Approximation Algorithms	23-02-2010	Dept. of CS, Aarhus University
Uncapacitated Metric Facility Location Problem (UMFL).		
Lecturer: Nguyen Kim Thang	Student: Finn R. Jensen	

1 Uncapacitated Metric Facility Location Problem (UMFL).

- Let \mathcal{L} be a set of locations.
- Let $\mathcal{F} \subset \mathcal{L}$ be a set of potential facility locations.
- Let $\mathcal{C} \subset \mathcal{L}$ be a set of clients (cities).
- Let $c: \mathcal{L} \times \mathcal{L} \rightarrow \mathbb{R}^{+} \forall i, j \in \mathcal{L}$ be a distance function. Alternatively think of the function as describing the cost of assigning city j to facility i.
- Let $f: \mathcal{F} \rightarrow \mathbb{R}^{+} \forall i \in \mathcal{F}$ be a cost function describing the cost of opening a facility at i .
- Let $\phi: \mathcal{C} \rightarrow \mathcal{F} \forall j \in \mathcal{C}$ be an assignment function. I.e. $\phi(j)=i$ if city j is assigned to facility i .

Problem: Determine a set offacilities to open and an assignment of all cities to the openfacilities that minimizes the total opening and distance cost.

Notation 1.1. $f(i)=f_{i} . c(i, j)=c_{i j}$
The problem is uncapacitated as there is no bound on how many cities an open facility can serve. It is metric as c is defining a metric. This especially means:

$$
\begin{array}{ll}
c_{i j}=c_{j i} & \forall i, j \in L \\
c_{i j} \leq c_{i k}+c_{k j} & \forall i, j, k \in L
\end{array} \quad \text { (triangle inequality) }
$$

2 IP Formulation.

Let $y_{i}= \begin{cases}1 & \text { if a facility is opened at } i \in \mathcal{F} \\ 0 & \text { otherwise }\end{cases}$
Let $x_{i j}= \begin{cases}1 & \text { if } \phi(j)=i \\ 0 & \text { otherwise }\end{cases}$

$$
\begin{array}{rlrl}
\operatorname{Minimize} Z(x, y) & =F(x, y)+C(x, y)=\sum_{i \in \mathcal{F}} f_{i} \cdot y_{i}+\sum_{\substack{j \in \mathcal{C} \\
i \in \mathcal{F}}} c_{i j} \cdot x_{i j} \\
\text { s.t. } & & \\
\sum_{i \in \mathcal{F}} x_{i j} & =1 & & \forall j \in \mathcal{C} \\
x_{i j} & \leq y_{i} & & \forall i \in \mathcal{F}, j \in \mathcal{C} \\
x_{i j}, y_{i} & \in\{0,1\} & & \forall i \in \mathcal{F}, j \in \mathcal{C} \tag{3}
\end{array}
$$

The constraint (1) ensures that all cities gets assigned to a facility. The constraint (2) ensures that the assigned facilities are open. The LP-relaxation is obtained by changing (3) into:

$$
x_{i j}, y_{i} \geq 0 \quad \forall i \in \mathcal{F}, j \in \mathcal{C}
$$

the upper bound is unnecessary.

3 Approximation Algorithm for UMFL.

Algorithm Idea.

The algorithm will take an optimal solution for the LP-relaxation $\left(x^{*}, y^{*}\right)$ and change this into a feasible solution for the IP problem. This will consist of two operations:

$$
\left(x^{*}, y^{*}\right) \xrightarrow{\text { filter }}(x, y) \xrightarrow{\text { round }}(\hat{x}, \hat{y})
$$

where (x, y) and (\hat{x}, \hat{y}) are feasible solutions to the LP- and IP-problem respectively. A high-level description of the algorithm steps are:

1. Greedily chose the city, $c_{\text {min }}$ which "is cheapest" i.e has the lowest overall distance cost.
2. Chose the cheapest facility location α among those "fractionally opened" locations which the city is "fractionally assigned" to.
3. Open a facility f_{α} at α completely.
4. Assign the city completely to the f_{α} facility (and only to this facility).
5. Assign all cities which are "fractionally assigned" to some facility locations in the "neighbourhood" of $c_{\min }$ completely to the the f_{α} facility.
6. Update collection of unassigned cities and repeat from step 1)

The reason for the filtering is step 5). If some city "far away" is assigned with a very small $x_{i j}>0$ value to a neighbouring facility, it will be very costly to assign this city to the newly opened facility. This is avoided by ensuring $x_{i j}=0$ if $c_{i j}$ is "large".

Filtering.

Definition 3.1. Let

$$
\Delta j=\sum_{i \in \mathcal{F}} c_{i j} \cdot x_{i j} \quad \forall j \in \mathcal{C}
$$

Definition 3.2. $\forall j \in \mathcal{C}$ let $B_{j}=\left\{i \in \mathcal{F} \mid c_{i j}<2 \Delta j\right\}$ This describes a neighbourhood or "ball" around each city containing facility locations with "small" distances.

