
x∗e = 0 from G. Let E∗ be the support ofx∗.

3. If there exists an edgee = {u, v} such thatx∗e = 1, then
setF̂ ← {e}, F ← F ∪ {e} andG ← G \ {e}. Also set
Bu ← Bu − 1 andBv ← Bv − 1.

4. If there exists a vertexw ∈ W such thatdegE∗(w) ≤
Bw + 1, then updateW ← W \ {w}.

5. ReturnF̂
S

MBDCT Algorithm(G,B, W, F ).

Figure 4: MBDCT Algorithm

PROOF. The proof is by induction on the number of iterations
of the algorithm. The base case is trivially true asH = ∅ is aF -
tree ofG if F is a spanning tree andH satisfies the degree bounds
on each vertex inW . Let x∗ be a basic optimal solution to LP-
MBDCT(G,B, W, F ) in the first iteration. Suppose, in Step 3, we
find an edgee = (u, v) with x∗e = 1. Let F ′ = F ∪ {e}, G′ =
G \ {e} andB′ denote the modified degree bounds as described in
Step 3. By the induction hypothesis, the algorithm returns aF ′-tree
H ′ of G′ whose cost is at most the cost of an optimal solution to
LP-MBDCT(G′,B′, W, F ′), anddH′(w) ≤ B′

w + 1 for all w ∈
W . Consider theF -treeH = H ′ ∪ {e} of G. Firstly, observe
thatx∗ restricted to edges ofG′, sayx∗res, is a feasible solution to
LP-MBDCT(G′,B′, W, F ′). Therefore,

c(H) = c(H ′) + ce ≤ c · x∗res + ce = c · x∗

asx∗e = 1. Hence, the cost ofH is at most the cost of an opti-
mal solution to LP-MBDCT(G,B, W, F ). Now, adding the edge
e increases the degree ofu andv by 1. As Bu = B′

u + 1 and
Bv = B′

v + 1, we have

dH(u) = dH′(u) + 1 ≤ B′
u + 1 + 1 = Bu + 1

where the inequalitydH′(u) ≤ B′
u + 1 follows from the induction

hypothesis. Similarly, we also havedH(v) ≤ Bv + 1. For any
other vertexw ∈ W \ {u, v}, we have

degH(w) = degH′(w) ≤ B′
w + 1 = Bw + 1

where the inequality holds by the induction hypothesis. Hence, the
degrees are satisfied within an additive constant of one, as claimed.

Now, suppose we remove a degree constraint for some vertex
w ∈ W in Step 4. LetW ′ = W \w. Clearly,x∗ is a feasible solu-
tion to LP-MBDCT(G,B, W ′, F ) since we relaxed the problem by
deleting the degree constraint forw. Let x′ denote an optimal so-
lution to LP-MBDCT(G,B, W ′, F ). By the induction hypothesis,
the algorithm returns aF -treeH with cost at mostc · x′ and satis-
fies thatdH(v) ≤ Bv + 1 for all v ∈ W ′. Clearly,c · x′ ≤ c · x∗,
and hence the cost ofH is at most the cost of an optimal solution
to LP-MBDCT(G,B, W, F ). Moreover, by the induction hypothe-
sisH satisfies the degree bound within additive constant of one for
each vertex inW \{w}. SincedegE∗(w) ≤ Bw +1 andH ⊆ E∗,
we havedH(w) ≤ Bw + 1.

In either case we show how to construct aF -treeH with cost at
most the cost of an optimal solution to LP-MBDCT(G,B, W, F ),
anddH(v) ≤ Bv + 1 for all v ∈ W . Lemma 4.1 implies these are
the only cases.

4.1 Characterizing basic solutions
To prove Lemma 4.1, we need a characterization of the basic

solutions of LP-MBDCT(G,B, W, F ). The proof of the following
lemma is standard but we give it here for completeness.

