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ABSTRACT

In the MINIMUM BOUNDED DEGREE SPANNING TREE problem,

we are given an undirected graph with a degree upper b&snzh
each vertex, and the task is to find a spanning tree of minimum
cost which satisfies all the degree bounds. tetr be the cost

of an optimal solution to this problem. In this paper, we present
a polynomial time algorithm which returns a spanning tfeef
cost at mosoprT anddr(v) < B, + 1 for all v, wheredr(v)
denotes the degree ofin 7. This generalizes a result of Furer
and Raghavachari [8] to weighted graphs, and settles a 15-year-ol
conjecture of Goemans [10] affirmatively. The algorithm general-
izes when each vertaxhas a degree lower bount], and a degree
upper boundB,,, and returns a spanning tree with cost at nost
andA, — 1 < dr(v) < B, + 1 forall v. This is essentially the
best possible. The main technique used is an extension of the it-
erative rounding method introduced by Jain [12] for the design of
approximation algorithms.

Categories and Subject Descriptors

F.2.2 JAnalysis of Algorithms and Problem Complexity]: Non
Numerical Algorithms and ProblemsSemputations on discrete
structures G.2.2 Discrete Mathematicg: Graph Theory—Net-
work Problems, Trees.

1. INTRODUCTION

The MINIMUM BOUNDED DEGREE SPANNING TREE problem
(MBDST) is defined as follows: Given a simple undirected graph
G = (V,E), a cost functionc : £ — R and a degree upper
boundB, for each vertew € V, find a spanning tree of minimum
cost which satisfies all the degree bounds. &t be the cost of an
optimal solution to this problem. Afw, f(B,))-approximation al-
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gorithmt is an algorithm which returns a spanning t®evith cost

at mostw-opTanddr (v) < f(B,) for all v, wheredr (v) denotes

the degree of in T. When all degree bounds a2€i.e. B, = 2

for all v), the MBDST problem specializes to teiNIMUM COST
HAMILTONIAN PATH problem, and thus is NP-hard. In unweighted
graphs, Furer and Raghavachari [8] gave an elegarB, + 1)-
approximation algorithm for the MBDST problem. Goemans [10]
conjectured that this result can be generalized to weighted graphs.

d CONJECTURE 1.1. In polynomial time, one can find a spanning

tree of maximum degree at mds#- 1 whose cost is no more than
the cost of a minimum cost tree with maximum degree at lost

Note that the above conjecture is formulated in the special case
whereB, = k for all v. Recently, Goemans [10] made a major step
towards this conjecture by giving a polynomial tirfie B, + 2)-
approximation algorithm for the MBDST problem. In this paper,
we settle Conjecture 1.1 positively by proving the following result:

THEOREM 1.2. There exists a polynomial tim@, B, + 1)-
approximation algorithm for théVlINlMUM BOUNDED DEGREE
SPANNING TREE problem.

Theorem 1.2 also generalizes to the setting when there is a degree
lower boundA, and a degree upper bouti, for each vertex €
V. In this case, the algorithm returns a spanning #Fesuch that
A, — 1 < dr(v) < B, + 1 and the cost ofl’ is at mostoprT,
whereoPT is the minimum cost of a spanning tree which satisfies
all degree (upper and lower) bounds. Note that we do not assume
that the cost function satisfies triangle inequalities (or even non-
negativity). With this general cost function, it is not possible to
obtain any approximation algorithm if we insist on satisfying all
the degree upper bounds{9JThus, Theorem 1.2 is essentially the
best possible.

1.1 Techniques

Polyhedral combinatorics has proved to be a powerful, coherent,
and unifying tool in combinatorial optimization (see [20]). In the
last two decades, polyhedral methods have also been applied very
successfully to the design of approximation algorithms (see [21]).
A standard approach to design approximation algorithms is to first
formulate the problem as an integer program, and then use the lin-
ear relaxation of this program as a way to lower-bound the cost of

'Notice that the first parameter is used to specifyrtt@, while

the second parameter is used to specifyatieial bound
2Assuming P#£ NP, there is nop(n), B,)-approximation algo-
rithm for any polynomialp(n) of n wheren is the number of ver-
tices.



an optimal solution. We shall also use this approach. Given an
undirected graplt? = (V, E) and a subse$ of vertices, we de-
noteE(S) = {e € E : |en S| = 2}, i.e,, edges which have
both endpoints in5. We also denoté(.S) the edges which have
exactly one endpoint i. Forz : E — R* andU C E, we de-
notex(U) := Y ., z(e). Asin Goemans’ result [10], we use the
following natural linear programming relaxation for theNIMUM
BOUNDED DEGREESPANNING TREE problem.

minimize c(z) = Zcexe (1)
ecE

subjectto z(E(V)) = |V|-1 2)

2(B(S) < |S|—1 VSV  @3)

2(5(v)) < B, VeeV (4

ze > 0 VecE ()

Using a polyhedral approach, a general strategy is to construct a
spanning tree of cost no more than the optimal value of the above

linear program, and in which the degree of each vertex is at most
B, + 1. This would prove Theorem 1.2. In fact, this general strat-

egy has been used in previous work, and different techniques have

been proposed to “round” the above linear program. An impor-
tant observation of Goemans is thabasic feasible solutiorfor

an extreme point solutionof the above linear program is charac-
terized by alaminar family (definitions will be provided later) of
tight constraints(inequalities that are satisfied as equalities), and
he exploited this fact cleverly in [10] to design &b, B, + 2)-
approximation algorithm for the MBDST problem.

We note that a very similar observation was made by Jain [12]
in his breakthrough work on tH8URVIVABLE NETWORK DESIGN
problem, where he first introduced the ideatefative roundingo
the design of approximation algorithms. This potential connection
initiated our approach to thBOUNDED DEGREE SURVIVABLE
NETWORK DESIGN problem. Recently, in joint work [15] with
Naor and Salavatipour, we have extended Jain’s iterative round-
ing method to give the first constant factor (bi-criteria) approxima-
tion algorithm for bounded degree network design problems includ-
ing the MINIMUM BOUNDED DEGREE STEINER TREE problem,
BOUNDED DEGREE SURVIVABLE NETWORK DESIGN problem,

standard linear programming formulation of thleNiIMUM SPAN-

NING TREEproblem, and this iterative rounding approach (by only
picking 1-edges) can be used to construct a minimum spanning tree,
as we will show in Section 2.

For theMINIMUM BOUNDED DEGREESPANNING TREE prob-
lem, however, both approaches would not work directly. The for-
mer approach of picking an edgewith x} > % would not work
because we could not guarantee the optimality (with respect to the
cost of the linear program) of the solution, while the latter approach
of picking 1-edges would not work because the algorithm may not
make progress in case there is no 1-edge.

