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• disjoint copies of 
the same shape

• same orientation

Tables in an open space office
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Non-intrusive measurement
• the office is an n×m grid

• tables are aligned on the 
grid

• Measurement results in 
projection vectors r,s

• such that ri is the 
number of grid cells of 
row i covered by a table 
(tile)

• same for columns
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Equivalent measurement

• alternative 
measurement 
(equivalent up to 
base change) :

• mark a cell in the tile

• projections count 
only marks
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The tiling reconstruction pb

• A tile is a connected set of grid 
points

• Given a tile T, dimensions n,m and 
projections r, s

• does there exist a binary matrix M

• with ri=∑j Mij, sj=∑i Mij

• and for Mij=1, Mi’j’=1, the tiles T+
(i,j) and T+(i’,j’) are disjoint ?
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Complexity depends on T

• When the tile T is a bar, 
the problem is 
polynomial

• [this paper] When the 
tile T is not a bar, the 
problem is NP-hard

• [Ryser’63] Characterize 
r,c such that there is a 
binary matrix with 
projections r,c

• [Picouleau’01] 
[D,Goles,Rapaport,Rémil
a’03] greedy algorithm to 
reconstruct tilings with 
bars

• [Chrobak,Couperous,D,
Woeginger’03] 
NP-hardness for some 
very specific tiles
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Related : 3-color tomography

• 3 colors {R,G,B}

• given projections rc,sc 
for every c∈{R,G,B}

• is there a matrix M∈{R,G,B}n×m

• such that rci=#{j:Mij=c} 
and scj=#{i:Mij=c} 
for every c∈{R,G,B}

• [D,Guíñez,Matamala’09] 
3-color tomography is NP-hard
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• Reduce from 3-color tomography to tiling tomography

• Choose a block of fixed dimension k×l

• Choose 3 tilings of the block
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• [in] instance rc,sc (c∈
{R,G,B}) of the 3-color 
tomography problem for an 
n×m grid

• [out] instance r,s of the 
tiling tomography problem 
for an nk×ml grid
such that projections of 
block row i are 
riR·rR+riG·rG+riY·rY 
(same for columns)
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Requirements
• (R1) the row projections rR, rG, rY have to be affine 

linear independent

• (R2) Let M be a solution to the tiling tomography 
instance obtained by the reduction. Then every block 
in M is one of MR,MG, MY (or projection-equivalent)
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Implications
• (R2) ⇒ we can associate a 

color to every block in M

• and replace every block by 
a single colored cell 
(contract)

• (R1) ⇒ the obtained grid 
has the required projections, 
since any vector
nR·rR+nG·rG+nY·rY  
for nR+nG+nY=n
is uniquely decomposed 
into nR,nG,nY.
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Apply this technique

• We divide the tiles into four classes

• and have a different construction for 
every class

• Fix a maximal conflicting vector (p,q)

• Choose smallest a>0 such that (ap,0) is 
not conflicting

• Choose smallest b>0 such that (0,bq) is 
not conflicting

• Cases are broken according to a,b,p,q
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Example case b=1, a≥2

• We choose k,l large 
enough

• block tilings are as 
depicted, (R1) ok
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Proving (R2)
• We have to show 

(R2) Let M be a solution to the tiling tomography instance 
obtained by the reduction. Then every block in M is one of 
MR,MG, MY (or projection-equivalent)

• There might be another block tiling 
in the solution, namely MA

• It counts like MR in the column 
projections and like MG in the row 
projections

• Since total row projections equal 
total column projections this is 
impossible
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Perspectives

• What about approximation 
algorithms?

• What about complete tilings, 
for a constant number of 
tiles?
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