LEMMA 4.3. Letx∗ be any basic feasible solution of LP-MBD-
CT(G,B, W, F ) with supportE∗. Then there exists a setT ⊆ W
and a laminar family∅ 6= L ⊆ I(F ) such thatx∗ is the unique
solution to the following linear system.�

x∗(δ(v)) = Bv ∀v ∈ T
x∗(E(S)) = |S| − |F (S)| − 1 ∀S ∈ L

Moreover, the vectors{χE(S) : S ∈ L} ∪ {χδ(v) : v ∈ T} are
linearly independent. Furthermore,|E∗| = |L|+ |T |.

PROOF. A basic solution of a linear program is the unique solu-
tion of m linearly independent tight constraints, wherem denotes
the number of variables in the linear program. LetU = {v ∈
W : x∗(δ(v)) = Bv} andM = {S ⊆ V :

P
e∈E(S) x∗e =

|S| − |F (S)| − 1}. ForR, S ∈M andR ∩ S 6= ∅, we have that:

(|R ∩ S| − |F (R ∩ S)| − 1) + (|R ∪ S| − |F (R ∪ S)| − 1)

≥ x∗(E(R ∩ S)) + x∗(E(R ∪ S))

≥ x∗(E(R)) + x∗(E(S))

= |R| − |F (R)| − 1 + |S| − |F (S)| − 1

= (|R ∩ S| − |F (R ∩ S)| − 1) + (|R ∪ S| − |F (R ∪ S)| − 1),

where the last equality holds becauseE(F )∩δ(R) = ∅ andE(F )∩
δ(S) = ∅ by the definition ofI(F ). So equality holds everywhere
and thus bothR ∩ S andR ∪ S are also inM. This also implies
that there are no edges inE betweenR \ S andS \ R, and hence
the linear dependencyχE(R∩S) + χE(R∪S) = χE(R) + χE(S).

Now, from standard uncrossing arguments (as in the proof of
Lemma 2.3), it follows that there exists a maximal linearly inde-
pendent laminar familyL in M such that the characteristic vec-
tors in {χE(S) : S ∈ L} span all the characteristic vectors in
{χE(S) : S ∈M}. LetT be a maximal subset ofU such thatχδ(v)

for v ∈ T andχE(S) for S ∈ L are linearly independent. Then, the
inequalities corresponding to vertices inT and the inequalities cor-
responding to sets inL define a basic solutionx∗ proving the first
claim, satisfying the second claim, and the final claim follows.

REMARK 4.4. Another proof of Lemma 4.3 can be obtained by
observing that in LP-MBDCT(G,B, W, F ), the constraints from
(2)-(3) and (5) correspond to spanning tree constraints ofG/F ,
which is the graph formed by contracting each component ofF
into a singleton vertex. LetF = {S ∈ I(F ) : x∗(E(S)) =
|S| − |F (S)| − 1}. Observe that eachS ∈ F corresponds to
a subsetS′ ⊆ V (G/F ) after we contract each component of
F contained inS (observe thatS ∈ I(F ) implies thatS does
not intersect any component ofF ). LetF ′ be the family consist-
ing of subsets ofV (G/F ) corresponding to subsets inF . From
Lemma 2.3, it follows that there is a laminar familyL′ ⊆ F ′ such
that span(L′) = span(F ′). Now, uncontracting each supern-
ode inside each subsetS′ ∈ L′, we get the desired laminar family
L ⊆ F .

4.2 A counting argument
We are ready to prove Lemma 4.1. Suppose for sake of contra-

diction that both (a) and (b) of Lemma 4.1 are not satisfied. Then
each vertexv ∈ W has degree at least3, and degree ofv ∈ W is
exactly3 only if Bv = 1. Now, letL 6= ∅ be the laminar family
andT be the vertices defining the solutionx∗ as in Lemma 4.3. As



in the proof of Lemma 3.2, we shall derive that|L| + |T | < |E∗|.
This contradicts Lemma 4.3 and completes the proof.

