Approximation Algorithms

Dept. of CS, Aarhus University

Homework 3

Lecturer: Nguyen Kim Thang

Student: ??

Load Balancing

Consider the problem LOAD BALANCING (or MINIMUM MAKESPAN SCHEDULING): Given n jobs J_1, \ldots, J_n with processing time p_1, \ldots, p_n , respectively and m identical machines. Find a schedule of these jobs such that the makespan is minimized.

Question 1

Consider the following greedy algorithm.

Algorithm 1 A greedy algorithm for LOAD BALANCING
1: Order the jobs arbitrarily.
2: for $i = 1$ to n do
3: Assign J_i to the machine with least current load.
4: Update the load.
5: end for
6: return the assignment.

- 1. Prove that the greedy algorithm gives $\left(2 \frac{1}{m}\right)$ -approximation and give an tight example for the algorithm.
- 2. Take a modification on the first step: order the jobs in decreasing order of processing time. Prove that the new algorithm gives 3/2-appoximation

Hint: Let L be the makespan and let M_i be a machine with load L (in the output). Consider the last job assign to machine M_i .

Question 2

Assume that there are k distinct processing times, i.e., $p_i \in \{a_1, \ldots, a_k\}$ where k is a constant. Given T > 0. Design a dynamic programming whose running time is $O(n^{2k})$ such that:

- Return No if the minimum makespan is larger than T,
- Return Yes and a schedule that has makespan smaller than T otherwise.

Hint: Define $M(x_1, \ldots, x_k)$:= the number of machines needed to schedule x_i jobs of processing time a_i (for $1 \le i \le k$) such that the makespan is smaller than T.