Lemma 3.3. Given a solution $\left(x^{\prime}, y^{\prime}\right)$ of the LP-problem, there exists a feasible solution to the LP-problem (x, y) such that:
i) $x_{i j}>0 \Rightarrow c_{i j}<2 \Delta j \quad$ (I.e. $c_{i j}$ "is small")
ii) $Z(x, y) \leq 2 Z\left(x^{\prime}, y^{\prime}\right)$

Proof. $\forall i \in \mathcal{F}, j \in \mathcal{C}$ let

$$
\begin{aligned}
& x_{i j}= \begin{cases}\frac{x_{i j}^{\prime}}{\sum_{i \in B_{j}} x_{i j}^{\prime}} & \text { if } i \in B_{j} \\
0 & \text { otherwise }\end{cases} \\
& y_{i}=\min \left\{1,2 y_{i}^{\prime}\right\}
\end{aligned}
$$

Observation 3.4. $x_{i j} \leq 1 \quad \forall i \in \mathcal{F}, j \in \mathcal{C}$
Claim 3.5. (x, y) is a feasible solution fulfilling Lemma $3.3 i)$.
Check for constraint (1)

$$
\sum_{i \in \mathcal{F}} x_{i j}=\sum_{i \in B_{j}} x_{i j}+\sum_{i \notin B_{j}} x_{i j}=\sum_{i \in B_{j}} \frac{x_{i j}^{\prime}}{\sum_{i \in B_{j}} x_{i j}^{\prime}}+\sum_{i \notin B_{j}} 0=1+0=1
$$

Check for constraint (2)
Case 1. $y_{i}=1$ follows from observation 3.4
Case 2. $y_{i}=2 y_{i}^{\prime}$. We have $\sum_{i \in \mathcal{F}} x_{i j}^{\prime}=1$ as $\left(x_{i j}^{\prime}, y_{i}^{\prime}\right)$ is a solution to the LP-problem. Interpret $x_{i j}^{\prime}$ as a probability distribution for "assigning j to i " and $c_{i j}$ as a "distance" random variable.

Theorem 3.6 (Markov Inequality). Let X be a positive, random variable. Let $a>0$ then

$$
\operatorname{Pr}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}
$$

Using the Markov Inequality we get:

$$
\begin{aligned}
\sum_{i \notin B_{j}} x_{i j}^{\prime} & =\operatorname{Pr}\left[c_{i j} \geq 2 \Delta j\right] \leq \frac{\Delta j}{2 \Delta j}=\frac{1}{2} \\
& \Downarrow \\
\sum_{i \in B_{j}} x_{i j}^{\prime} & \geq \frac{1}{2} \\
& \Downarrow \\
x_{i j} \leq 2 x_{i j}^{\prime} & \leq 2 y_{i}^{\prime}=y_{i}
\end{aligned}
$$

The last line following from the definition of $x_{i j}$ and from $\left(x^{\prime}, y^{\prime}\right)$ being a feasible solution. This proves claim 3.5 and per construction part i) of Lemma 3.3

$$
\begin{aligned}
Z(x, y) & =F(x, y)+C(x, y) \\
F(x, y) & =\sum_{i \in \mathcal{F}} f_{i} \cdot y_{i} \leq \sum_{i \in \mathcal{F}} f_{i} \cdot 2 y_{i}^{\prime}=2 F\left(x^{\prime}, y^{\prime}\right) \\
C(x, y) & =\sum_{\substack{j \in \mathcal{C} \\
i \in \mathcal{F}}} c_{i j} \cdot x_{i j} \leq \sum_{\substack{j \in \mathcal{C} \\
i \in \mathcal{F}}} c_{i j} \cdot 2 x_{i j}^{\prime}=2 C\left(x^{\prime}, y^{\prime}\right) \\
& \Downarrow \\
Z(x, y) & \leq 2 Z\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

This proves part ii) of Lemma 3.3

Algorithm.

Let (x^{\prime}, y^{\prime}) denote the constructed solution to the IP-problem.
Step 1. Solve the relaxed LP-problem getting optimal solution $\left(x^{*}, y^{*}\right)$.
Step 2. Filter $\left(x^{*}, y^{*}\right) \rightarrow(x, y)$.
Step 3. Define $\Delta j=\sum_{i \in \mathcal{F}} c_{i j} x_{i j}$ and $B_{j}=\left\{i \in \mathcal{F} \mid c_{i j}<\Delta j\right\}$.
Observation 3.7. No factor 2 in definition of B_{j} and $\Delta j \leq 2 \cdot \Delta j^{*}, \forall j \in \mathcal{C}$
Step 4. While $\mathcal{C} \neq \emptyset$ do