We call a vertexv active if there is some edge incident atv.
Clearly, all vertices inT are active. The laminar familyL defines a
directed forestL in which nodes correspond to sets inL and there
exists an edge from setR to setS if R is the smallest set containing
S. We callR theparentof S andS thechild of R. A parent-less
node is called aroot and a childless node is called aleaf. Given a
nodeR, thesubtree rooted atR consists ofR and all its descen-
dants.

The strategy in the counting argument is similar to that used by
Jain [12]. For each active nodev ∈ V , we assign one token to
v for each edge incident atv. For every edge we have assigned
exactly two tokens, and hence the total tokens assigned is exactly
2|E∗|. We shall redistribute these tokens such that each vertex in
T and each subsetS ∈ L is assigned two tokens, and we are still
left with some excess tokens; this will imply|E∗| > |L|+ |T | and
contradict Lemma 4.3.

In the initial assignment each active vertex has at least one token,
and each vertex inT gets at least three tokens. Vertices inT need
two tokens and are assigned at least three tokens; active vertices
not inT do not need any tokens but are assigned at least one token.
Hence in the initial assignment each active vertex has at least one
excesstoken and the following claim follows.

CLAIM 4.5. If an active vertexv has only one excess token,
then eitherv /∈ T and v is of degree one, orv ∈ T and v is of
degree three andBv = 1.

The following key lemma shows that such a redistribution is pos-
sible.

LEMMA 4.6. For any rooted subtree of the forestL 6= ∅ with
root S, we can distribute the tokens assigned to vertices insideS
such that every vertex inT ∩ S and every node in the subtree gets
at least two tokens and the rootS gets at least four tokens.

PROOF. The proof is by induction on the height of the subtree.
First supposeS is a leaf.

1. S contains at least four active vertices, thenS can collect at
least four tokens by taking one excess token from each active
vertex.

2. S contains exactly three active vertices, say{u, v, w}, then
|E∗(S)| ≤ 3. If any one of the active vertices inS, sayu, has
two excess tokens, thenS can collect four tokens by taking
one excess token from each vertex and two excess tokens
fromu, and we are done. Now suppose that each of{u, v, w}
has exactly one excess token. Sincex∗(E∗(S)) ≥ 1 and
there is no 1-edge, we have|E∗(S)| ≥ 2.

Suppose|E∗(S)| = 2, sayE∗(S) = {uv, uw}, then this
implies thatu ∈ T , Bu = 1 andu has another neighbor
y /∈ S (elseu would be removed fromW in Step 4 of Algo-
rithm 4) . However,x∗(E∗(S)) = x∗(u, v) + x∗(u, w) =
x∗(δ(u))−x∗(u, y) = Bu−x∗(u, y) < 1, a contradiction.

HenceS contains exactly three edges. This implies thatu, v, w ∈
T andBu = Bv = Bw = 1 by Claim 4.5. Since there are
no edges inside a supernode, each of the three active ver-
tices must be in different supernodes. Therefore,x∗(u, v) +
x∗(u, w)+x∗(v, w) = x∗(E∗(S)) ≥ 2, sinceS contains at
least three supernodes. This implies that

P
z∈{u,v,w} x∗(δ(z)) ≥

4 which contradicts the fact that degree bound of each ofu, v
andv is one.

3. S contains at most two active vertices. We show such a case
cannot occur. For anyS ∈ L we have thatx∗(E∗(S)) = k
for some integerk > 0 and since there is no1-edge,E∗(S)
must contain at least two edges. This implies thatS contains
at least three active vertices.

Now supposeS has at least one child.

1. S has two or more children: By the induction hypothesis,
each child has 2 excess tokens, and soS can collect at least
4 tokens by taking the excess tokens.

