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Plan

• k players, each one chooses a 
vertex in graph G and gains the 
area of Voronoi cell.

• The existence of pure Nash 
equilibrium depends on (k,G) and 
deciding the existence is NP-
complete.

• The difference of social cost 
between pure Nash equilibria is 
bounded by Ω(√(n/k)), O(√(kn))

• Motivation : Study the interaction between selfish agents on Internet



Related works

• Competitive facility location: 
Voronoi Games on continuous 
surface [Hee-Kap et al ’04, 
Cheong et al ‘04].

• Service Provider Games 
[Vetta’02]



Social cost discrepancy
social cost

optimum

the worst Nash
equilibrium 

the best Nash 
equilibrium

price of 
anarchy (PoA) 

price of stability
(PoS)

 social cost 
discrepancy

Social cost discrepancy: 
       worst Nash / best Nash
Ideas:

•Unfair to compare the 
cost with OPT in selfish 
setting.
•Measure the degree of 
choice in a game.



The Game
• Given G(V,E), k players. Player’s strategy set is V.

• A vertex (customer) is 
assigned in equal fraction 
to the closest players.

• Payoff = the fractional amount
of vertex assigned to the player.

• A pure Nash equilibrium is a 
strategy profile in which no one 
can unilaterally increase her payoff.

• Social cost = sum of distances over all vertices to their closest 
player = problem minimum k-median
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3

Figure 1: A strategy profile of a graph (players are dots) and the corresponding payoffs.

that the strategy of player i is f ′
i . If player i can strictly improve his payoff by choosing another

strategy, we say that player i is unhappy in f , otherwise he is happy. The best response dynamic
is the process of repeatedly choosing an arbitrary unhappy player, and change it to an arbitrary
best response. A pure Nash equilibrium is defined as a fixed point to the best response dynamic, or
equivalently as a strategy profile where all players are happy. In this paper we consider only pure
Nash equilibria, so we omit from now on the adjective “pure”.

We defined players’ payoffs in such a way, that there is a subtle difference between the Voronoi
game played on graphs and the Voronoi game played on a continuous surface. Consider a situation
where a player i moves to a location already occupied by a single player j, then in the continuous
case player i gains exactly a half of the previous payoff of player j (since it is now shared with i).
However, in our setting (the discrete case), player i can sometimes gain more than a half of the
previous payoff of player j (see figure 2).

Also note that the best responses for a player in our game are computable in polynomial time,
whereas for the Voronoi game in continuous space, the problem seems hard [4].

A simple observation leads to the following bound on the players payoff.

Lemma 1 In a Nash equilibrium the payoff pi of every player i is bounded by n/2k < pi < 2n/k.

Proof: If a player gains p and some other player moves to the same location then both payoffs are
at least p/2. Therefore the ratio between the largest and the smallest payoffs among all players can
be at most 2. If all players have the same payoff, it must be exactly n/k, since the payoffs sum up
to n. Otherwise there is at least one player who gains strictly less than n/k, and another player
who gains strictly more than n/k. This concludes the proof. !

3 Example: the cycle graph

Let G(V,E) be the cycle on n vertices with V = {vi : i ∈ Zn} and E = {(vi, vi+1) : i ∈ Zn}, where
addition is modulo n. The game plays on the undirected cycle, but it will be convenient to fix an
orientation. Let u0, . . . , u!−1 be the distinct facilities chosen by k players in a strategy profile f
with ! ≤ k, numbered according to the orientation of the cycle. For every j ∈ Z!, let cj ≥ 1 be the
number of players who choose the facility uj and let dj ≥ 1 be the length of the directed path from
uj to uj+1 following the orientation of G. Now the strategy profile is defined by these 2! numbers,
up to permutation of the players. We decompose the distance into dj = 1+2aj + bj , for 0 ≤ bj ≤ 1,
where 2aj + bj is the number of vertices between facilities uj and uj+1. So if bj = 1, then there is
a vertex in midway at equal distance from uj and uj+1.
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Non convergence on the cycle
The game in continuous setting

• a player doesn’t increase her payoff if she stays in 
the interval with the same neighbors,

• player A who moves to the same location as player 
B gains 1/2 of the old gain of B.

In discrete setting, it is different:

With these notations the payoff of player i located on facility uj is

pi :=
bj−1

cj−1 + cj
+

aj−1 + 1 + aj

cj
+

bj

cj + cj+1
.

All Nash equilibria are explicitly characterized by the following lemma. The intuition is that
the cycle is divided by the players into segments of different length, which roughly differ at most
by a factor 2. The exact statement is more subtle because several players can be located at a same
facility and the payoff is computed differently depending on the parity of the distances between
facilities.

