Approximation Algorithms23-02-2010Dept. of CS, Aarhus University

Uncapacitated Metric Facility Location Problem (UMFL).

Lecturer: Nguyen Kim Thang

Student: Finn R. Jensen

1 Uncapacitated Metric Facility Location Problem (UMFL).

- Let \mathcal{L} be a set of locations.
- Let $\mathcal{F} \subset \mathcal{L}$ be a set of potential facility locations.
- Let $\mathcal{C} \subset \mathcal{L}$ be a set of clients (cities).
- Let $c : \mathcal{L} \times \mathcal{L} \to \mathbb{R}^+ \forall i, j \in \mathcal{L}$ be a distance function. Alternatively think of the function as describing the cost of assigning city j to facility i.
- Let $f : \mathcal{F} \to \mathbb{R}^+ \ \forall i \in \mathcal{F}$ be a cost function describing the cost of opening a facility at i.
- Let $\phi : C \to F \forall j \in C$ be an assignment function. I.e. $\phi(j) = i$ if city j is assigned to facility i.

Problem: Determine a set of facilities to open and an assignment of all cities to the open facilities that minimizes the total opening and distance cost.

Notation 1.1. $f(i) = f_i$. $c(i, j) = c_{ij}$

The problem is uncapacitated as there is no bound on how many cities an open facility can serve. It is metric as c is defining a metric. This especially means:

$$c_{ij} = c_{ji} \qquad \forall i, j \in L$$

$$c_{ij} \le c_{ik} + c_{kj} \qquad \forall i, j, k \in L \qquad \text{(triangle inequality)}$$

2 IP Formulation.

Let
$$y_i = \begin{cases} 1 & \text{if a facility is opened at } i \in \mathcal{F} \\ 0 & \text{otherwise} \end{cases}$$

Let $x_{ij} = \begin{cases} 1 & \text{if } \phi(j) = i \\ 0 & \text{otherwise} \end{cases}$

Minimize
$$Z(x,y) = F(x,y) + C(x,y) = \sum_{i \in \mathcal{F}} f_i \cdot y_i + \sum_{\substack{j \in \mathcal{C} \\ i \in \mathcal{F}}} c_{ij} \cdot x_{ij}$$

$$s.t.$$

$$\sum_{i\in\mathcal{F}} x_{ij} = 1 \qquad \forall j \in \mathcal{C} \qquad (1)$$

$$x_{ij} \le y_i \qquad \forall i \in \mathcal{F}, \ j \in \mathcal{C}$$
(2)

$$x_{ij}, y_i \in \{0, 1\} \qquad \forall i \in \mathcal{F}, \ j \in \mathcal{C}$$
(3)

The constraint (1) ensures that all cities gets assigned to a facility. The constraint (2) ensures that the assigned facilities are open. The LP-relaxation is obtained by changing (3) into:

$$x_{ij}, y_i \ge 0 \qquad \forall i \in \mathcal{F}, j \in \mathcal{C}$$

the upper bound is unnecessary.

3 Approximation Algorithm for UMFL.

Algorithm Idea.

The algorithm will take an optimal solution for the LP-relaxation (x^*, y^*) and change this into a feasible solution for the IP problem. This will consist of two operations:

$$(x^*, y^*) \xrightarrow{filter} (x, y) \xrightarrow{round} (\hat{x}, \hat{y})$$

where (x, y) and (\hat{x}, \hat{y}) are feasible solutions to the LP- and IP-problem respectively. A high-level description of the algorithm steps are:

- 1. Greedily chose the city, c_{min} which "is cheapest" i.e has the lowest overall distance cost.
- 2. Chose the cheapest facility location α among those "fractionally opened" locations which the city is "fractionally assigned" to.
- 3. Open a facility f_{α} at α completely.
- 4. Assign the city completely to the f_{α} facility (and only to this facility).
- 5. Assign all cities which are "fractionally assigned" to some facility locations in the "neighbourhood" of c_{min} completely to the the f_{α} facility.
- 6. Update collection of unassigned cities and repeat from step 1)

The reason for the filtering is step 5). If some city "far away" is assigned with a very small $x_{ij} > 0$ value to a neighbouring facility, it will be very costly to assign this city to the newly opened facility. This is avoided by ensuring $x_{ij} = 0$ if c_{ij} is "large".

