Nash equilibria in Voronoi Games on Graphs Christoph Dürr, Nguyễn Kim Thắng (Ecole Polytechnique)

ESA, Eilat October 07

Plan

- *Motivation* : Study the interaction between selfish agents on Internet
- *k* players, each one chooses a vertex in graph *G* and gains the area of Voronoi cell.
- The existence of pure Nash equilibrium depends on (*k*,*G*) and deciding the existence is NPcomplete.
- The difference of social cost between pure Nash equilibria is bounded by $\Omega(\sqrt{n/k})$, $O(\sqrt{kn})$

Related works

- Competitive facility location: Voronoi Games on continuous surface [Hee-Kap et al '04, Cheong et al '04].
- Service Provider Games
 [Vetta'02]

Social cost discrepancy

The Game

- Given *G*(*V*,*E*), *k* players. Player's strategy set is *V*.
- A vertex (customer) is assigned in equal fraction to the closest players.
- Payoff = the fractional amount of vertex assigned to the player.
- A pure Nash equilibrium is a strategy profile in which no one can unilaterally increase her payoff.

Non convergence on the cycle

The game in continuous setting

- a player doesn't increase her payoff if she stays in the interval with the same neighbors,
- player *A* who moves to the same location as player *B* gains 1/2 of the old gain of *B*.

In discrete setting, it is different:

A gadget

Lemma: There is no Nash equilibrium with *k*=2 players. u_3 u_2 u_1 *Proof*: By sym. player 1 is on u₂ (or u_1). u_6 Then player 2 may gain 5 (or 6) u_5 by moving to u₆. u_8 u_7 Now player 1 may increase his payoff by moving to u7 and u_9 so on ...

 u_4

A gadget

 u_4

 u_6

Lemma: There is no Nash equilibrium with *k*=2 players. u_2 u_3 u_1 *Proof*: By sym. player 1 is on u₂ (or u_1). Then player 2 may gain 5 (or 6) u_5 by moving to u₆. u_8 u_7 Now player 1 may increase his payoff by moving to u7 and u_9 so on ...

A gadget

 u_4

Lemma: There is no Nash equilibrium with *k*=2 players. u_2 u_3 u_1 *Proof*: By sym. player 1 is on u₂ (or u_1). u_6 Then player 2 may gain 5 (or 6) u_5 by moving to u₆. u_8 u_7 Now player 1 may increase his payoff by moving to u7 and u_9 so on ...

existence of equilibrium ?

3-Partition (unary NP-hard)

input: $a_1, ..., a_{3n}$, B such that $\forall i B/4 < a_i < B/2$, $\sum a_i = nB$ output: whether there exists a partition into n triplets, each of sum B

Theorem:

Given G(V,E) et k, deciding the existence of pure Nash equilibrium is NP-complete.

General game (unary NP-hard)

(positive weight w on vertices, strategy set is U⊆V)

Original game (binary NP-hard)

General games

 $\langle G(V,E), U, w, k \rangle$: each vertex v has weight w(v) and the strategy set is restricted to U.

Proof Construction

Lower bound of Cost Discrepancy

equilibrium • : $\cot \Theta(kb+ka^2)$

equilibrium \blacktriangle : cost $\Theta(kab+ka^2)$

worst ratio : $\Omega(\sqrt{n/k})$ for $b=a^2$.

Upper bound of Cost Discrepancy

- *Idea*: these equilibria are not far from the one to the other.
- We group all Voronoi cell generated by

 into
 regions.

Delaunay graph – Stars

- *Delaunay graph:* G(E,V) and an equilibrium •, (*i*,*j*) in H if they are neighbors.
- Star: G(V,E), A is a star if $A \ge 2$ and **J** a vertex in A connecting to all other vertices in A.

Delaunay graph – Stars

- *Delaunay graph:* G(E,V) and an equilibrium •, (*i*,*j*) in *H* if they are neighbors.
- Star: G(V,E), A is a star if $A \ge 2$ and **J** a vertex in A connecting to all other vertices in A.
- *Fact*: Any connected graph can be partitioned into stars.

Upper bound of Cost Discrepancy

- For a fixed region, let *r* be the maximal distance of vertex-player.
- *Lemma:* there is at least one player
 of

 whose distance to a player
 of the star is at most 4r.

Upper bound of Cost Discrepancy

- For a fixed region, let *r* be the maximal distance of vertex-player.
- *Lemma:* there is at least one player
 of

 whose distance to a player •
 of the star is at most 4r.
- *Theorem:* for any connected graph G(V,E) with k players, the cost discrepancy is $O(\sqrt{kn})$.

- Close the gap between $\sqrt{n/k}$ and \sqrt{kn}
- Study the cost discrepancy in the others games.

- Close the gap between $\sqrt{n/k}$ and \sqrt{kn}
- Study the cost discrepancy in the others games.

Thank you !