Lemma 2 For a given strategy profile, let γ be the minimal payoff among all players, i.e: γ :=
min{pi|1 ≤ i ≤ k}. Then this strategy profile is a Nash equilibrium if and only if, for all j ∈ Z!:

(i) cj ≤ 2

(ii) dj ≤ 2γ

(iii) If cj = 1 and dj−1 = dj = 2γ then cj−1 = cj+1 = 2.

(iv) If cj−1 = 2, cj = 1, cj+1 = 1 then dj−1 is odd.
If cj−1 = 1, cj = 1, cj+1 = 2 then dj is odd.

Lemma 3 On the cycle graph, the best response dynamic does not converge.

Proof: Figure 2 shows an example of a graph, where the best response dynamic can iterate forever.
!

1 5
6 → 2 etc.1→ 1 1

6
1
2 → 2

old → new payoff

2 1
3 → 2 1

2

Figure 2: The best response dynamic does not converge on this graph.

However there is a slightly different Voronoi game in which the best response dynamic converges :
The Voronoi game with disjoint facilities is identical with the previous game, except that players
who are located on the same facility now gain zero.

Lemma 4 On the cycle graph, for the Voronoi game with disjoint facilities, the best response
dynamic does converge on a strategy profile in which players are located on distinct facilities.

Proof: To show convergence we use a potential function. For this purpose we define the dominance
order : Let A,B be two multisets. If |A| < |B| then A # B. If |A| = |B| ≥ 1, and maxA > max B
then A # B. If |A| = |B| ≥ 1,max A = maxB and A\{max A} # B\{max B} then A # B. This
is a total order.
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Lemma: There is no Nash 
equilibrium with k=2 players.

Proof : By sym. player 1 is on u2 
(or u1). 
Then player 2 may gain 5 (or 6) 
by moving to u6. 
Now player 1 may increase  
his payoff by moving to u7 and 
so on ...

A gadget

u1 u2 u3 u4

u5 u6

u7 u8

u9

Figure 3: Example of a graph with no Nash equilibrium for 2 players.

Theorem 1 Given a graph G(V,E) and a set of k players, deciding the existence of Nash equilib-
rium for k players on G is NP-complete.

Proof: The problem is clearly in NP, since best responses can be computed in polynomial time,
therefore it can be verified efficiently if a strategy profile is a Nash equilibrium.

The proof of NP-hardness is by the reduction from 3-Partition, which is unary NP-complete
[6]. In this later problem we are given integers a1, . . . , a3m and B such that B/4 < ai < B/2
for every 1 ≤ i ≤ 3m,

∑3m
i=1 = mB and have to partition them into disjoint sets P1, . . . , Pm ⊆

{1, . . . , 3m} such that for every 1 ≤ j ≤ m we have
∑

i∈Pj
ai = B.

We construct a weighted graph G(V,E) with the weight function w : V → N and a set U ⊆ V
such that for k = m + 1 players (m ≥ 2) there is a Nash equilibrium to the generalized Voronoi
game 〈G, U, w, k〉 if and only if there is a solution to the 3-Partition instance. We define the
constants c =

(3m
3

)
+ 1 and d =

⌊
Bc−c+c/m

5

⌋
+ 1. The graph G consists of 3 parts. In the first part

V1, there is for every 1 ≤ i ≤ 3m a vertex vi of weight aic. There is also an additional vertex v0 of
weight 1. In the second part V2, there is for every triplet (i, j, k) with 1 ≤ i < j < k ≤ 3m a vertex
uijk of unit weight. — Ideally we would like to give it weight zero, but there seems to be no simple
generalization of the game which allows zero weights, while preserving the set of Nash equilibria.
— Every vertex uijk is connected to v0, vi, vj and vk. The third part V3, consists of the 9 vertex
graph of figure 3 where each of the vertices u1, . . . , u9 has weight d. To complete our construction,
we define the facility set U := V2 ∪ V3.

U

w(u1,2,4) = 1

w(u1,2,3) = 1

w(u3n−2,3n−1,3n) = 1

w(v1) = a1c

w(v2) = a2c

w(v3) = a3c

w(v3n) = a3nc

w(u1) = d w(u3) = d

w(u4) = d

w(u6) = d

w(u2) = d

w(u5) = d

w(u7) = d

w(u8) = d

w(u9) = d

w(v0) = 1

w(u1,2,5) = 1

Figure 4: Reduction from 3-Partition.

First we show that if there is a solution P1, . . . , Pm to the 3-Partition instance then there is
a Nash equilibrium for this graph. Simply for every 1 ≤ q ≤ m if Pq = {i, j, k} then player q is
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existence of equilibrium ?

Theorem: 

Given G(V,E) 
et k, deciding 
the existence 
of pure Nash 
equilibrium is 
NP-complete.