We propose a way to combine and extend the ideas of these re-
sults. In particular, we show that only adding 1-edges to the so-
lution can also be used to design approximation algorithms via the
iterative rounding method. Thus our algoritlimes not roundOur
algorithm would keep adding 1-edges to the solution whenever pos-
sible. Of course, we cannot always guarantee the existence of an
1-edge, for otherwise we would have solved the problem optimally
and satisfied all the degree bounds. The key insight is that if an
1-edge does not exist, then there must be a vertex with degree up-
per boundB, and with at mostB, + 1 edges incident at it in the
support of a basic feasible solution. We call such a vertepex
cial vertex. To proceed, weemovethe degree constraints of all
special vertices and re-solve the linear program again. The heart of
our analysis is to show that there is an 1-edge if there is no special
vertex. This is proved by a counting argument similar to that of
Jain [12], which relies heavily on the fact that a basic feasible so-
lution is characterized by a laminar family of tight constraints (as
in [12, 10]). In this way, eventually we construct a spanning tree
by picking only 1-edges, which ensures the optimality of the cost.
Observe that by removing the degree constraint of a special ver-
tex, the degree constraint at this vertex could only be violated by
at most an additive constant of one, and so Theorem 1.2 follows.
We remark that the idea of removing the degree constraint of a spe-
cial vertex comes from the joint work on bounded degree network
design problems [15]. These results demonstrate that the iterative
rounding method is quite general and powerful, and we hope that
our results will shed light on further applications of this method.

1.2 Related Work

etc. Inspired by these results, we attempted Conjecture 1.1 using TheMINIMUM BOUNDED DEGREE SPANNING TREE problem

the iterative rounding method.

The basic setting of the iterative rounding method for network
design problems goes as follows. First we solve the linear pro-
gram to obtain a basic optimal solutiati. We proceed by adding
the edges with the highest fractional value to the integral solution.
Then we construct thesidual problenwhere the edges added pre-
viously are fixed, and update the linear program appropriately. A
key feature of the iterative rounding method is to repeat this pro-
cedure: solve again the linear program for the residual problem to
obtain a basic optimal solution (instead of usirig, and add the

is a well studied problem and has been attacked using a variety of
techniques. Initial efforts on the problem were concentrated on ob-
taining bi-criteria approximation algorithms. Ravi et al [18] gave an
(O(logn), O(By, log n))-approximation for the MBDST problem
using a matching-based augmentation technique. Konemann and
Ravi [13, 14] used a Lagrangian-relaxation based approach to ob-
tain an(O(1), O(B, + log n))-approximation algorithm. Chaud-
huri et al [1, 2] presented afl, O(B, + logn))-approximation
algorithm, and ar{O(1), O(B,))-approximation algorithm based

on the push-relabel framework developed for the maximum flow

edges with the highest fractional value in this new fractional so- problem. Ravi and Singh [19] considered a variant of the prob-
lution to the integral solution. This procedure is iterated until the lem in which the tree returned must be a minimum spanning tree.
integral solution constructed is a feasible solution. In$h&viv- They gave an algorithm that returns an MST in which the degree
ABLE NETWORK DESIGN problem, the crucial theorem in Jain’s  of any vertexv is at mostB, + p, wherep is the number of
approach is that the edges picked in each iteration have fractionaldistinct costs in any MST. Recently, Goemans [10] presented an
value at least /2, which ensures that the above algorithm has an (1, B, + 2)-approximation algorithm using matroid intersection
approximation ratio of 2. This theorem relies heavily on the prop- techniques. This was the previous best guarantee for the MBDST
erties of a basic solution, as in Goemans’ theorem. problem. In the special case where the graph is unweighted, Furer
The iterative rounding method can also be applied to solve prob- and Raghavachari [8] developed an algorithm, based on a variant of
lems optimally. For this purpose, we could only pick an edge local search, to return a spanning tree in which the degree of each
with 27 = 1 (we call such an edgean1-edg@. The above linear vertexv is at mostB,, + 1.
program without the degree constraints (constraints from (4)) isthe The iterative rounding technique that we use in our algorithm



was developed by Jain [12] for tHf&JRVIVABLE NETWORK DE-
SIGN problem and has later been successfully applied to various

is to find a minimum spanning tree d# \ v, and we apply the
same procedure to solve the residual problem recursively. Observe

problems [4, 7]. Recently, this technique has been extended to givethat the restriction of* to F(G’), denoted byr;.,, is a feasible

constant factor bi-criteria approximation algorithm for B@UND-
ED DEGREESURVIVABLE NETWORK DESIGN problem [15].

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we
give an iterative procedure which shows the integrality of the span-
ning tree polyhedron. Then, in Section 3, we present a simple
(1, B, + 2)-approximation algorithm for the MBDST problem via
iterative rounding. This matches the previous best result of Goe-
mans [10]. In Section 4, we present the main algorithm and the
proof of Theorem 1.2. Finally, in section 5, we extend the algo-
rithm to deal with degree lower bounds.

2. SPANNING TREE POLYHEDRON

In this section, we present an iterative procedure to find a min-
imum spanning tree from a basic optimal solution of a linear pro-
gram. This motivates the main result of the paper and illustrates
the basic proof techniques. Lét= (V, E) be a graph with a cost
function c on edges. A classical result of Edmonds [6] states that
the following linear program LP-MS(T>) is integral, and a basic
optimal solution is always a minimum spanning tree.

minimize cx) = D cewe (6)
ecE

subjectto z(E(V)) = |V|-1 7)

2(E(S)) < |S|—1 vScV (8

ze > 0 Yee E  (9)

The following is an iterative procedure to obtain a minimum
spanning tree ofs.

Iterative MST Algorithm
1. Initialization F « (.
2. While V(G) # 0 do

(a) Find a basic optimal solution™ of LP-MST(G) and
remove every edgewith x> = 0 from G.

(b) Find a vertexv with at most one edge = wuw inci-
dentatit, and update’ — F U {e}, G — G \ {v}.

3. ReturnF'.

Figure 1: MST Algorithm

First assume that the above algorithm terminates. We claim that
the solutionF' returned by the algorithm is a spanning tre€obf
cost no more than the cost of the initial LP solutioh and hence
a minimum spanning tree. The argument will proceed by induction
on the number of iterations of the algorithm.

