Tile Packing Tomography is NP-hard Cocoon 2010

Marek Chrobak Riverside USA (Polish)

2

Palaiseau France
(German)

Christoph Dürr

Flavio Guíñez
Vancouver
Canada
(Chilean)

$$
\begin{array}{cc}
\text { Antoni Lozano } & \text { Nguyễn Kim Thắng } \\
\text { Barcelona } & \text { Aarhus } \\
\text { Spain } & \text { Denmark } \\
\text { (Catalan) } & \text { (Vietnamese) }
\end{array}
$$

Tables in an open space office

- disjoint copies of the same shape
- same orientation

Non-intrusive measurement

- the office is an $\mathrm{n} \times \mathrm{m}$ grid
- tables are aligned on the grid
- Measurement results in projection vectors r,s
- such that r_{i} is the number of grid cells of row i covered by a table (tile)
- same for columns

Equivalent measurement

- alternative measurement (equivalent up to base change) :
- mark a cell in the tile
- projections count only marks

The tiling reconstruction pb

- A tile is a connected set of grid points

- Given a tile T, dimensions n, m and projections r, s

$$
\frac{s}{11010020000}
$$

- does there exist a binary matrix M
- with $\mathrm{r}_{\mathrm{i}}=\sum_{\mathrm{j}} \mathrm{Mij}_{\mathrm{j}} \mathrm{s}_{\mathrm{j}}=\sum_{\mathrm{i}} \mathrm{M}_{\mathrm{ij}}$
- and for $\mathrm{M}_{\mathrm{ij}}=1, \mathrm{M}_{\mathrm{i}^{\prime}{ }^{\prime}}=1$, the tiles $\mathrm{T}+$ (i, j) and $T+\left(i^{\prime}, j^{\prime}\right)$ are disjoint ?

The tiling reconstruction pb

- A tile is a connected set of grid points

- Given a tile T, dimensions n, m and projections r, s

The tiling reconstruction pb

- A tile is a connected set of grid points

- Given a tile T, dimensions n, m and projections r, s

Complexity depends on T

- When the tile T is a bar, the problem is polynomial
- [this paper] When the tile T is not a bar, the problem is NP-hard
- [Ryser'63] Characterize r,c such that there is a binary matrix with projections r,c
- [Picouleau'01] [D,Goles,Rapaport,Rémil a'03] greedy algorithm to reconstruct tilings with bars
[Chrobak,Couperous,D, Woeginger'03]
NP-hardness for some very specific tiles

Related : 3-color tomography

- 3 colors $\{\mathrm{R}, \mathrm{G}, \mathrm{B}\}$
- given projections $\mathrm{r}^{\mathrm{c}, \mathrm{s}^{\mathrm{c}}}$
for every $c \in\{R, G, B\}$
- is there a matrix $M \in\{R, G, B\}^{n \times m}$
- such that $\mathrm{r}_{\mathrm{i}}=\#\left\{\mathrm{j}: \mathrm{M}_{\mathrm{ij}}=\mathrm{c}\right\}$ and $\mathrm{s}_{\mathrm{j}}=\#\left\{\mathrm{i}: \mathrm{M}_{\mathrm{ij}}=\mathrm{c}\right\}$ for every $c \in\{R, G, B\}$

- [D,Guíñez,Matamala’09]

3-color tomography is NP-hard

Reduction from 3-color tomography

- Reduce from 3-color tomography to tiling tomography

- Choose a block of fixed dimension $\mathrm{k} \times 1$
- Choose 3 tilings of the block

Reduction from 3-color tomography

- [in] instance $\mathrm{r}^{\mathrm{c}, \mathrm{s}^{\mathrm{c}}}$ (ce $\{\mathrm{R}, \mathrm{G}, \mathrm{B}\}$) of the 3 -color tomography problem for an $\mathrm{n} \times \mathrm{m}$ grid
- [out] instance r,s of the
tiling tomography problem
for an $n k \times m l$ grid
such that projections of
block row i are
$r_{i}^{R} \cdot \underline{r}^{R}+r_{i}{ }^{G} \cdot \underline{r}^{G+} r_{i}{ }^{Y} \cdot \underline{\underline{r}}^{Y}$
(same for columns)

Requirements

- (R1) the row projections $\underline{r}^{\mathrm{R}}, \underline{\underline{r}}^{\mathrm{G}}, \underline{r}^{\mathrm{Y}}$ have to be affine linear independent
- (R2) Let M be a solution to the tiling tomography instance obtained by the reduction. Then every block in M is one of $\underline{\mathrm{M}}^{\mathrm{R}}, \underline{\mathrm{M}}^{\mathrm{G}}, \underline{\mathrm{M}}^{\mathrm{Y}}$ (or projection-equivalent)

Implications

- $\quad(\mathrm{R} 2) \Rightarrow$ we can associate a color to every block in M
- and replace every block by a single colored cell (contract)
- $\quad(\mathrm{R} 1) \Rightarrow$ the obtained grid has the required projections, since any vector
$\mathrm{n}_{\mathrm{R}} \cdot \underline{\mathrm{r}}^{\mathrm{R}}+\mathrm{n}_{\mathrm{G}} \cdot \underline{r}^{\mathrm{G}}+\mathrm{n}_{\mathrm{Y}} \cdot \underline{\mathrm{r}}^{\mathrm{Y}}$
for $\mathrm{n}_{\mathrm{R}}+\mathrm{n}_{\mathrm{G}}+\mathrm{n}_{\mathrm{Y}}=\mathrm{n}$
is uniquely decomposed into $\mathrm{n}_{\mathrm{R},} \mathrm{n}_{\mathrm{G},} \mathrm{n}_{\mathrm{Y}}$.

	3	0	0	2	1	0
2						
0						
1						
0						
2						
1						
0						
0						

Apply this technique

- We divide the tiles into four classes
- and have a different construction for every class
- Fix a maximal conflicting vector (p, q)
- Choose smallest $a>0$ such that $(a p, 0)$ is not conflicting
- Choose smallest $b>0$ such that $(0, b q)$ is not conflicting
- Cases are broken according to a,b,p,q

$$
b=1
$$

Example case $b=1, a \geq 2$

- We choose k,l large enough
- block tilings are as depicted, (R1) ok

Proving (R2)

- We have to show
(R2) Let M be a solution to the tiling tomography instance obtained by the reduction. Then every block in M is one of $\underline{M}^{R}, \underline{M}^{G}, \underline{M}^{Y}$ (or projection-equivalent)
- There might be another block tiling in the solution, namely \underline{M}^{A}
- It counts like \underline{M}^{R} in the column projections and like \underline{M}^{G} in the row projections
- Since total row projections equal total column projections this is impossible

Perspectives

- What about approximation algorithms?
- What about complete tilings, for a constant number of tiles?