Filtering.

Definition 3.1. Let

$$\Delta j = \sum_{i \in \mathcal{F}} c_{ij} \cdot x_{ij} \qquad \forall \ j \in \mathcal{C}$$

Definition 3.2. $\forall j \in C$ let $B_j = \{i \in \mathcal{F} \mid c_{ij} < 2\Delta j\}$ This describes a neighbourhood or "ball" around each city containing facility locations with "small" distances.

Lemma 3.3. Given a solution (x', y') of the LP-problem, there exists a feasible solution to the LP-problem (x, y) such that:

- i) $x_{ij} > 0 \Rightarrow c_{ij} < 2\Delta j$ (I.e. c_{ij} "is small")
- *ii*) $Z(x,y) \le 2 Z(x',y')$

Proof. $\forall i \in \mathcal{F}, j \in \mathcal{C}$ let

$$x_{ij} = \begin{cases} \frac{x'_{ij}}{\sum_{i \in B_j} x'_{ij}} & \text{if } i \in B_j \\ 0 & \text{otherwise} \end{cases}$$
$$y_i = \min\{1, 2y'_i\}$$

Observation 3.4. $x_{ij} \leq 1 \qquad \forall i \in \mathcal{F}, \ j \in \mathcal{C}$

Claim 3.5. (x, y) is a feasible solution fulfilling Lemma 3.3 i). Check for constraint (1)

$$\sum_{i \in \mathcal{F}} x_{ij} = \sum_{i \in B_j} x_{ij} + \sum_{i \notin B_j} x_{ij} = \sum_{i \in B_j} \frac{x'_{ij}}{\sum_{i \in B_j} x'_{ij}} + \sum_{i \notin B_j} 0 = 1 + 0 = 1$$

Check for constraint (2)

Case 1. $y_i = 1$ follows from observation 3.4

Case 2. $y_i = 2y'_i$. We have $\sum_{i \in \mathcal{F}} x'_{ij} = 1$ as (x'_{ij}, y'_i) is a solution to the LP-problem. Interpret x'_{ij} as a probability distribution for "assigning j to i" and c_{ij} as a "distance" random variable.

Theorem 3.6 (Markov Inequality). Let X be a positive, random variable. Let a > 0 then

$$\Pr\left[X \ge a\right] \le \frac{\mathbb{E}[X]}{a}$$

Using the Markov Inequality we get:

The last line following from the definition of x_{ij} and from (x', y') being a feasible solution. This proves claim 3.5 and per construction part i) of Lemma 3.3

$$Z(x,y) = F(x,y) + C(x,y)$$

$$F(x,y) = \sum_{i \in \mathcal{F}} f_i \cdot y_i \le \sum_{i \in \mathcal{F}} f_i \cdot 2y'_i = 2F(x',y')$$

$$C(x,y) = \sum_{\substack{j \in \mathcal{C} \\ i \in \mathcal{F}}} c_{ij} \cdot x_{ij} \le \sum_{\substack{j \in \mathcal{C} \\ i \in \mathcal{F}}} c_{ij} \cdot 2x'_{ij} = 2C(x',y')$$

$$\downarrow$$

$$Z(x,y) \le 2Z(x',y')$$

This proves part ii) of Lemma 3.3

Algorithm.

Let (x', y') denote the constructed solution to the IP-problem.

- **Step 1.** Solve the relaxed LP-problem getting optimal solution (x^*, y^*) .
- **Step 2.** Filter $(x^*, y^*) \rightarrow (x, y)$.
- **Step 3.** Define $\Delta j = \sum_{i \in \mathcal{F}} c_{ij} x_{ij}$ and $B_j = \{i \in \mathcal{F} \mid c_{ij} < \Delta j\}.$

Observation 3.7. No factor 2 in definition of B_j and $\Delta j \leq 2 \cdot \Delta j^*, \forall j \in C$