If the algorithm finds a vertex of degree one (a leaf vertex)
in Step 2b with an edge = {u,v} incident atv, then we must
havez? = 1 sincexz(5(v)) > 1 is a valid inequality of the LP
(subtract the constraint (8) féf = '\ {v} from the constraint (7)).
Intuitively, v is a leaf of the spanning tree. Hence, we add the
solution F* (initially F = (), and remove from the graph. Note
that for any spanning treé€’ of G’ = G \ {v}, we can construct
a spanning tred = T" U {e} of G. Hence, the residual problem

solution to LP-MSTG’). Inductively, the algorithm will return a
spanning tre¢”’ of cost at most the optimal value of LP-M&T’),
and hence:(F’) < c- z}.,, asz;., is a feasible solution to LP-
MST(G"). So, we have

¢(F) = c¢(F') + cc ande(F') < ¢ afes
which imply that
C(F) Sc'x:es+ce :C~{E*

asx; = 1. Therefore, the spanning tree returned by the algorithm
is of cost no more than the cost of the LP solutigh which is
a lower bound on the optimal cost. This shows that the algorithm
returns a minimum spanning tree of the graph.

It remains to show that the algorithm will terminate, or that we
can always finds a vertexof degree one in Step 2b.

LEMMA 2.1. For any basic solutionz* of LP-MSTG) with
supportE* = {e | z; > 0}, there exists a vertex such that
degp~(v) = 1.

A basic solution is defined to be the unique solutiomdinearly
independent tight constraints (constraints which achieve equality),
wherem denotes the number of variables in the linear program.
For any edge:, if z; = 0, we can remove the edgefrom the
graph and consider only the edgesAii. Thus we can assume
that there is no tight constraints from (9). To prove Lemma 2.1,
we shall prove that there are at mest- 1 tight constraints from
(7)-(8), wheren denotes the number of vertices in the graph. This
can be shown by an uncrossing technique. For &s€t V, the
corresponding constraint*(E(S)) < |S| — 1 defines a vector in
RI!Z!: the vector has a 1 corresponding to each edgeF(S), and
0 otherwise. We call this vector tloharacteristic vectoof E(S),
and denote it by g(s). LetF = {S | 2" (E(S)) = |S| — 1} be
the set of tight constraints from (7)-(8). Denote &yun(F) the
vector space generated by the set of vecfarss) | S € F}. We
say two setsX, Y areintersectingif X NY, X —Y andY — X
are nonempty. A family of sets laminar if no two sets are inter-
secting. From standard uncrossing arguments (see e.g. Cornuejols
et al [5], Jain [12]) it follows that we can obtain a laminar family
L C F such thatspan(L) = span(F). For completeness we in-
clude a proof here to illustrate the uncrossing technique. First we
need an “uncrossing” lemma on intersecting sets.

LEMMA 2.2.[10] If S,T € FandS NT # (, then both
SNnTandSUT areinF. Furthermore,xg(s) + X&)
XE(SNT) T XE(SUT)-

PROOR AsSNT # 0, we have:

IS|—1+|T| -1 |[SNT|—1+|SuUT|-1
2 (E(SNT))+z*(E(SUT))
z"(E(S)) + 2" (E(T))
IS|—1+|T| -1
and hence we have equality throughout. This implies.$hai” and
S N T are both inF, and furthermore there are no edges E*
betweenS\T'andT'\ S. Thereforex g(s)+ Xrr) = XE(snT) +
XE(sur)-

A basic solution is characterized by a set of linearly independent
tight constraints. The following lemma implies that a basic solu-
tion of LP-MST(G) is characterized by a laminar family of tight
constraints.

IV 1V



LEMMA 2.3.[12] If £ is a maximal laminar subfamily aof,
thenspan(L) = span(F).

PROOF. Let £ be a maximal laminar subfamily of and as-
sume thatyg(sy ¢ span(L) for someS € F. Choose one such
setS that intersects as few sets Bfas possible. Sincg is a max-
imal laminar family, there exist¥’ € L that intersectsS. From
Lemma 2.2, we have tha&t N 7" andS U T are also inF and that
XE(s) T XE(T) = XEB(snT) T XE(suT)- SiNCexp(s) ¢ span(L),
either xg(snry ¢ span(L) or xgsury ¢ span(L). In either
case, we have a contradiction because BothT andS N T inter-
sect fewer sets i thanS; this is because every set that intersects
SUTorSnNT alsointersects. [

The proof of Lemma 2.1 follows from Lemma 2.3.

Proof of Lemma 2.1: Suppose each vertex has degree at least two.
Then|E*| > 33 oy dege-(v) = |V].

Recall that a basic solution is the unique solutiomofinearly
independent constraints, whereis the number of variables in the
linear program. Asc™ is a basic solution and there are no tight
constraints from (9), we havgg*| = |£|. A simple inductive
argument shows that a laminar family on a ground set of gize
containing no singleton sets has at most 1 sets. Hencel£| <
|V| —1and so E*| = |£| < |V| — 1, a contradiction. O

REMARK 2.4. If 2* is an optimal basic solution to LP-M$®),
then the residual LP solution. ., which isz* restricted toG’
G \ v, remains an optimal basic solution to LP-M&T'). Hence,
in the MST Algorithm we only need to solve the original linear pro-
gram once and none of the residual linear programs. Alternatively,
Lemma 2.1 shows thE*| = n—1 and sincet(E*) = n—1 and
z(e) < 1 for all edgese € E* (by considering constraints (9) for
size two sets), we must have = 1 for all edgese € E™ proving
integrality of the spanning tree polyhedron.

3. A+2 APPROXIMATION ALGORITHM

In this section we first present &i, B, + 2)-approximation al-
gorithm for the MBDST problem via iterative rounding. This algo-
rithm is simple, and it illustrates the idea of removing degree con-
straints. We use the following standard linear programming relax-
ation for the MBDST problem, which we denote by LP-MBD&,

B, W). In the following we assume that degree bounds are given
for vertices only in a subsét’ C V. Let B denote the vector of all
degree bound8, one for eachy € W.

minimize c(z) = Z Ce Te (20)
eck

subject to z(E(V)) = |V]-1 (11)

z(E(S)) < |S]-1 vScVv (12)

z(d(v)) < By YveW (13)

ze > 0 Vee E (14)

Observe that LP-MBDS[IG, B, W) has an exponential number
of constraints. Cunningham [3] gave a polynomial time procedure

MBDST Algorithm
1. Initialization F' — 0.
2. While V(G) # 0 do

(@) Find a basic optimal solutionz* of LP-
MBDST(G,B,W) and remove every edge
with 7 = 0 from G. Let the support o™ be E*.

(b) If there exists a vertex € V, such that there is at
most one edge = ww incident atv in E*, then up-
dateF' — FU{e}, G — G\ {v}, W — W\ {v},
and also updat# by settingB,, +— B, — 1.

(c) Ifthere exists a vertex € W such thatlegg- (v) <
3 then updaté?V — W \ {v}.

3. ReturnF..

Figure 2: MBDST Algorithm

Our (1, B, +2)-approximation algorithm in Figure 2 is a simple
iterative rounding procedure for LP-MBDS$®, B, W).