- Chose minimal overall cost city:

$$
j \leftarrow \min _{j} \Delta j
$$

- Consider neighbourhood B_{j}. Let α be the facility location $i \in B_{j}$ with smallest opening cost (f_{α} is minimum.)
- Open facility at $\alpha\left(y_{\alpha}^{\prime}=1\right)$.
- Assign city j to $\alpha\left(\phi(j)=\alpha, x_{i j}^{\prime}=1\right.$ for $i=\alpha$ and $x_{i j}^{\prime}=0$ for $\left.i \neq \alpha\right)$
- Update $\mathcal{C} \leftarrow \mathcal{C} \backslash\{j\}$.
- Consider all other neighbourhoods $\overline{B_{\bar{j}}}$ for which $B_{j} \cap \overline{B_{\bar{j}}} \neq \emptyset \Rightarrow \exists \bar{i} \in \mathcal{F}: \bar{i} \in$ B_{j} and $\bar{i} \in \overline{B_{\bar{j}}}$
- Assign city \bar{j} to $\alpha\left(\phi(\bar{j})=\alpha, x_{i \bar{j}}^{\prime}=1\right.$ for $i=\alpha$ and $x_{i \bar{j}}^{\prime}=0$ for $\left.i \neq \alpha\right)$
- Update $\mathcal{C} \leftarrow \mathcal{C} \backslash\{\bar{j}\}$.

Step 5. Output $\left\{\alpha \mid y_{\alpha}^{\prime}=1\right\}$ and ϕ.

Figure 1: Assigning facility location to cities

Algorithm Analysis.

Claim 3.8. The algorithm is a 6-approximation.

Proof.
Termination and Feasibility: The number of cities is final and in each iteration at least one city is removed from the set of unassigned cities. The algorithm returns a feasible solution as each city has been assigned to an open facility location.

Opening Cost: Consider a round of the algorithm choosing city j.
Using the choice of α and that (x, y) is a filtered solution we have for all facility locations in B_{j} :

$$
\sum_{i \in B_{j}} f_{i} \cdot y_{i} \geq \sum_{i \in B_{j}} f_{\alpha} \cdot y_{i}=f_{\alpha} \cdot \sum_{i \in B_{j}} y_{i} \geq f_{\alpha} \cdot \sum_{i \in B_{j}} x_{i j}=f_{\alpha}=\text { opening cost of algorithm. }
$$

Let $\left\{\overline{B_{1}}, \overline{B_{2}}, \ldots, \overline{B_{n}}\right\}$ be all the $\overline{B_{\bar{j}}}$ sets intersecting with B_{j}. Define a union of disjoint sets:

$$
\bar{B}=\bigcup_{i, k \in 1 \ldots n}\left(\overline{B_{i}} \backslash \bigcup_{k<i} \overline{B_{k}}\right)
$$

We have for the facility locations in $\bar{B} \backslash B_{j}$:

$$
\sum_{i \in \bar{B} \backslash B_{j}} f_{i} \cdot y_{i} \geq 0=\text { opening cost of algorithm. }
$$

The algorithm "touches" each facility location exactly once, either selecting or dropping it \Rightarrow summing over all algorithm rounds and using Lemma 3.3 we get:

$$
\begin{equation*}
\text { Summed opening cost of algorithm } \leq \sum_{i \in \mathcal{F}} f_{i} \cdot y_{i}=F(x, y) \leq 2 F\left(x^{*}, y^{*}\right) \tag{4}
\end{equation*}
$$

Connection Cost: For all cities we either have
a) The city, j is assigned to a facility in its own neighbourhood: \Rightarrow connection cost for $j \leq \Delta j$
b) The city, \bar{j} is assigned to a facility in the neighbourhood of another city, $j \Rightarrow$ connection cost for $\bar{j} \leq \underbrace{\Delta \bar{j}}_{\text {to get to } B_{j}}+\underbrace{\Delta j}_{\text {to get to } j}+\underbrace{\Delta j}_{\text {to get to location } \phi(\bar{j})} \leq 3 \Delta \bar{j} \quad$ (see Figure 1 on the previous page)

Using a) and b) and observation 3.7 we get:

$$
\begin{equation*}
C\left(x^{\prime} y^{\prime}\right)=\sum_{\substack{j \in \mathcal{C} \\ i \in \mathcal{F}}} c_{i j} \cdot x_{i j}^{\prime} \leq \sum_{j \in \mathcal{C}} 3 \Delta j \leq \sum_{j \in \mathcal{C}} 6 \Delta j^{*}=6 \cdot \sum_{\substack{j \in \mathcal{C} \\ i \in \mathcal{F}}} c_{i j} \cdot x_{i j}^{*}=6 C\left(x^{*}, y^{*}\right) \tag{5}
\end{equation*}
$$

(4) and (5) gives: Algorithm cost $\leq 2 F\left(x^{*}, y^{*}\right)+6 C\left(x^{*}, y^{*}\right) \leq 6 Z\left(x^{*}, y^{*}\right) \leq 6 O P T_{U M F L}$