2. S has only one child: Let the child ofS beR. S can take two
excess tokens fromR by the induction hypothesis. Observe
thatS \ R must contain at least one active vertex asχE(S)

andχE(R) are linearly independent. IfS\R has two or more
active vertices then we can take one excess token from each
and give them toS, and we are done. So supposeS \ R has
exactly one active vertex, sayv. If v has two excess tokens,
then we are also done. So assumev has only one excess to-
ken. Note thatx∗(E∗(S)) = x∗(E∗(R)) + x∗(δ(v, R)),
whereδ(v, R) denotes the edges betweenv and vertices in
R. SinceS, R ∈ L, both are tight andx∗(E∗(S)) and
x∗(E∗(R)) are integers,x∗(δ(v, R)) ≥ 1. As there is no
1-edge,v is not a degree-1 vertex. Sincev has only one ex-
cess token, we must havev ∈ T andBv = 1 by Claim 4.5.
Now, 1 = Bv = x∗(δ(v)) ≥ x∗(δ(v, R)) ≥ 1 and we
must have equality throughout and soδ(v) = δ(v, R). This
implies thatχE(S) = χE(R) + χδ(v,R) = χE(R) + χδ(v),
which contradicts their linear independence inL.

From Lemma 4.6, we obtain that number of tokens is at least
2|T | + 2|L| + 2 which shows that|E∗| > |T | + |L|, which con-
tradicts Lemma 4.3. This completes the proof of Lemma 4.1, and
hence Theorem 4.2 follows.

5. A ±1 APPROXIMATION ALGORITHM
In this section, we consider an extension of the MBDCT prob-

lem in which a degree lower boundAv and a degree upper bound
Bv are given for each vertexv. We present an(1, Av−1, Bv +1)-
approximation algorithm for the MBDCT problem, where both the
degree lower and upper bounds are violated by at most 1. We as-
sume the lower bounds are given on a subset of verticesU ⊆ V .
LetA denote the vector of all degree boundsAv for eachv ∈ U .
The following is a linear programming relaxation for the MBDCT
problem, which is denoted by LP-MBDCT(G,A,B, U, W, F ).

minimize c(x) =
X
e∈E

ce xe

subject to x(E(V )) = |V | − |F (V )| − 1

x(E(S)) ≤ |S| − |F (S)| − 1 ∀S ∈ I(F )

x(δ(v)) ≥ Av ∀ v ∈ U

x(δ(v)) ≤ Bv ∀ v ∈ W

xe ≥ 0 ∀ e ∈ E

Recall that a vertex is active if it has degree at least 1. Notice that
if a supernodeC has only one active vertexv, we could just contract
C into a single vertexc, setAc := Av andBc := Bv, and setc ∈
U ⇐⇒ v ∈ U , and setc ∈ W ⇐⇒ v ∈ W . Henceforth, we
call a supernode which is not a single vertex anontrivial supernode.



Hence a non-trivial supernode has at least 2 active vertices. The
(1, Av − 1, Bv + 1)-approximation algorithm in Figure 5 is an
iterative rounding procedure for LP-MBDCT(G,A,B, U, W, F ).

MBDCT Algorithm2 (G,A,B, U, W, F )

1. If F is a spanning tree then return∅ else letF̂ ← ∅.
2. Find a basic optimal solution x∗ of LP-

MBDCT(G,A,B, U, W, F ) and remove every edge
e with x∗e = 0 from G.

3. If there exists an edgee = {u, v} such thatx∗e = 1 then
F̂ ← {e}, F ← F ∪ {e} and G ← G \ {e}. Also
updateA,B by settingAu ← Au− 1, Bu ← Bu− 1 and
Av ← Av − 1, Bv ← Bv − 1.

4. If there exists a vertexv ∈ U ∪W of degree at most two,
then updateU ← U \ {v} andW ← W \ {v}.

5. ReturnF̂
S

MBDCT Algorithm2(G,A,B, U, W, F ).