Before we prove the correctness of the algorithm, we give a high-
level description and some intuition. First we remove all edges
with 27 = 0 and focus on the edges with positive fractional value,
i.e. z; > 0. In Step 2b, ifv is of degree 1 and = uwv is the only
edge incident atb, thenw is a leaf of the spanning tree. So, we add
e to the solutionF’ (initially F' = 0), removev from the graph, and
update the LP appropriately. Note that singe= 1, we maintain
the optimality of the cost and also do not violate any degree con-
straint. Of course, we cannot always guarantee such an edge exists,
otherwise we would have solved the problem exactly. The crucial
observation is that if there is no leaf vertex, then there must exist
a vertexv with at most three edges incident at it and the degree
constraint forv is present in the linear program (i.e.€ W). In
Step 2c, we remove the degree constraint of a vertéxv has at
most three edges incident at it. By doing so, the degree constraint
of v is violated by at most an additive constant of two, since in the
worst caseB, = 1 and all the three edges incidentaére used in
the returned solutio'. In each iteration, we either remove a de-
gree constraint or include an edge in our solution. Therefore, in a
total of at mostu +n — 1 = 2n — 1 iterations, we construct a span-
ning tree by including onlyi-edges. These steps provide a simple
(1, By + 2)-approximation algorithm for the MBDST problem.

We start the proof by a characterization of a basic feasible solu-
tion of LP-MBDST(G, B, W). We remove all edges with; = 0
and focus only on the support of the basic solution and the tight
constraints from (11)-(13). Lef = {S | z*(E(S)) = |S| — 1}
correspond to the set of tight constraints from (11)-(12), and let
T ={v e W|z"(6(v)) = B,} correspond to the set of tight
degree constraints from (13). The proof of the following lemma is
based on the uncrossing techniques used in Section 2; we shall also
prove it in a more general setting in Lemma 4.3.

LEMMA 3.1. Letz™ be any basic solution of LP-MBD$®F, B,
W) with supportE*. Then there exists a S€&tC W and a laminar

to separate over constraints (11)-(12) and (14). Separating oversystem.

constraints (13) is clearly in polynomial time. Hence, using the el-
lipsoid algorithm one can optimize over LP-MBD&Y, B, W) in
polynomial time. An alternative is to write a compact formulation
for the above linear program [16] which has polynomially many
variables and constraints.

family £ such thatz™ is the unique solution to the following linear
2" (6(v)) = By YvoeT

{ 2 (E(S)) =|S|-1 VSerL

Moreover, the characteristic vectof g(s) : S € L} U {xs(v) :
v € T'} are linearly independent. Furthermorgy™| = |£| + |T'|.



In the next lemma we prove (by a very simple counting argu-

is non-intersecting with?' if for eachC' € C(F') we either have

ment) that in each iteration we can proceed by applying either Step 26" C S or C N S = (. We denoteZ (F') the family of all subsets

or Step 2c; this will ensure that the algorithm terminates.

LEMMA 3.2. Any basic feasible solution™ of LP-MBDSTG,
B, W) with supportE™* must satisfy one of the following.

(a) There is a vertex € V such thatdegg=- (v) = 1.

(b) There is a vertex € W such thatdegg- (v) < 3.

PROOF. Suppose for sake of contradiction that both (a) and (b)

are not satisfied. Then every vertex has at least 2 edges incident at it

and every vertex i has at least 4 edges incident at it. Therefore,
|E*| > (2(n — |W|) +4W])/2 = n+ |W|, wheren = |V (G)|.

By Lemma 3.1, there is a laminar family and a sef” C W of
vertices such thgiE™*| = |£| + |T'|. As L contains subsets of size
atleasttwo|L| < n—1. Hence|E*| = |L|+|T| < n—1+|T| <
n — 1+ |W/, a contradiction. []

From Lemma 3.2 and the previous discussion, we obtain the fol-
lowing theorem of Goemans [10].

THEOREM 3.3. (Goemans [10])There exists a polynomial time
(1, By +2)-approximation algorithm for th&1iINiMUM BOUNDED
DEGREESPANNING TREE problem.

4. A +1 APPROXIMATION ALGORITHM

In this section we present &i, B, + 1)-approximation algo-
rithm for the MBDST problem. The general approach is simi-
lar to the MBDST algorithm in Figure 2. Observe that, in Step
2c of the MBDST algorithm, by removing the degree constraint
of a vertexv € W only when a vertex has degree at most two
(or more generally, removing a degree constraint for a verte#x
dege~(v) < B, + 1), we could ensure that the degree of every
vertex is violated by at most one. However, it may no longer be
the case that there exists a leaf vertex if every verta¥ijust has
degree at least three (instead of four), and so the algorithm may
not be able to proceed. To overcome this, in Step 2b we not only
look for 1-edges incident at leaf vertices but include any 1-edge in
our integral solution. However, the residual problem is no longer
an MBDST problem, since the endpoints of this edge are not nec-
essarily leaf vertices. Hence, we define the following more gen-
eral problem which isself-reducible i.e. the problem in a later
iteration is still of the same form. We call this problem thien -
IMUM BOUNDED-DEGREECONNECTING TREE (MBDCT) prob-
lem, and we present afi, B, + 1)-approximation algorithm for
this more general problem by the iterative rounding method.

TheMINIMUM BOUNDED-DEGREECONNECTING TREEprob-
lem is defined as follows. We are given a gragh= (V, FE), a
degree upper bounds, for each vertex in some subsét” C V,

a cost functionr : E — R, and a fores#’. We assume without
loss of generality thaf?(F') N E(G) = 0. The task is to find a
minimum cost foresfl such thatd U F' is a spanning tree off
anddg (v) < B,. We call such a forestl an F-treeof G, and a
connected component @t a supernodgnote that an isolated ver-
tex of F' is also a supernode. Intuitively, the fordstis the partial
solution we have constructed so far, aids a spanning tree in the

which are non-intersecting witR'.

(@)

(b)

Figure 3: In Figure (a), the dashed edges correspond té'. In

Figure (b), the bold edgesH form an F-tree of G asF' U H is
a spanning tree of G or equivalently, H is a spanning tree of
G/F.

The following is a linear programming relaxation for the MB-
DCT problem, which we denote by LP-MBDC®, B, W, F’). In
the linear program we have a variahiefor each edge which has
at most one endpoint in any one component of fo€stindeed
we assume (without loss of generality) tliatdoes not contain any
edge with both endpoints in the same componerit of

minimize  c¢(z) = Zce Te (15)
eeE

st. z(E(V)) = |V|—-|F(V)| -1 (16)

(E(S) < |8|-|F(S)|—1 VS € I(F)(17)

z(0(v)) < By YoeWw (18)

e 2> 0 Vee E (19)

In the linear program, the constraints from (16)-(17) and (19) are
exactly the spanning tree constraints for the grapt¥’, the graph
formed by contracting each componentfointo a singleton vertex.
The constraints from (18) are the degree constraints for vertices
in W. Hence, from the discussion in Section 3, it follows that
we can optimize over LP-MBDC(I, B, W, F) using the ellipsoid
algorithm in polynomial time.

