Graphes & Algorithmes

Dept Informatique, Univ Evry

TD 1: Premier contact avec les graphes

Responsable: Nguyễn Kim Thắng 14 Jan 2021

Chargés de TDs: Tuan-Anh Nguyen et Nguyễn Kim Thắng

Exercice 1 Sommets, Arêtes, Arcs, Degrés

1. Quel est le nombre d'arêtes (arcs) d'un graphe non-orienté (orienté) complet de n sommets?

- 2. Quel est le nombre d'arêtes d'un graphe non-orienté bipartie $G(V_1, V_2, E)$ de n sommets (i.e., $|V_1| + |V_2| = n$)? Montrer que $|E| \le n^2/4$.
- 3. Soit G(V, E) un graphe de n sommets et m arêtes. Soient d_1, d_2, \ldots, d_n les degrés du graphe. Montrer que $\sum_{i=1}^n d_i = 2m$.
- 4. Montrer que dans un graphe G(V, E) il y a toujours un nombre pair de sommets de degré impair.
- 5. Les nombres $\delta(G)$ et $\Delta(G)$ representent respectivement les degrés minimum et maximum d'un graphe G(V, E), ou n = |V| et m = |E|. Montrer que $\delta(G) \leq 2m/n \leq \Delta(G)$.
- 6. Montrer que tout graphe (simple) avec au moins deux sommets possède au moins deux sommets de même degré.

Exercice 2 Distance

Soit G(V, E) un graphe non-orienté et $d: V \times V \to \mathbb{R}$ la fonction de distances, i.e., d(u, v) est la distance entre deux sommets u et v quelconques. Montrez que pour tout sommets u, v, w, on a: $d(u, v) \leq d(u, w) + d(w, v)$.

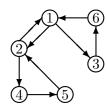
R. Union des deux chemins P_1 qui relie u, w et P_2 qui relie w, v est un chemin reliant u, v. D'où vient l'inégalité.

Exercice 3 Arbres et feuilles

Démontrer qu'un arbre à $n \geq 2$ sommets a au moins deux feuilles. (Rappel: une feuille est un sommet de degré 1.)

Exercice 4 Représentation

Soient les graphes $G_1(V_1, E_1)$ et $G_2(V_2, E_2)$ suivants.



- 1. Donner les matrices d'adjacence M_1 et M_2 des graphes G_1 et G_2 , respectivement.
- 2. Que représentent les matrices M^p et $M = M \oplus M^2 \oplus ... \oplus M^n$ où n est le nombre de sommets du graphe M et $1 \le p \le n$? Comment s'en servir pour savoir si le graphe est sans circuit?

Exercice 5 Hypercubes

Un n-cube (ou hypercube de dimension n) est un graphe dont les sommets représentent les elements

de $\{0,1\}^n$ et deux sommets sont adjacents si et seulement si les n-uplets correspondants different en exactement une composante.

- 1. Representer le n-cube, pour chaque $n \leq 4$
- 2. Comment obtenir le n-cube a partir du (n-1)-cube ?
- 3. Montrez que le n-cube est biparti.
- 4. Combien le n-cube possède-t-il de sommets ?
- 5. Quel est le degré des sommets (montrez que le *n*-cube est *regulier*).
- 6. Quel est le nombre d'arêtes ?

Exercice 6 Récurrences

On dit qu'un arbre binaire est un arbre enraciné dans lequel chaque noeud a soit 2 fils, soit aucun. On considère la proposition Q suivante:

Proposition \mathcal{Q} Dans un arbre binaire de profondeur p, toutes les feuilles sont à la profondeur p.

Un étudiant propose de montrer Q par récurrence sur la profondeur de l'arbre: C'est vrai si l'arbre est de profondeur 0 (c'est l'arbre réduit à une feuille). Supposons Q vraie pour les arbres de profondeur p. On construit alors un arbre A de profondeur p+1 en prenant la racine, en mettant à sa gauche un sous-arbre AG de profondeur p et à sa droite un arbre AD de profondeur p. A est bien de profondeur p+1. Par hypothèse de recurrence, toutes les feuilles de AG et de AD sont a profondeur p dans AG et dans AD. Elles sont donc a profondeur p+1 dans A. Comme il n'y a pas dans A d'autres feuilles que celles de AG et de AD, le résultat est prouvé.

La proposition Q étant clairement fausse, quelle est l'erreur de l'étudiant?

1 Révision

Definition 1.1. Etant donné les fonctions $f: \mathbb{Z} \to \mathbb{R}$ et $g: \mathbb{Z} \to \mathbb{R}$.

- La fonction f est *inclue* dans la classe O(g), c.a.d $f \in O(g)$ ou f = O(g), s'il existe un entier n_0 et une constante c > 0 tels que $f(n) \le c \cdot g(n)$ pour tout $n \ge n_0$.
 - Si $f \in O(g)$, on dit que f croît (asymptotiquement) moins vite que g ou bien le taux de croissance de f est au plus celui de g.
- La fonction f est *inclue* dans la classe $\Omega(g)$, c.a.d $f \in \Omega(g)$ ou $f = \Omega(g)$, s'il existe un entier n_0 et une constante c > 0 tels que $f(n) \ge c \cdot g(n)$ pour tout $n \ge n_0$.
 - Si $f \in \Omega(g)$, on dit que f croît (asymptotiquement) plus vite que g ou bien le taux de croissance de f est au moins celui de g.
- La fonction f est inclue dans la classe $\Theta(g)$, c.a.d $f \in \Theta(g)$ ou $f = \Theta(g)$, si $f \in O(g)$ et $f \in \Omega(g)$.
 - Si $f \in \Theta(q)$, on dit que le taux de croissance de f est similaire à celui de q.

Exercice 7

En utilisant les définitions, justifiez

- 1. $6n^2 + 5n 7 \in O(n^2)$ mais $6n^2 + 5n 7 \notin O(n)$.
- 2. $2^n \in \Omega(n^{10})$ mais $2^n \notin \Omega(3^n)$.
- 3. $2018n^{20} + 10n^9 \in \Theta(n^{20})$.

Exercice 8

Etant donné les fonctions f et g croissantes telles que $f(n) \in O(g(n))$. Est-ce que $f(n) \cdot \log(f(n)^c) \notin O(g(n) \log g(n))$? (où c est un constant positive.)

- 1. Parfois oui, parfois non, dépendant de la constante c.
- 2. Vrai.
- 3. Parfois oui, parfois non, dépendant des fonctions f et g.
- 4. Faux.

Exercice 9

Etant donné fonctions f et g croissantes telles que $f(n) \in O(g(n))$. Est-ce que $2^{f(n)} \in O(2^{g(n)})$?

- 1. Parfois.
- 2. Jamais.
- 3. Oui, si $f(n) \leq g(n)$ pour n suffisamment grand.
- 4. Toujours.

Exercice 10

Classez les fonctions suivantes dans l'ordre croissant des taux de croissance.

- 1. \sqrt{n}
- $2. 10^n$
- 3. $n^{1.5}$
- 4. $2^{\sqrt{\log n}}$
- 5. $n^{5/3}$