Figure 5: MBDCT Algorithm 2

For the correctness of the MBDCT Algorithm 2, we shall prove the
following key lemma, which will ensure that the algorithm termi-
nates.

LEMMA 5.1. A basic feasible solutionx∗ of LP-MBDCT(G,A,
B, U, W, F ) with supportE∗ must satisfy one of the following.

(a) There is an edgee such thatx∗e = 1.
(b) There is a vertexv ∈ U ∪W such thatdegE∗(v) = 2.

In MBDCT Algorithm 2, we only remove a degree constraint on
v ∈ U ∪W if v is of degree 2 and there is no 1-edge. Since there
is no 1-edge, we must haveAv ≤ 1. If v ∈ U , then the worst
case isAv = 1 but both edges incident atv are not picked in later
iterations. Ifv ∈ W , then the worst case isBv = 1 but both
edges incident atv are picked in later iterations. In either case, the
degree bound is off by at most 1. Following the same argument of
Theorem 4.2, we have the following extension of Theorem 1.2.

THEOREM 5.2. There is a polynomial time(1, Av−1, Bv+1)-
approximation algorithm for theM INIMUM BOUNDED DEGREE

CONNECTING TREE problem.

To prove Lemma 5.1, we need a characterization of the basic
solutions of LP-MBDCT(G,A,B, U, W, F ). The proof of the fol-
lowing lemma is the same as the proof of Lemma 4.3.

LEMMA 5.3. Letx∗ be any basic feasible solution of LP-MBD-
CT(G,A, B, U, W, F ). Then there exists a setTU ⊆ U , TW ⊆ W
and a laminar family∅ 6= L ⊆ I(F ) such thatx∗ is the unique
solution to the following linear system.8<: x∗(δ(v)) = Av ∀v ∈ TU

x∗(δ(v)) = Bv ∀v ∈ TW

x∗(E(S)) = |S| − |F (S)| − 1 ∀S ∈ L
Moreover, the vectors{χE(S) : S ∈ L} ∪ {χδ(v) : v ∈ TU} ∪

{χδ(v) : v ∈ TW } are linearly independent. Furthermore,|E∗| =
|L|+ |TU |+ |TW |.

5.1 A counting argument
Now we are ready to prove Lemma 5.1. The set up is very

similar to that of Section 4.2. LetL be the laminar family and
T := TU ∪ TW be the vertices defining the solutionx∗ as in
Lemma 5.3. Suppose that both (a) and (b) of Lemma 5.1 are not
satisfied. We shall derive that|L|+ |T | < |E∗|, which will contra-
dict Lemma 5.3 and complete the proof.

As before, for each active vertexv ∈ V , we assign one token to
v for each edge incident atv. Observe that in the initial assignment
each active vertex has at least one excess token, and so a nontrivial
supernode has at least two excess tokens. For a vertexv with only
one excess token, ifv /∈ T , thenv is a degree 1 vertex; ifv ∈ T ,
thenv is of degree 3 andBv = 1 or Bv = 2.

Suppose every vertexv which is active (and hence has excess
tokens) gives all its excess tokens to the supernode it is contained
in. We say the number of excess tokens of a supernode is the sum
of excess tokens of active vertices in that supernode. Observe that
the excess of any supernode is at least one as every supernode has
at least one active vertex and each active vertex has at least one
excess token.

We call a supernodespecialif its excess is exactly one.

CLAIM 5.4. A supernodeC is special only if it contains exactly
one active vertexv ∈ T anddegE∗(v) = 3.

PROOF. If the supernodeC has two or more active vertices then
the excess ofC is at least two. Hence, it must contain exactly one
active vertex with exactly one excess token. Also, there must be
at least two edges incident at the supernode asx∗(δ(C)) ≥ 1 is a
valid inequality. Hence,degE∗(C) ≥ 2. If v /∈ T , then bothv and
thusC will have at least two excess tokens. This impliesv ∈ T
anddegE∗(v) = 3.