The algorithm in Figure 4 is an iterative rounding procedure for
LP-MBDCT(G, B, W, F'). For clarity of presentation and proof of
correctness, we present the algorithm as a recursive procedure.

For the correctness of the MBDCT Algorithm, we shall prove
the following key lemma in Section 4.2, which will ensure that the
algorithm terminates.

LEMMA 4.1. Abasic feasible solution™ of LP-MBDCTG, B,
W, F') with supportE™ must satisfy one of the following.

(a) There is an edge with 2} = 1.

(b) There is a vertexs € W such thatdegg+ (w) < By, + 1.

graph where each supernode is contracted into a single vertex. We

denote this contracted graph 6§/ F'. Observe that whef’ = ()
the MBDCT problem is just the MBDST problem.

We need some notation to define the linear programming relax-
ation for the MBDCT problem. For any s6tC V(G) and a forest
F onG, let F(S) be the set of edges iff with both endpoints in
S,ie,{e € F:|lenS| = 2}. Note thatF(V) is just equal
to E(F). We denoteC(F') the sets of supernodes &f. A setS

We first prove that Lemma 4.1 implies that the MBDCT Algo-
rithm returns aF’-tree with the claimed guarantees.

THEOREM 4.2. Given a graphz, degree bound8 for vertices
v € W for some subsetV C V, and a forestF’, the MBDCT
Algorithm returns aF'-tree H of cost at most the cost of the optimal
solution to LP-MBDCTG, B, W, F), anddy (v) < B, + 1 for all
veW.



MBDCT Algorithm (G, B, W, F)

1. If F'is a spanning tree retufhelse letF” = ()

2. Find a basic optimal solution z* of LP-
MBDCT(G, B,W, F) and remove every edge with
xz; = 0 from G. Let E* be the support of:*.

3. If there exists an edge = {u, v} such thate; = 1, then
setF' — {e}, F — F U {e} andG — G \ {e}. Also set
B, — B, —landB, «— B, — 1.

4. If there exists a vertexo € W such thatdege+ (w) <
By, + 1, then updaté?V — W \ {w}.

5. Return£’|J MBDCT Algorithm(G, B, W, F).

Figure 4: MBDCT Algorithm

PROOF The proof is by induction on the number of iterations
of the algorithm. The base case is trivially trues= 0 is a F-
tree of G if F'is a spanning tree anll satisfies the degree bounds
on each vertex ifl¥. Let z* be a basic optimal solution to LP-
MBDCT(G, B, W, F) in the first iteration. Suppose, in Step 3, we
find an edgee = (u,v) with z} = 1. Let F' = FuU{e}, G’ =
G\ {e} andB’ denote the modified degree bounds as described in
Step 3. By the induction hypothesis, the algorithm returfd-tree
H' of G’ whose cost is at most the cost of an optimal solution to
LP-MBDCT(G', B', W, F"), anddy/ (w) < B, + 1 forallw €
W. Consider theF-tree H = H' U {e} of G. Firstly, observe
thatz™ restricted to edges @', sayz}.., is a feasible solution to
LP-MBDCT(G', B, W, F’). Therefore,

C(H):C(Hl)+ceSc,m:es_‘_cezc'm*

asxz; = 1. Hence, the cost off is at most the cost of an opti-
mal solution to LP-MBDCTG, B, W, F'). Now, adding the edge
e increases the degree afandv by 1. AsB, = B;, + 1 and
B, = B, + 1, we have

dg(u) =dg(u)+1< B, +1+1=B,+1

where the inequalityl ;s (u) < B, + 1 follows from the induction
hypothesis. Similarly, we also havk;(v) < B, + 1. For any
other vertexw € W \ {u, v}, we have

degr (w) = degy/(w) < Biy +1= By, + 1

4.1 Characterizing basic solutions

To prove Lemma 4.1, we need a characterization of the basic
solutions of LP-MBDCTG, B, W, F'). The proof of the following
lemma is standard but we give it here for completeness.

LEMMA 4.3. Letz™ be any basic feasible solution of LP-MBD-
CT(G, B, W, F') with supportE*. Then there exists a s&t C W
and a laminar family) # £ C Z(F') such thatz™* is the unique
solution to the following linear system.

z*(6(v)) = By YveT
z*(B(S)) =|S| - |F(S)|—1 VSeL

Moreover, the vector§xg(s) : S € L} U {xsw) : v € T} are
linearly independent. Furthermore™| = |£| + |T|.

PROOF A basic solution of a linear program is the unique solu-
tion of m linearly independent tight constraints, whenedenotes
the number of variables in the linear program. Lét= {v €
W a"(6(v)) = Bofand M = {S CV : 3 psze =
|S| — |F(S)] — 1}. ForR, S € MandRnN S # 0, we have that:

(IRNS|—|F(RNS)|—1)+ (|RUS| - |F(RUS)|—1)
>z (E(RNS)) + 2" (E(RUS))

>z (E(R)) + 2" (E(5))

= [R[ = |[F(R)| = 1 +[S| = [F(S)[ -1
=(RNS|=[F(RNS)|=1) + (RUS| = |[F(RUS)[ 1),

where the last equality holds becaus@ )N (R) = G andE(F)N
5(S) = 0 by the definition ofZ (F'). So equality holds everywhere
and thus botlR N .S andR U S are also inM. This also implies
that there are no edges mbetweenR \ S andS \ R, and hence
the linear dependencyrrns) + XE(ruS) = XE(R) + XE(S)-

Now, from standard uncrossing arguments (as in the proof of
Lemma 2.3), it follows that there exists a maximal linearly inde-
pendent laminar familyC in M such that the characteristic vec-
tors in {xgs) : S € L} span all the characteristic vectors in
{xE(s) : S € M}. LetT be amaximal subset &f such thays(.)
forv € T andyg(s) for S € L are linearly independent. Then, the
inequalities corresponding to verticesiirand the inequalities cor-
responding to sets id define a basic solutiom™ proving the first
claim, satisfying the second claim, and the final claim followkl

REMARK 4.4. Another proof of Lemma 4.3 can be obtained by
observing that in LP-MBDC{G, B, W, F'), the constraints from
(2)-(3) and (5) correspond to spanning tree constraintsGofr,

where the inequality holds by the induction hypothesis. Hence, the Which is the graph formed by contracting each component’ of

degrees are satisfied within an additive constant of one, as claimedinto a singleton vertex. Lef = {S € I(F) :

z"(E(S)) =

Now, suppose we remove a degree constraint for some vertex|S| — |F(S)| — 1}. Observe that eacly € F corresponds to

w € W in Step 4. LetV’ = W \ w. Clearly,z* is a feasible solu-
tionto LP-MBDCT(G, B, W', F) since we relaxed the problem by
deleting the degree constraint for Let z’ denote an optimal so-
lution to LP-MBDCT(G, B, W', F'). By the induction hypothesis,
the algorithm returns &-tree H with cost at most: - z’ and satis-
fies thatdy (v) < B, + 1 forallv € W’. Clearly,c- 2’ < c- x*,
and hence the cost df is at most the cost of an optimal solution
to LP-MBDCT(G, B, W, F'). Moreover, by the induction hypothe-
sis H satisfies the degree bound within additive constant of one for
each vertex itV \ {w}. Sincedegg+ (w) < By, +1andH C E*,
we havedy (w) < By + 1.

