Nash equilibria in Voronoi Games on Graphs

Christoph Dürr, Nguyễn Kim Thắng (Ecole Polytechnique)

ESA, Eilat October 07

Plan

- Motivation : Study the interaction between selfish agents on Internet
- k players, each one chooses a vertex in graph G and gains the area of Voronoi cell.
- The existence of pure Nash equilibrium depends on (k, G) and deciding the existence is $N P$ complete.
- The difference of social cost between pure Nash equilibria is bounded by $\Omega(\sqrt{ }(n / k)), O(\sqrt{ }(k n))$

Related works

- Competitive facility location: Voronoi Games on continuous surface [Hee-Kap et al '04, Cheong et al ‘04].
- Service Provider Games [Vetta'02]

Social cost discrepancy

social cost

The Game

- Given $G(V, E), k$ players. Player's strategy set is V.
- A vertex (customer) is assigned in equal fraction to the closest players.
- Payoff $=$ the fractional amount of vertex assigned to the player.
- A pure Nash equilibrium is a
 strategy profile in which no one can unilaterally increase her payoff.
- Social cost = sum of distances over all vertices to their closest player $=$ problem minimum k-median

Non convergence on the cycle

The game in continuous setting

- a player doesn't increase her payoff if she stays in the interval with the same neighbors,
- player A who moves to the same location as player B gains $1 / 2$ of the old gain of B.

In discrete setting, it is different:

A gadget

Lemma: There is no Nash

 equilibrium with $k=2$ players.Proof: By sym. player 1 is on u_{2} (or u_{1}).
Then player 2 may gain 5 (or 6) by moving to u_{6}.
Now player 1 may increase his payoff by moving to u_{7} and so On ...

A gadget

Lemma: There is no Nash equilibrium with $k=2$ players.

Proof: By sym. player 1 is on \mathbf{u}_{2} (or u_{1}).
Then player 2 may gain 5 (or 6) by moving to u_{6}.
Now player 1 may increase his payoff by moving to u_{7} and so on ...

A gadgeł

Lemma: There is no Nash

 equilibrium with $k=2$ players.Proof: By sym. player 1 is on u_{2} (or u_{1}).
Then player 2 may gain 5 (or 6) by moving to u_{6}.
Now player 1 may increase his payoff by moving to u_{7} and so On ...

existence of equilibrium ?

3-Partition (unary NP-hard)
input: $a_{1, \ldots}, a_{3 n,} B$ such that $\forall i B / 4<a_{i}<B / 2, \sum a_{i}=n B$
Theorem: output: whether there exists a partition into n triplets, each of sum B

Given $G(V, E)$ et k, deciding the existence of pure Nash

General game (unary NP-hard)

 (positive weight w on vertices, strategy set is $U \subseteq V$) equilibrium is $N P$-complete.Original game (binary NP-hard)

General games

$<G(V, E), U, w, k>$: each vertex v has weight $w(v)$ and the strategy set is restricted to U.

Proof Construction

vertices of weight $a_{i c}$
the gadget

where c, d are functions of n and B

Lower bound of Cost Discrepancy

equilibrium • :
$\operatorname{cost} \Theta\left(k b+k a^{2}\right)$
equilibrium Δ :
$\operatorname{cost} \Theta\left(k a b+k a^{2}\right)$
worst ratio :
$\Omega(\sqrt{ }(n / k))$ for $b=a^{2}$.

Upper bound of Cost Discrepancy

- Let • and Δ be two equilibria.
- Idea: these equilibria are not far from the one to the other.
- We group all Voronoi cell generated by \bullet into regions.

Delaunay graph - Stars

- Delaunay graph: $G(E, V)$ and an equilibrium •, (i, j) in H if they are neighbors.
- Star: $G(V, E), A$ is a star if $A \geq 2$ and \exists a vertex in A connecting to all other vertices in A.

Delaunay graph - Stars

- Delaunay graph: $G(E, V)$ and an
 equilibrium $\bullet,(i, j)$ in H if they are neighbors.
- Star: $G(V, E), A$ is a star if $A \geq 2$ and \exists a vertex in A connecting to all other vertices in A.
- Fact: Any connected graph can be partitioned into stars.

Upper bound of Cost Discrepancy

- For a fixed region, let r be the maximal distance of vertexplayer.
- Lemma: there is at least one player of Δ whose distance to a player \bullet of the star is at most $4 r$.

Upper bound of Cost Discrepancy

- For a fixed region, let r be the maximal distance of vertexplayer.
- Lemma: there is at least one player of Δ whose distance to a player \bullet of the star is at most $4 r$.
- Theorem: for any connected graph $G(V, E)$ with k players, the cost discrepancy is $O(\sqrt{ }(k n))$.

And now...

- Close the gap between $\sqrt{ }(\mathrm{n} / \mathrm{k})$ and $\sqrt{ }(\mathrm{kn})$
- Study the cost discrepancy in the others games.

And now...

- Close the gap between $\sqrt{ }(\mathrm{n} / \mathrm{k})$ and $\sqrt{ }(\mathrm{kn})$
- Study the cost discrepancy in the others games.
Thank you!

