# Online scheduling to maximize throughput

Nguyen Kim Thang (joint work with Christoph Durr and Lukasz Jez)

# **Online Algorithms**

• No (partial) information about future (requests are revealed litle by litle).

• Guarantee the performance according to certain objective

# **Online Algorithms**

• No (partial) information about future (requests are revealed litle by litle).

• Guarantee the performance according to certain objective



## Competitive ratio

 ${}^{\rm O}\mbox{An algorithm}$  ALG is  $\alpha {\rm -competitive}$  if for any instance I

$$\frac{OPT(I)}{ALG(I)} \leq \alpha \quad \text{(maximization problem)}$$

## Competitive ratio

 ${}^{\rm O}\mbox{An algorithm}$  ALG is  $\alpha\mbox{-competitive}$  if for any instance I

 $\frac{OPT(I)}{ALG(I)} \leq \alpha \quad \text{(maximization problem)}$ 

What is a competitive ratio?

• Measure the performance of an algorithm (worst-case analysis)

• The price of an object (the problem):

negociation Algorithm  $\leftarrow$  Adversary (upper bound) (lower bound)

• An algorithm is optimal if the bound is tight.

#### Model

Profit maximization

Enterprise: perishable product (electricity, ice-cream, ...).Clients: arrive online, different demands.Goal: maximize the profit.



### Model

#### -Profit maximization

Enterprise: perishable product (electricity, ice-cream, ...).Clients: arrive online, different demands.Goal: maximize the profit.

#### -Online Scheduling-

**Jobs**: arrive at  $r_i$ , processing time  $p_i$ , deadline  $d_i$ , value (weight)  $w_i$ .

**Objective**: maximize the total value of jobs completed on time.

#### Contribution

|                | equal processing<br>times                         | bounded processing times (by $k$ ) | unbounded<br>processing times |
|----------------|---------------------------------------------------|------------------------------------|-------------------------------|
| unit<br>weight | $\alpha = 1$                                      | $\alpha = \Theta(\log k)$          | $\infty$                      |
| general        | $\frac{3\sqrt{3}}{2} \le \alpha \le 5$ $\le 4.24$ | $\alpha = \Theta(k/\log k)$        | $\infty$                      |

### Contribution

|                | equal processing<br>times                         | bounded processing times (by $k$ ) | unbounded<br>processing times |
|----------------|---------------------------------------------------|------------------------------------|-------------------------------|
| unit<br>weight | $\alpha = 1$                                      | $\alpha = \Theta(\log k)$          | $\infty$                      |
| general        | $\frac{3\sqrt{3}}{2} \le \alpha \le 5$ $\le 4.24$ | $\alpha = \Theta(k/\log k)$        | $\infty$                      |

Image: Simple in the second state of the se

**General analysis framework** 





• If ALG schedules  $A_{t^*} (0 \le t^* < R)$  then ADV schedules B ratio = R/1



• If ALG schedules  $A_{t^*} (0 \le t^* < R)$  then ADV schedules B ratio = R/1

• If ALG schedules  $A_{t^*}$  ( $R \leq t^* \leq k$ ) then ADV schedules all jobs  $A_t (0 \le t \le t^*)$  $e^{t/R-1}$  $\lceil R \rceil - 1 + \int_{R}^{t^*} e^{t/R - 1} dt \ge R \cdot e^{t^*/R - 1}$  $A_t$  $\mathbf{O}$ kRtRB

• If ALG schedules  $A_{t^*} (0 \le t^* < R)$  then ADV schedules Bratio = R/1

• If ALG schedules  $A_{t^*}$  ( $R \leq t^* \leq k$ ) then ADV schedules all jobs  $A_t (0 \le t \le t^*)$  $\rho^{t/R-1}$  $\lceil R \rceil - 1 + \int_{P}^{t^*} e^{t/R - 1} dt \ge R \cdot e^{t^*/R - 1}$  $A_t$  $\mathbf{O}$ tkR• If ALG completes B then ADV schedules all jobs  $A_t (0 \le t^* \le k)$ R $Re^{k/R-1} = Rk/e > R^2$ B()

# Settling the competitivity

Methods: charging scheme, potential function, etc



# Settling the competitivity

Dethods: charging scheme, potential function, etc





# Settling the competitivity

Dethods: charging scheme, potential function, etc



**Def:** An unit(i, a) is scheduled at time t if job i is scheduled at that time and the remaining processing time of i is a

## Properties of algorithms

• A job is pending at time t if  $t + q_j \leq d_j$ 

• A critical time of a job is the latest moment that the job is still pending.