We contract a special supernode into a single vertex because it
contains only one active vertex. Hence, the only special supernodes
are singleton vertices inT with degree exactly three.

The main difference from the proof in Section 4.2 is the existence
of special vertices with degree bounds equal to 2, for which we
need to revise the induction hypothesis because some nodeS ∈ L
may now only get three tokens. The following definition gives a
characterization of those sets which only get three tokens.

DEFINITION 5.5. A setS 6= V is specialif:

1. |δ(S)| = 3;

2. x∗(δ(S)) = 1 or x∗(δ(S)) = 2;

3. χδ(S) is a linear combination of the characteristic vectors of
its descendants (including possiblyχE(S)) and the charac-
teristic vectorsχδ(v) of v ∈ S ∩ T ;

Observe that special supernodes satisfy all the above properties.
Intuitively, a special set has the same properties as a special supern-
ode. The following lemma will complete the proof of Lemma 5.1,
and hence Theorem 5.2.

LEMMA 5.6. For any rooted subtree of the forestL 6= ∅ with
the rootS, we can distribute the tokens assigned to vertices inside
S such that every vertex inT ∩ S and every node in the subtree
gets at least two tokens and the rootS gets at least three tokens.
Moreover, the rootS gets exactly three tokens only ifS is a special
set orS = V .



PROOF. First we prove some claims needed for the lemma.

CLAIM 5.7. If S 6= V , then|δ(S)| ≥ 2.

PROOF. SinceS 6= V , x∗(δ(S)) ≥ 1 is a valid inequality of
the LP. As there is no 1-edge,|δ(S)| ≥ 2.

Let the root be setS. We say a supernodeC is amemberof S
if C ⊆ S but C 6⊆ R for any childR of S. We also say a childR
of S is amemberof S. We call a memberR of S special, if R is
a special supernode (in which the supernode is a singleton vertex
in T with degree three from Claim 5.4) or ifR is a special set. In
either case (whether the member is a supernode or set), a member
has exactly one excess token only if the member is special. Special
members also satisfy all the properties in Definition 5.5.

Recall thatE(S) denotes the set of edges with both endpoints in
S. We denote byD(S) the set of edges with endpoints indifferent
members ofS.

CLAIM 5.8. If S ∈ L hasr members thenx∗(D(S)) = r − 1.

PROOF. For every memberR of S, we have

x∗(E(R)) = |R| − |F (R)| − 1,

since eitherR ∈ L, or R is a supernode in which case both LHS
and RHS are zero. AsS ∈ L, we have

x∗(E(S)) = |S| − |F (S)| − 1

Now observe that every edge ofF (S) must be contained inF (R)
for some memberR of S. Hence, we have the following, in which
the sum is overR that are members ofS.

x∗(D(S)) = x∗(E(S))−
X
R

x∗(E(R))

= |S| − |S ∩ F | − 1−
X
R

(|R| − |F (R)| − 1)

= (|S| −
X
R

|R|) +
X
R

|F (R)| − |F (S)|+
X
R

1− 1

= (
X
R

1)− 1 = r − 1

because|S| =PR |R| and|F (S)| =PR |F (R)|.

CLAIM 5.9. Suppose a setS 6= V contains exactly three spe-
cial membersR1, R2, R3 and |D(S)| ≥ 3. ThenS is a special
set.

