Tile Packing Tomography is NP-hard Cocoon 2010

Marek Chrobak Riverside USA (Polish)

Christoph Dürr F Palaiseau France (German)

Flavio Guíñez Vancouver Canada (Chilean)

Antoni Lozano Nguyễn Kim ThắngBarcelonaAarhusSpainDenmark(Catalan)(Vietnamese)

Tables in an open space office

- disjoint copies of the same shape
- same orientation

Non-intrusive measurement

- the office is an n×m grid
- tables are aligned on the grid
- Measurement results in projection vectors r,s
- such that r_i is the number of grid cells of row i covered by a table (tile)
- same for columns

Equivalent measurement

- alternative
 measurement
 (equivalent up to
 base change) :
- mark a cell in the tile
- projections count only marks

The tiling reconstruction pb

- A tile is a connected set of grid points
- Given a tile T, dimensions n,m and projections r, s
- does there exist a binary matrix M
- with $r_i = \sum_j M_{ij}$, $s_j = \sum_i M_{ij}$
- and for M_{ij}=1, M_{i'j'}=1, the tiles T+
 (i,j) and T+(i',j') are disjoint ?

The tiling reconstruction pb

- A tile is a connected set of grid points
- Given a tile T, dimensions n,m and projections r, s
- does there exist a binary matrix M
- with $r_i = \sum_j M_{ij}$, $s_j = \sum_i M_{ij}$
- and for M_{ij}=1, M_{i'j'}=1, the tiles T+
 (i,j) and T+(i',j') are disjoint ?

The tiling reconstruction pb

- A tile is a connected set of grid points
- Given a tile T, dimensions n,m and projections r, s
- does there exist a binary matrix M
- with $r_i = \sum_j M_{ij}$, $s_j = \sum_i M_{ij}$
- and for M_{ij}=1, M_{i'j'}=1, the tiles T+
 (i,j) and T+(i',j') are disjoint ?

Complexity depends on T

 When the tile T is a bar, the problem is
 polynomial

 [this paper] When the tile T is not a bar, the problem is NP-hard

- [Ryser'63] Characterize r,c such that there is a binary matrix with projections r,c
- [Picouleau'01] [D,Goles,Rapaport,Rémil a'03] greedy algorithm to reconstruct tilings with bars
- [Chrobak,Couperous,D, Woeginger'03] NP-hardness for some very specific tiles

Related : 3-color tomography

- 3 colors {R,G,B}
- given projections r^c,s^c
 for every c∈{R,G,B}
- is there a matrix $M \in \{R,G,B\}^{n \times m}$
- such that $r^{c_i}=\#\{j:M_{ij}=c\}$ and $s^{c_j}=\#\{i:M_{ij}=c\}$ for every $c\in\{R,G,B\}$

[D,Guíñez,Matamala'09]
 3-color tomography is NP-hard

Reduction from 3-color tomography

• Reduce from 3-color tomography to tiling tomography

- Choose a block of fixed dimension k×l
- Choose 3 tilings of the block

0

Reduction from 3-color tomography

- [in] instance r^c,s^c (c∈ {R,G,B}) of the 3-color tomography problem for an n×m grid
- [out] instance r,s of the tiling tomography problem for an nk×ml grid such that projections of block row i are r_i^R <u>r</u>^R+r_i^G <u>r</u>^{G+}r_i^Y <u>r</u>^Y (same for columns)

Requirements

- (R1) the row projections <u>r</u>^R, <u>r</u>^G, <u>r</u>^Y have to be affine linear independent
- (R2) Let M be a solution to the tiling tomography instance obtained by the reduction. Then every block in M is one of <u>M</u>^R, <u>M</u>^G, <u>M</u>^Y (or projection-equivalent)

Implications

- (R2) ⇒ we can associate a color to every block in M
- and replace every block by a single colored cell (contract)
- (R1) \Rightarrow the obtained grid has the required projections, since any vector $n_R \cdot \underline{r}^R + n_G \cdot \underline{r}^G + n_Y \cdot \underline{r}^Y$ for $n_R + n_G + n_Y = n$ is uniquely decomposed into $n_{R_r} n_{G_r} n_Y$.

Apply this technique

- We divide the tiles into four classes
- and have a different construction for every class
- Fix a maximal conflicting vector (p,q)
- Choose smallest a>0 such that (ap,0) is not conflicting
- Choose smallest b>0 such that (0,bq) is not conflicting
- Cases are broken according to a,b,p,q

a=3

Example case b=1, a≥2

- We choose k,l large enough
- block tilings are as depicted, (R1) ok

Proving (R2)

• We have to show

(R2) Let M be a solution to the tiling tomography instance obtained by the reduction. Then every block in M is one of $\underline{M}^{R}, \underline{M}^{G}, \underline{M}^{Y}$ (or projection-equivalent)

- There might be another block tiling in the solution, namely <u>M</u>^A
- It counts like <u>M</u>^R in the column projections and like <u>M</u>^G in the row projections
- Since total row projections equal total column projections this is impossible

Perspectives

- What about approximation algorithms?
- What about complete tilings, for a constant number of tiles?