• Associate (i, a) to a capacity function  $\pi(i, a)$ 

## Properties of algorithms

• A job is pending at time t if  $t + q_j \leq d_j$ 

• A critical time of a job is the latest moment that the job is still pending.

• Associate (i, a) to a capacity function  $\pi(i, a)$ 

Desirable properties:

• validity: if job j is pending for ALG at t then ALG schedules a unit (i, a) at t such that  $\pi(i, a) \ge w_j/p_j$ 

## Properties of algorithms

• A job is pending at time t if  $t + q_j \leq d_j$ 

• A critical time of a job is the latest moment that the job is still pending.

• Associate (i, a) to a capacity function  $\pi(i, a)$ 

Desirable properties:

• validity: if job j is pending for ALG at t then ALG schedules a unit (i, a) at t such that  $\pi(i, a) \ge w_j/p_j$ 

• $\rho$ -monotonicity: if the ALG schedules (i, a) with a > 1and (i', a') at (t + 1) then  $\rho \cdot \pi(i', a') \ge \pi(i, a)$ 

• Each unit of job j completed by ADV has weight  $w_j/p_j$ 

• Each unit of job j completed by ADV has weight  $w_j/p_j$ 

Type I charge



• Each unit of job j completed by ADV has weight  $w_j/p_j$ 



• Each unit of job j completed by ADV has weight  $w_j/p_j$ 



**Z** Lemma: a job  $i_0$  receives at most  $\frac{\pi(i_0,1)}{1-\rho}$  charge of type 2

**Z** Lemma: a job  $i_0$  receives at most  $\frac{\pi(i_0, 1)}{1 - \rho}$  charge of type 2 Proof: next job previous job completion completion  $\underbrace{(i,a)}_{\uparrow} \longrightarrow \underbrace{(i_0,1)}_{\pi(i,a)}$  $\pi(i,a) \ge w_j/p_j$  $(i'_0, 1)$ (i',a')ALG (j',b')ADV Total charge:  $\sum_{j} \frac{w_{j}}{p_{j}} \leq \sum_{i} \pi(i, a) \leq \sum_{k} \rho^{k} \pi(i_{0}, 1) \leq \frac{\pi(i_{0}, 1)}{1 - \rho}$ type 2 monotonicity

 $\label{eq:Lemma: J set of job units that are type 3 charged to $i_0$} \\ \mbox{Then } |J| \leq k-1 \ \ \mbox{and} \ \ w_j/p_j \leq \pi(i_0,1) \ \forall j \in J \\ \end{tabular}$ 





•  $t_0 \leq t$ : otherwise,  $w_j/p_j \leq \pi(\ell, c) \leq \pi(i, a)$ 



•  $t_0 \leq t$ : otherwise,  $w_j/p_j \leq \pi(\ell, c) \leq \pi(i, a)$ 

• s is critical time  $s + q_j(s) = d_j$ 

Moreover  $t < d_j$ 



Moreover  $t < d_j$   $t - s < q_j(s) \le p_j \le k$ 

Hence,  $|J| \leq k-1$ 

<sup>D</sup> Algorithm: at any time, schedule the pending job that maximizes  $w_j/p_j$ 

 $\Box$  Algorithm: at any time, schedule the pending job that maximizes  $w_j/p_j$ If Theorem: the Smith ratio algorithm is 2k-competitive

 $\Box$  Algorithm: at any time, schedule the pending job that maximizes  $w_j/p_j$  if Theorem: the Smith ratio algorithm is 2k-competitive