PROOF. Note that|δ(S)| = |δ(R1)| + |δ(R2)| + |δ(R3)| −
2|D(S)| = 3 + 3 + 3 − 2|D(S)| = 9 − 2|D(S)|. SinceS 6= V ,
we have|δ(S)| ≥ 2 by Claim 5.7. As|D(S)| ≥ 3, the only
possibility is that|D(S)| = 3 and |δ(S)| = 3, which satisfies
the first property of a special set. Also, we havex∗(δ(S)) =
x∗(δ(R1))+x∗(δ(R2))+x∗(δ(R3))−2x∗(D(S)). As each term
on the RHS is an integer, it follows thatx∗(δ(S)) is an integer.
Moreover, as we do not have a 1-edge,x∗(δ(S)) < |δ(S)| = 3
and thusx∗(δ(S)) is either equal to 1 or 2, and so the second
property of a special set is satisfied. Finally, note thatχδ(S) =
χδ(R1)+χδ(R2)+χδ(R3)+χE(R1)+χE(R2)+χE(R3)−2χE(S).
Here, the vectorχE(Ri) will be the zero vector ifRi is a special
vertex. SinceR1, R2, R3 satisfy the third property of a special
member,S satisfies the third property of a special set.

The proof of Lemma 5.6 is by induction on the height of the
subtree. In the base case, each member has at least one excess
token and exactly one excess token when the member is special.
Consider the following cases for the induction step.

1. S has at least four members. Each member has an excess of
at least one. ThereforeS can collect at least four tokens by
taking one excess token from each.

2. S has exactly three members. If any member has at least
two excess tokens, thenS can collect four tokens, and we
are done. Else each member has only one excess token and
thus, by the induction hypothesis, is special. IfS = V , then
S can collect three tokens, and this is enough sinceV is the
root of the laminar family. Else, we havex∗(D(S)) = 2
from Claim 5.8. Because there is no 1-edge, we must have
|D(S)| > x∗(D(S)) = 2. Now, it follows from Claim 5.9
thatS is special and it only requires three tokens.

3. S contains exactly two membersR1, R2. If both R1, R2

have at least two excess tokens, thenS can collect four to-
kens, and we are done. Else, one of the members has ex-
actly one excess token sayR1. Hence,R1 is special by the
induction hypothesis. We now show a contradiction to the
independence of tight constraints definingx∗, and hence this
case would not happen.

SinceS contains two members, Claim 5.8 impliesx∗(D(S)) =
1. There is no 1-edge, therefore we have|D(S)| = |δ(R1, R2)|
≥ 2. Also, R1 is special and thus|δ(R1)| = 3. We claim
δ(R1, R2) = δ(R1). If not, then lete = δ(R1)\ δ(R1, R2).
Then

x∗e = x∗(δ(R1))−x∗(δ(R1, R2)) = x∗(δ(R1))−x∗(D(S)).

Butx∗(δ(R1)) is an integer asR1 is special andx∗(D(S)) =
1. Therefore,x∗e is an integer which is a contradiction. Thus
δ(R1, R2) = δ(R1). But then

χE(S) = χE(R1) + χδ(R1) + χE(R2)

if R2 is a set or

χE(S) = χE(R1) + χδ(R1)

if R2 is supernode.R1 is special implies thatχδ(R1) is a
linear combination of the characteristic vectors of its descen-
dants and the characteristic vectors {χδ(v): v ∈ R1 ∩ T }.
Hence, in either caseχE(S) is spanned byχE(R) for R ∈
L \ {S} andχδ(v) for v ∈ S ∩ T which is a contradiction to
the inclusion ofS in L.

This completes the proof of Lemma 5.6 and Theorem 5.2.¤

6. CONCLUDING REMARKS AND OPEN
QUESTIONS

In this paper we extend the iterative rounding framework to ob-
tain the best possible guarantee for the MBDST problem. A closely
related problem is the well studied travelling salesperson problem
(TSP). The sub-tour elimination relaxation for TSP is very similar
to the LP relaxation for the MBDST problem. Indeed our tech-
niques can be used to give the following polyhedral result: Any
solution to the sub-tour elimination polytope can be written as a
convex combination of 1-trees each of maximum degree three and
average degree two, improving on a similar result of Goemans [10].
Here, a 1-tree is a tree onV \ v along with any two edges incident



at vertexv. A natural open question is whether the techniques used
here can be used to obtain better approximation algorithm for the
TSP problem.
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