3-Partition (unary NP-hard)
input: a1,…,a3n,B such that ∀i B/4<ai<B/2, ∑ai=nB 

output: whether there exists a partition into n triplets, each of 
sum B

General game (unary NP-hard)
(positive weight w on vertices, 

strategy set is U⊆V)

Original game (binary NP-hard)



General games
<G(V,E),U,w,k>: each vertex v has weight 
w(v) and the strategy set is restricted to U.

w(v)-1 T U 



Proof Construction
vertices of weight aic

a vertex by triplet
the gadget

where c,d are functions of n and B

u1 u2 u3 u4

u5 u6

u7 u8

u9

Figure 3: Example of a graph with no Nash equilibrium for 2 players.
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Lower bound of Cost Discrepancy

equilibrium ● : 
cost Θ(kb+ka2)

equilibrium ▴ : 
cost Θ(kab+ka2)

worst ratio : 
Ω(√(n/k)) for b=a2.

a

b

Figure 5: Example of a graph with high social cost discrepancy.

players. There is an edge (i, j) in Hf either if there is a vertex v in G with Fi,v > 0 and Fj,v > 0
or if there is an edge (v, v′) in G with Fi,v > 0 and Fj,v′ > 0.

We will need to partition the Delaunay triangulation into small sets, which are 1-dominated
and contain more than one vertex. We call these sets stars: For a given graph G(V,E) a vertex set
A ⊆ V is a star if |A| ≥ 2, and there is a center vertex v0 ∈ A such that for every v ∈ A, v $= v0 we
have (v0, v) ∈ E. Note that our definition allows the existence of additional edges between vertices
from A.

Lemma 8 For any connected graph G(V,E), V can be partitioned into stars.

Proof: We define an algorithm to partition V into stars.
As long as the graph contains edges, we do the following. We start choosing an edge: If there

is a vertex u with a unique neighbor v, then we choose the edge (u, v); otherwise we choose an
arbitrary edge (u, v). Consider the vertex set consisting of u, v as well as of any vertex w that
would be isolated when removing edge (u, v). Add this set to the partition, remove it as well as
adjacent edges from G and continue.

Clearly the set produced in every iteration is a star. Also when removing this set from G, the
resulting graph does not contain an isolated vertex. This property is an invariant of this algorithm,
and proves that it ends with a partition of G into stars. !

Note that, when a graph is partitioned into stars, the centers of these stars form a dominating
set of this graph. Nevertheless, vertices in a dominating set are not necessarily centers of any
star-partition of a given graph.

The following lemma states that given two different Nash equilibria f and f ′, every player in f
is not too far from some player in f ′. For this purpose we partition the Delaunay triangulation Hf

into stars, and bound the distance from any player of a star to f ′ by some value depending on the
star.

Lemma 9 Let f be an equilibrium and A be a star of a star partition of the Delaunay triangulation
Hf . Let r be the maximal radius of the Voronoi cells over all players i ∈ A. Then, for any
equilibrium f ′, there exists a player f ′

j such that d(fi, f ′
j) ≤ 6r for every i ∈ A.

Proof: Let U = {v ∈ V : mini∈A d(v, fi) ≤ 4r}. If we can show that there is a facility f ′
j ∈ U we

would be done, since by definition of U there would be a player i ∈ A such that d(fi, f ′
j) ≤ 4r and

the distance between any pair of facilities of A is at most 2r. This would conclude the lemma.
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Upper bound of Cost Discrepancy

• Let ● and ▴ be two 
equilibria.

• Idea: these equilibria are 
not far from the one to 
the other.

• We group all Voronoi cell 
generated by ● into 
regions.



Delaunay graph -- Stars

• Delaunay graph:  G(E,V) and an 
equilibrium ●, (i,j) in H if they 
are neighbors.

• Star: G(V,E), A is a star if A≥2 
and ∃ a vertex in A connecting 
to all other vertices in A.
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• Delaunay graph:  G(E,V) and an 
equilibrium ●, (i,j) in H if they 
are neighbors.

• Star: G(V,E), A is a star if A≥2 
and ∃ a vertex in A connecting 
to all other vertices in A.
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be partitioned into stars.



Upper bound of Cost Discrepancy

• For a fixed region, let r be the 
maximal distance of vertex-
player.

• Lemma: there is at least one player 
of ▴ whose distance to a player ● 
of the star is at most 4r.

r
4r

▴ ▴

▴
▴ ▴

▴

▴
▴▴

▴

▴



Upper bound of Cost Discrepancy

• For a fixed region, let r be the 
maximal distance of vertex-
player.

• Lemma: there is at least one player 
of ▴ whose distance to a player ● 
of the star is at most 4r.

• Theorem: for any connected graph 
G(V,E) with k players, the cost 
discrepancy is O(√(kn)). 

r
4r

▴ ▴

▴
▴ ▴

▴

▴
▴▴

▴

▴



And now… 
• Close the gap between √(n/k) and √(kn)

• Study the cost discrepancy in the others games.



And now… 
• Close the gap between √(n/k) and √(kn)

• Study the cost discrepancy in the others games.

Thank you !