In either case we show how to construdt'd@ree H with cost at
most the cost of an optimal solution to LP-MBDQF, B, W, F'),
anddg (v) < B, + 1 forallv € W. Lemma 4.1 implies these are
the only cases. []

a subsetS’ C V(G/F) after we contract each component of
F contained inS (observe thatS € Z(F) implies thatS does
not intersect any component &%). Let 7’ be the family consist-
ing of subsets o (G/F) corresponding to subsets ifi. From
Lemma 2.3, it follows that there is a laminar famify C 7’ such
that span(L’) = span(F’). Now, uncontracting each supern-
ode inside each subsst € L', we get the desired laminar family
LCF.

4.2 A counting argument

We are ready to prove Lemma 4.1. Suppose for sake of contra-
diction that both (a) and (b) of Lemma 4.1 are not satisfied. Then
each vertexw € W has degree at lea8t and degree of € W is
exactly3 only if B, = 1. Now, let£ # () be the laminar family
andT be the vertices defining the solutiafi as in Lemma 4.3. As



in the proof of Lemma 3.2, we shall derive thaY + |T'| < |E™|.
This contradicts Lemma 4.3 and completes the proof.

We call a vertexv activeif there is some edge incident at
Clearly, all vertices irf” are active. The laminar familg defines a
directed forest in which nodes correspond to setsdrand there
exists an edge from sé@t to setS if R is the smallest set containing
S. We call R the parentof S and.S the child of R. A parent-less
node is called @oot and a childless node is calledeaf Given a
node R, the subtree rooted af? consists ofR and all its descen-
dants.

The strategy in the counting argument is similar to that used by
Jain [12]. For each active node € V, we assign one token to

3. S contains at most two active vertices. We show such a case
cannot occur. For ang € £ we have that:* (E*(S)) = k
for some integek > 0 and since there is nb-edge,E*(S)
must contain at least two edges. This implies thabntains
at least three active vertices.

Now supposes has at least one child.

1. S has two or more children: By the induction hypothesis,
each child has 2 excess tokens, and'stan collect at least
4 tokens by taking the excess tokens.

L . 2. S has only one child: Let the child &f be R. S can take two
v for each edge incident at For every edge we hgve as_5|gned excess tokens fromk by the induction hypothesis. Observe
exa(*:tly two tokens, .an(.:i hence the total tokens assigned is exac_tly that S \ R must contain at least one active vertexass)
2|E*|. We shall redistribute these tokens such that each vertex in andy () are linearly independent. &\ R has two or more
le?n(_jﬂ(]aach subsét € t£k|s as.sthgneo_lut\_/vo tlok*ens, aLnd W; are dSt'” active vertices then we can take one excess token from each
:on\tlrzladiztolr_lememxgejz okens; this will impl”| > | L] +[T'| an and give them t&, and we are done. So suppads$§ R has
S . . exactly one active vertex, say If v has two excess tokens,
In the initial asglgnment each active vertex has atlleastone token, then we are also done. So assunieas only one excess to-
and each vertex iff’ gets at least three tokens. Vertices/imeed ken. Note that:*(E*(S)) = z*(E*(R)) + " (5(v, R))
two_tokens and are assigned at least threg tokens; active vertices wheres(v, R) denotes the edges betweernd vertices in
notinT do not need any tokens but are assigned at least one token. R. SinceS,R € L, both are tight and:* (E*(S)) and
Hence in the initial assignment each active vertex has at least one (e A R .
excesdoken and the follgwin claim follows (B (R)-) are integersz” (0(v, ) Z 1. As there is no
9 ) 1-edgepw is not a degree-1 vertex. Sineenas only one ex-
CLAIM 4.5 If an active vertexv has only one excess token, Ki‘cﬁ t;)ksnbweinus*t(g?w)e)e Z arltzlf(fv ;)1) b;’ Ci'i'\?d‘l\ié
then eitherv ¢ T andwv is of degree one, ov € T and v is of v L= Do = & 0W)) = LAY, = )
degree three and, = 1. must have equality throughout and&w) = (v, R). This
|mpI|es thatXE:(s) = XE(R) +_X6(v,R) = XE(R) + X5(v)>s
The following key lemma shows that such a redistribution is pos- which contradicts their linear independencelin
sible. O

LEMMA 4.6. For any rooted subtree of the forest # @) with
root .S, we can distribute the tokens assigned to vertices inSide
such that every vertex il N S and every node in the subtree gets
at least two tokens and the roStgets at least four tokens.

PROOF The proof is by induction on the height of the subtree.
First suppose is a leaf.

1. S contains at least four active vertices, thgmran collect at
least four tokens by taking one excess token from each active
vertex.

. S contains exactly three active vertices, gay v, w}, then
|E*(S)| < 3. Ifany one of the active vertices #, sayu, has
two excess tokens, the#i can collect four tokens by taking
one excess token from each vertex and two excess tokens
fromwu, and we are done. Now suppose that eachob, w}
has exactly one excess token. Sinc¢dE*(S)) > 1 and
there is no 1-edge, we ha{g* (S)| > 2.

SupposgdE*(S)| = 2, sayE*(S) = {uv,uw}, then this
implies thatw € T, B, = 1 andu has another neighbor
y ¢ S (elseu would be removed froniV in Step 4 of Algo-
rithm 4) . Howeverz*(E*(S)) = =" (u,v) + " (u,w) =
z*(0(u)) — 2" (u,y) = Bu — 2" (u,y) < 1, a contradiction.

HenceS contains exactly three edges. This implies that, w €

T andB, = B, = B, = 1 by Claim 4.5. Since there are

no edges inside a supernode, each of the three active ver-
tices must be in different supernodes. Therefeféwu, v) +

" (u, w) +z* (v, w) = " (E*(S)) > 2, sinceS contains at
least three supernodes. Thisimplies at_ ., ., ., " (6(2)) =

4 which contradicts the fact that degree bound of eaah of
andv is one.

