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Competitive ratio

© An algorithm ALG is a-competitive if for any instance [

OPT(I)
ALG(I)

O0What is a competitive ratio!

< o« (maximization problem)

© Measure the performance of an algorithm (worst-case analysis)

O The price of an object (the problem):

negociation
Algorithm < > Adversary

(upper bound) (lower bound)

© An algorithm is optimal if the bound is tight.
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~Online Scheduling

Jobs:arrive at r;, processing time
pi, deadline d;, value (weight) w; .

Objective: maximize the total
value of jobs completed on time.
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unit B
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4.24

@ (Simple) Optimal algorithms (up to a constant)

@ General analysis framework
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@ Theorem: any deterministic algorithm has competitive ratio
Q(k/logk)

OProof: oFix R=Fk/Ink
o Define: {1 VO<t< R
A, =

e 'V R<t<k
B=R

O |nstance:

+ At time O: release jobBand Ay R

+ At time t: release job A;
if ALG schedules B at time (¢t — 1)

otherwise, stop. 0
+ At time £ : stop
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Lower bound (arbitrary weights)

o If ALG schedules A+ (0 < t* < R) then ADV schedules B
ratio = R /1

o If ALG schedules A« (R < t* < k) then ADV schedules

all jobs A:(0 <t <t%) t/R—1
€

o
R|—1 —I—/ et/ Blqr > Rt /BT 4,
R

o If ALG completes 5 then ADV
schedules all jobs A:(0 <t* < k)

Re* =1 = Rk/e > R’
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Settling the competitivity

0 Methods: charging scheme, potential function, etc

a Def: An unit (i, a)is scheduled at time ¢ if job 7 is scheduled
at that time and the remaining processing time of 7 is a
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Properties of algorithms

O A job is pending at time ¢ if t + ¢; < d;

O A critical time of a job is the latest moment that the job is still
pending.

o Associate (%, @) to a capacity function 7 (i, a)

0 Desirable properties:

o validity: if job 7 is pending for ALG at ¢ then ALG
schedules a unit (7, a) at ¢ such that 7(i,a) > w;/p;

op-monotonicity: if the ALG schedules (¢, a)with a > 1
and (i',a’) at (t + 1) then p - (¢, a’) > 7 (i, a)
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General charging scheme

© Each unit of job j completed by ADV has weight w; /p;

“next job
Type | charge Type 2 charge completion

t

(J;b) ADV (7,0) m(i,a) > w;/p;

critical time of )

Type 3 charge i,a) < w;i/p,

il
e (D—(

ADV |(4,b)
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Main lemmas

@ Lemma: J set of job units that are type 3 charged to 7
Then |J| <k—1 and w;/p; <m(ig,1)VjeJ

0 Proof: S critical time of j 4 |
?50 - w(ia) <w;/p;

© tg < t:otherwise, w;/p; < (¢, c) < (i, a)
© s is critical time s+ q;(s) = d; Then:
Moreover t < d; t—s<qi(s)<pj<h
Hence, |J| <k —1
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@ Theorem: the Smith ratio algorithm is 2k -competitive
0 Proof:  Define:  7(i,a) = w;/a

© The algorithm satisfies validity: 7(¢,a) > w;/p,
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Smith ratio algorithm

0 Algorithm: at any time, schedule the pending job that maximizes w; /p,

@ Theorem: the Smith ratio algorithm is 2k -competitive
0 Proof:  Define:  7(i,a) = w;/a

© The algorithm satisfies validity: 7(¢,a) > w;/p,

© The algorithm is (k — 1) /k -monotone

Let (7, b) be an unit scheduled before (¢, a)

. . k—1 kE—1 w; W ;
|f 1,Q) = ,b—l th ) — J >—]: b
20) = (b= 1) then B (i ay = B2 L5 M)

Otherwise,
k—1 , k—lwz k—le' W 4
7‘-(27&) — > > —= =
k k  pi kD

Total charge of job 1p:  w;,




Optimal algorithm

0 Algorithm: at any time, schedule the pending job that maximizes

AN
ay) = wya® =y (1= 0E)

@ Theorem: the Smith ratio algorithm is(4k/ In k)-competitive




Optimal algorithm

0 Algorithm: at any time, schedule the pending job that maximizes

m(j, ) = wja% T = w; (1

@ Theorem: the Smith ratio algorithm is(4k/ In k)-competitive

0 Proof (sketch):
© The algorithm satisfies validity: m(%,a) > w;/p;

O The algorithm is «-monotone

k w;
Total charge of job 79: w;, + O <_> w;. - io
= O Ink/ ;E; f ;)




Conclusion

@ Optimal algorithms and a general framework for the model

@ Constant competitive algorithms for a variant where jobs have
equal lengths —— O(log k) competitive randomized algos.

0 Directions: Close the gap

o Equal length jobs (2.59 < ratio < 4.25)

o Randomized algorithms (+/log k/ loglog k), O(log k)