**Proof:** Define:  $\pi(i, a) = w_i/a$ 

• The algorithm satisfies validity:  $\pi(i,a) \ge w_j/p_j$ 

 ${\rm \circ The}$  algorithm is (k-1)/k -monotone

 $\Box$  Algorithm: at any time, schedule the pending job that maximizes  $w_j/p_j$  if Theorem: the Smith ratio algorithm is 2k-competitive

**Proof:** Define:  $\pi(i, a) = w_i/a$ 

• The algorithm satisfies validity:  $\pi(i,a) \ge w_j/p_j$ 

 ${\rm \circ The}$  algorithm is (k-1)/k -monotone

Let  $\left(j,b\right)$  be an unit scheduled before  $\left(i,a\right)$ 

If 
$$(i, a) = (j, b - 1)$$
 then  $\frac{k - 1}{k} \pi(i, a) = \frac{k - 1}{k} \frac{w_j}{b - 1} \ge \frac{w_j}{b} = \pi(j, b)$ 

Otherwise,

$$\frac{k-1}{k}\pi(i,a) = \frac{k-1}{k}\frac{w_i}{p_i} \ge \frac{k-1}{k}\frac{w_j}{p_j} \ge \frac{w_j}{b} = \pi(j,b)$$

 $\square$  Algorithm: at any time, schedule the pending job that maximizes  $w_j/p_j$  if Theorem: the Smith ratio algorithm is 2k-competitive

**Proof:** Define:  $\pi(i, a) = w_i/a$ 

• The algorithm satisfies validity:  $\pi(i,a) \ge w_j/p_j$ 

 ${\rm \circ The}$  algorithm is (k-1)/k -monotone

Let  $\left(j,b\right)$  be an unit scheduled before  $\left(i,a\right)$ 

If 
$$(i, a) = (j, b - 1)$$
 then  $\frac{k - 1}{k} \pi(i, a) = \frac{k - 1}{k} \frac{w_j}{b - 1} \ge \frac{w_j}{b} = \pi(j, b)$ 

Otherwise,

$$\frac{k-1}{k}\pi(i,a) = \frac{k-1}{k}\frac{w_i}{p_i} \ge \frac{k-1}{k}\frac{w_j}{p_j} \ge \frac{w_j}{b} = \pi(j,b)$$

Total charge of job  $i_0$ :  $w_{i_0} + \frac{w_{i_0}}{1 - (k-1)/k} + (k-1)w_{i_0}$ 

# Optimal algorithm

Algorithm: at any time, schedule the pending job that maximizes

$$\pi(j, q_j) := w_j \alpha^{q_j - 1} := w_j \left( 1 - c^2 \frac{\ln k}{k} \right)^{q_j - 1}$$

 $\ensuremath{\sc M}$  Theorem: the Smith ratio algorithm is  $(4k/\ln k)$ -competitive

# Optimal algorithm

Algorithm: at any time, schedule the pending job that maximizes

$$\pi(j, q_j) := w_j \alpha^{q_j - 1} := w_j \left( 1 - c^2 \frac{\ln k}{k} \right)^{q_j - 1}$$

 $\ensuremath{{\ensuremath{\boxtimes}}}$  Theorem: the Smith ratio algorithm is  $(4k/\ln k)$ -competitive

Proof (sketch):
The algorithm satisfies validity:  $\pi(i,a) \ge w_j/p_j$  The algorithm is  $\alpha$ -monotone

Total charge of job  $i_0$ :  $w_{i_0} + O\left(\frac{k}{\ln k}\right) w_{i_0} + \sum_{j \in J} \frac{w_{i_0}}{f(p_j)}$ where  $f(x) = x \alpha^{x-1}$ 

## Conclusion

Optimal algorithms and a general framework for the model

**Constant competitive algorithms for a variant where jobs have equal lengths**  $\longrightarrow O(\log k)$  competitive randomized algos.

Directions: Close the gap

• Equal length jobs (2.59 < ratio < 4.25)

• Randomized algorithms  $\Omega(\sqrt{\log k} / \log \log k), O(\log k)$ 

Thank you!