Step 4. While $C \neq \emptyset$ do

• Chose minimal overall cost city:

$$j \leftarrow \min_j \Delta j$$

- Consider neighbourhood B_j. Let α be the facility location i ∈ B_j with smallest opening cost (f_α is minimum.)
 - Open facility at α $(y'_{\alpha} = 1)$.
 - Assign city j to α $(\phi(j) = \alpha, x'_{ij} = 1$ for $i = \alpha$ and $x'_{ij} = 0$ for $i \neq \alpha$)
 - Update $\mathcal{C} \leftarrow \mathcal{C} \setminus \{j\}$.
- Consider all other neighbourhoods $\overline{B_{\overline{j}}}$ for which $B_j \cap \overline{B_{\overline{j}}} \neq \emptyset \Rightarrow \exists \overline{i} \in \mathcal{F} : \overline{i} \in B_j$ and $\overline{i} \in \overline{B_{\overline{j}}}$
 - $\text{ Assign city } \bar{j} \text{ to } \alpha \ (\phi(\bar{j}) = \alpha, \ x'_{i\bar{j}} = 1 \text{ for } i = \alpha \text{ and } x'_{i\bar{j}} = 0 \text{ for } i \neq \alpha)$
 - Update $\mathcal{C} \leftarrow \mathcal{C} \setminus \{\overline{j}\}.$

Step 5. Output $\{\alpha \mid y'_{\alpha} = 1\}$ and ϕ .

Figure 1: Assigning facility location to cities

Algorithm Analysis.

Claim 3.8. The algorithm is a 6-approximation.

Proof.

Termination and Feasibility: The number of cities is final and in each iteration at least one city is removed from the set of unassigned cities. The algorithm returns a feasible solution as each city has been assigned to an open facility location.

Opening Cost: Consider a round of the algorithm choosing city *j*.

Using the choice of α and that (x, y) is a filtered solution we have for all facility locations in B_j :

$$\sum_{i \in B_j} f_i \cdot y_i \ge \sum_{i \in B_j} f_\alpha \cdot y_i = f_\alpha \cdot \sum_{i \in B_j} y_i \ge f_\alpha \cdot \sum_{i \in B_j} x_{ij} = f_\alpha = \text{opening cost of algorithm.}$$

Let $\{\overline{B_1}, \overline{B_2}, \dots, \overline{B_n}\}$ be all the $\overline{B_j}$ sets intersecting with B_j . Define a union of disjoint sets:

$$\overline{B} = \bigcup_{i,k \in 1...n} (\overline{B_i} \setminus \bigcup_{k < i} \overline{B_k})$$

We have for the facility locations in $\overline{B} \setminus B_i$:

$$\sum_{i \in \overline{B} \setminus B_j} f_i \cdot y_i \ge 0 = \text{opening cost of algorithm.}$$

The algorithm "touches" each facility location exactly once, either selecting or dropping it \Rightarrow summing over all algorithm rounds and using Lemma 3.3 we get:

Summed opening cost of algorithm
$$\leq \sum_{i \in \mathcal{F}} f_i \cdot y_i = F(x, y) \leq 2 F(x^*, y^*)$$
 (4)

Connection Cost: For all cities we either have

- a) The city, j is assigned to a facility in its own neighbourhood: \Rightarrow connection cost for $j \leq \Delta j$
- b) The city, \overline{j} is assigned to a facility in the neighbourhood of another city, $j \Rightarrow$ connection cost for $\overline{j} \leq \underbrace{\Delta \overline{j}}_{\text{to get to } B_j} + \underbrace{\Delta j}_{\text{to get to } j} + \underbrace{\Delta j}_{\text{to get to location } \phi(\overline{j})} \leq 3\Delta \overline{j}$ (see Figure 1 on the previous page)

Using a) and b) and observation 3.7 we get:

$$C(x'y') = \sum_{\substack{j \in \mathcal{C} \\ i \in \mathcal{F}}} c_{ij} \cdot x'_{ij} \le \sum_{j \in \mathcal{C}} 3\Delta j \le \sum_{j \in \mathcal{C}} 6\Delta j^* = 6 \cdot \sum_{\substack{j \in \mathcal{C} \\ i \in \mathcal{F}}} c_{ij} \cdot x^*_{ij} = 6 C(x^*, y^*)$$
(5)

(4) and (5) gives: Algorithm cost $\leq 2 F(x^*, y^*) + 6 C(x^*, y^*) \leq 6 Z(x^*, y^*) \leq 6 OPT_{UMFL}$