From Lemma 4.6, we obtain that number of tokens is at least
2|T| + 2|£| + 2 which shows thatE*| > |T'| + |£|, which con-
tradicts Lemma 4.3. This completes the proof of Lemma 4.1, and
hence Theorem 4.2 follows.

5. A+1 APPROXIMATION ALGORITHM

In this section, we consider an extension of the MBDCT prob-
lem in which a degree lower boundl, and a degree upper bound
B, are given for each vertex We presentafl, A, — 1, B, +1)-
approximation algorithm for the MBDCT problem, where both the
degree lower and upper bounds are violated by at most 1. We as-
sume the lower bounds are given on a subset of vertitgs V.

Let .4 denote the vector of all degree bounds for eachv € U.
The following is a linear programming relaxation for the MBDCT
problem, which is denoted by LP-MBDG®, A, B, U, W, F).

minimize cx) = > cewe
subjectto z(E(V)) = |V|—-|F (V)| -1
z(E(S)) < [S|-[F(S)| -1 VS eI(F)
z(0(v)) > A, VvelU
z(0(v)) < B, Vve W
e > 0 Vee E

Recall that a vertex is active if it has degree at least 1. Notice that
if a supernod&’ has only one active vertex we could just contract
C into a single vertex, setA. := A, andB. := B,, and set €
U < veU,andset € W <= v € W. Henceforth, we
call a supernode which is not a single vertaoatrivial supernode



Hence a non-trivial supernode has at least 2 active vertices. The5.1 A counting argument

(1, Ay — 1, B, + 1)-approximation algorithm in Figure 5 is an Now we are ready to prove Lemma 5.1. The set up is very
iterative rounding procedure for LP-MBDGQ®, A, B, U, W, I). similar to that of Section 4.2. Lef be the laminar family and

T := Ty U Tw be the vertices defining the solutiari as in
Lemma 5.3. Suppose that both (a) and (b) of Lemma 5.1 are not
satisfied. We shall derive thaf| 4+ |T'| < |E™|, which will contra-

dict Lemma 5.3 and complete the proof.

MBDCT Algorithm2 (G, A, B,U, W, F)

1. If Fis a spanning tree then retufrelse letF — 0. As before, for each active vertexe V', we assign one token to
v for each edge incident at Observe that in the initial assignment
2. Find a basic optimal solution z* of LP- each active vertex has at least one excess token, and so a nontrivial
MBDCT(G, A, B,U,W,F) and remove every edge supernode has at least two excess tokens. For a verath only
e with z; = 0 from G. one excess token, if ¢ T, thenv is a degree 1 vertex; if € T,

thenv is of degree 3 an®, = 1 or B, = 2.

3. If there exists an edge = {u,v} such thatr; = 1 then Suppose every vertex which is active (and hence has excess

P —{e}, F — FU{e} andG — G\ {e}. Also tokens) gives all its excess tokens to the supernode it is contained
updateA, B by settingA,, < A, — 1, By, < B, —1and in. We say the number of excess tokens of a supernode is the sum
Ay — Ay —1,B, — B, — 1. of excess tokens of active vertices in that supernode. Observe that

the excess of any supernode is at least one as every supernode has
at least one active vertex and each active vertex has at least one
excess token.

5. Returnf” | J MBDCT Algorithm2(G, A, B, U, W, F). We call a supernodspecialif its excess is exactly one.

4. If there exists a vertex € U U W of degree at most two,
then updaté/ — U \ {v} andW — W \ {v}.

CLAIM 5.4. A supernod€ is special only if it contains exactly
Figure 5: MBDCT Algorithm 2 one active vertex € T anddegg+ (v) = 3.

PROOF If the supernod€' has two or more active vertices then
the excess of’ is at least two. Hence, it must contain exactly one
active vertex with exactly one excess token. Also, there must be
at least two edges incident at the supernode*ds(C)) > lisa
valid inequality. Hencedegg~ (C) > 2. If v ¢ T', then bothv and

LEMMA 5.1. Abasic feasible solution” of LP-MBDCTG, A, thus C will have at least two excess tokens. This implies T
B, U, W, F) with supportE™ must satisfy one of the following. anddegp-(v) = 3. O

(a) There is an edge such thatz} = 1.
(b) There is a vertex € U U W such thatdegg- (v) = 2.

For the correctness of the MBDCT Algorithm 2, we shall prove the
following key lemma, which will ensure that the algorithm termi-
nates.

We contract a special supernode into a single vertex because it
) . contains only one active vertex. Hence, the only special supernodes
In MBDCT Algonthm 2, we only remove a degree cons_tralnt On  are singleton vertices iff with degree exactly three.
v e UUWIfvis of degree 2 and there is no 1-edge. Since there  The majn difference from the proof in Section 4.2 is the existence
is no 1-edge, we must have, < 1. If v € U, then the worst  f gpecial vertices with degree bounds equal to 2, for which we
case isA, = 1 but both edges incident atare not picked in later  neeq to revise the induction hypothesis because someSiade
iterations. Ifv € W, then the worst case i8, = 1 but both may now only get three tokens. The following definition gives a

edges incident at are picked in later iterations. In either case, the characterization of those sets which only get three tokens.
degree bound is off by at most 1. Following the same argument of

Theorem 4.2, we have the following extension of Theorem 1.2. DEFINITION 5.5. AsetS # V is specialif:

THEOREM 5.2. There is a polynomial timgl, A, —1, B, +1)- 1. 16(S)| = 3;
approximation algorithm for thévlINlMUM BOUNDED DEGREE
CONNECTING TREE problem. 2. 2°(6(8)) = Lorz"(6(5)) =2;

To prove Lemma 5.1, we need a characterization of the basic 3+ Xs(s) i @linear combination of the characteristic vectors of
solutions of LP-MBDCTG, A, B, U, W, F). The proof of the fol- its descendants (including possibly;s)) and the charac-
lowing lemma is the same as the proof of Lemma 4.3. teristic vectorsys(,) ofv € SN T,

LEMMA 5.3. Letz* be any basic feasible solution of LP-MBD- Observe that special supernodes satisfy all the above properties.
CT(G, A, B,U, W, F). Then there exists a sét, C U, Ty C W Intuitively, a special set has the same properties as a special supern-
and a Ia;nir;arjfa;nily(l) £ [ C I(F) such thatz" is the unique ode. The following lemma will complete the proof of Lemma 5.1,
solution to the following linear system. and hence Theorem 5.2.

z*(6(v)) = Ao Yo € Ty LEMMA 5.6. For any rooted subtree of the forest # ) with
2*(6(v)) = By Vv € Tw the rootS, we can distribute the tokens assigned to vertices inside
z(E(S))=|S|—|F(S)|—-1 VSeL S such that every vertex il N S and every node in the subtree
gets at least two tokens and the ra®tgets at least three tokens.
Moreover, the vector$xp(s) : S € L} U {xs() : v € Tu} U Moreover, the roofS gets exactly three tokens onlydfis a special
{Xs(v) : v € Tw} are linearly independent. Furthermordy™| = setorS = V.

L]+ Tu| + [Tw|.



PROOF First we prove some claims needed for the lemma.
CLAm 5.7.1f S # V, then|é(S)| > 2.

PROOF SinceS # V, z*(§(S)) > 1is a valid inequality of
the LP. As there is no 1-edg@(S)| > 2. O

Let the root be sef. We say a supernodg is amemberof S
if C C SbutC ¢ R forany childR of S. We also say a child®
of S is amemberof S. We call a membeR of S special if R is

a special supernode (in which the supernode is a singleton vertex

in T with degree three from Claim 5.4) or R is a special set. In

The proof of Lemma 5.6 is by induction on the height of the
subtree. In the base case, each member has at least one excess
token and exactly one excess token when the member is special.
Consider the following cases for the induction step.

1. S has at least four members. Each member has an excess of
at least one. Thereforg can collect at least four tokens by
taking one excess token from each.

2. S has exactly three members. If any member has at least
two excess tokens, the$i can collect four tokens, and we
are done. Else each member has only one excess token and

either case (whether the member is a supernode or set), a member thus, by the induction hypothesis, is specialSlt= V, then

has exactly one excess token only if the member is special. Special

members also satisfy all the properties in Definition 5.5.

Recall thatF'(.S) denotes the set of edges with both endpoints in

S. We denote byD(.S) the set of edges with endpointsdifferent
members ofS.

CrAaim 5.8.If S € £ hasr members ther™(D(S)) =r — 1.

PROOF For every membeR of S, we have

«"(E(R)) = |R| - |[F(R)| -1,

since eitherR € L, or R is a supernode in which case both LHS

and RHS are zero. AS € £, we have
a*(E(S)) =S| = [F(S)| -1

Now observe that every edge 8%.5) must be contained if'( R)
for some membeR of S. Hence, we have the following, in which
the sum is oveR that are members .

&*(D(S)) = 2" (E(S)) = " (B(R))

=S| = [SNF|=1= (IR - |F(R)|-1)

R

— (151 = SCR) + S IF(R) — [F(S) + S 1 -1
R R

= H-1=r-1

R
becauseéS| = >, |R|and|F(S)| =Yz |F(R)]. O

CLAIM 5.9. Suppose a seéf # V contains exactly three spe-
cial membersR;, Rz, Rz and |D(S)| > 3. ThenS is a special
set.

PROOF Note that|d(S)| = |6(R1)| + [6(R2)| + |6(R3)| —
2|D(S)| =3+3+3—2|D(S)| =9 —2|D(S)|. SinceS # V,
we have|§(S)| > 2 by Claim 5.7. As|D(S)| > 3, the only
possibility is that|D(S)| = 3 and|6(S)| = 3, which satisfies
the first property of a special set. Also, we hav®4(S)) =
¥ (6(R1))+ 2" (6(R2))+x*(6(R3)) — 22" (D(S)). As each term
on the RHS is an integer, it follows that (6(S)) is an integer.
Moreover, as we do not have a 1-edg&(4(S)) < [6(S)] = 3

and thusz*(§(S)) is either equal to 1 or 2, and so the second

property of a special set is satisfied. Finally, note thats) =
X5(Ry) T X6(Ra) T X6(R3) TXE(R1) T XE(R:) T XE(Rs) — 2XE(S)-
Here, the vectol z(r,) Will be the zero vector ifR; is a special
vertex. SinceR., Rs, R3 satisfy the third property of a special
member,S satisfies the third property of a special sef.]

S can collect three tokens, and this is enough si¥ids the

root of the laminar family. Else, we have’ (D(S)) = 2
from Claim 5.8. Because there is no 1-edge, we must have
|D(S)| > z*(D(S)) = 2. Now, it follows from Claim 5.9
that S is special and it only requires three tokens.

3. S contains exactly two membei®;, R.. If both R;, Ro
have at least two excess tokens, thteran collect four to-
kens, and we are done. Else, one of the members has ex-
actly one excess token sd1. Hence,R; is special by the
induction hypothesis. We now show a contradiction to the
independence of tight constraints definirig and hence this
case would not happen.

SinceS contains two members, Claim 5.8 implies(D(.S)) =
1. Thereis no 1-edge, therefore we h&ilg .S)| = |0(R1, R2)|
> 2. Also, R, is special and thupi(R;)| = 3. We claim
0(R1, R2) = 6(R1). If not, thenlete = §(R1) \ 6(R1, R2).
Then

2t = " (8(R1))—a" (5(Ra, R)) = 2" (3(Ra))—a" (D(S)).

Butz*(6(R.1)) is aninteger a®; is special and:* (D(S)) =
1. Thereforey; is an integer which is a contradiction. Thus
(S(Rh Rz) = 5(R1) But then

XE(S) = XE(Ry) T Xo(R1) T XE(R2)
if Ryisasetor

XE(S) = XE(Ry) T X6(Ry)

if Ro is supernode.R; is special implies thaks(r,) is a
linear combination of the characteristic vectors of its descen-
dants and the characteristic vectosgf{,): v € R1 N T}
Hence, in either casgps) is spanned by g(g) for R €

L\ {S} andyx;s.,) for v € SN T which is a contradiction to
the inclusion ofS' in L.

This completes the proof of Lemma 5.6 and TheoremB.2.

6. CONCLUDING REMARKS AND OPEN
QUESTIONS

In this paper we extend the iterative rounding framework to ob-
tain the best possible guarantee for the MBDST problem. A closely
related problem is the well studied travelling salesperson problem
(TSP). The sub-tour elimination relaxation for TSP is very similar
to the LP relaxation for the MBDST problem. Indeed our tech-
nigues can be used to give the following polyhedral result: Any
solution to the sub-tour elimination polytope can be written as a
convex combination of 1-trees each of maximum degree three and
average degree two, improving on a similar result of Goemans [10].
Here, a 1-tree is a tree dn \ v along with any two edges incident



at vertexv. A natural open question is whether the techniques used [9] M.R. Garey and D.S. Johnso@pmputers and Intractability:

here can be used to obtain better approximation algorithm for the A Guide to the Theory of NP-Completenass H. Freeman
TSP problem. & Co., New York, NY, USA, 1979.
[10] M.X. GoemansMinimum Bounded-Degree Spanning Trees,
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