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Competitive ratio
 An algorithm ALG is   -competitive if for any instance α I

(maximization problem)

 Measure the performance of an algorithm (worst-case analysis)

 What is a competitive ratio?

 The price of an object (the problem):

Algorithm Adversary
negociation

(lower bound)(upper bound)

 An algorithm is optimal if the bound is tight. 

OPT (I)
ALG(I)

≤ α
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$Objective: maximize the total 
value of jobs completed on time.

Online Scheduling

Jobs: arrive at    , processing time
   , deadline    , value (weight)     .
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 (Simple) Optimal algorithms (up to a constant)

 General analysis framework 
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 Theorem: any deterministic algorithm has competitive ratio
Ω(k/ log k)

 Proof:  Fix R = k/ ln k

 Define: At =

{
1 ∀0 ≤ t < R

e
t
R−1 ∀ R ≤ t ≤ k.

B = R

 Instance:

At time 0: release job    and B A0

 At time   : release job     t At

 if ALG schedules    at time B (t− 1)
otherwise, stop.

 At time   : stopk
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 If ALG schedules                           then ADV schedules BAt∗(0 ≤ t∗ < R)

 If ALG schedules                           then ADV schedules

all jobs At(0 ≤ t ≤ t∗)
At∗(R ≤ t∗ ≤ k)

!R" − 1 +
∫ t∗

R
et/R−1dt ≥ R · et∗/R−1

 If ALG completes     then ADV 
schedules all jobs

B
At(0 ≤ t∗ ≤ k)

Rek/R−1 = Rk/e ≥ R2

R/1ratio =
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i

wj

j

α · wi

 Methods: charging scheme, potential function, etc

ALG

ADV

 Def:  An unit        is scheduled at time    if job   is scheduled 
at that time and the remaining processing time of    is

(i, a) t i
i a
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Properties of algorithms

 Associate         to a capacity function  (i, a) π(i, a)

 Desirable properties:

 validity: if job   is pending for ALG at   then ALG j t

(i, a) tschedules a unit         at   such that π(i, a) ≥ wj/pj

  -monotonicity: if the ALG schedules        with 
and           at            then

(i, a) a > 1
(i′, a′) (t + 1) ρ · π(i′, a′) ≥ π(i, a)

ρ

 A job is pending at time   if  t t + qj ≤ dj

 A critical time of a job is the latest moment that the job is still 
pending.
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Type 1 charge
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Type 2 charge

(j, b)

ALG

ADV

(i, a) (i0, 1)

next job 
completion

π(i, a) ≥ wj/pj

Type 3 charge

(j, b)

ALG

ADV

(i, a)(i0, 1)

critical time of j
π(i, a) < wj/pj
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Main lemmas
 Lemma: a job     receives at most               charge of type 2i0

π(i0, 1)
1− ρ

 Proof:

(j, b)

ALG

ADV

(i, a) (i0, 1)

next job 
completion

π(i, a) ≥ wj/pj

(i′, a′)

(j′, b′)

(i′0, 1)

previous job completion

∑

j

wj

pj
≤

∑

i

π(i, a) ≤
∑

k

ρkπ(i0, 1) ≤ π(i0, 1)
1− ρ

Total 
charge:

type 2 monotonicity
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Main lemmas
 Lemma:     set of job units that are type 3 charged to 

Then
J i0

|J | ≤ k − 1 and wj/pj ≤ π(i0, 1) ∀j ∈ J

 Proof:

(j, b)

ALG

ADV

(i, a)(i0, 1)

π(i, a) < wj/pj
tcritical time of js

t0

(!, c)

           : otherwise, t0 ≤ t wj/pj ≤ π(", c) ≤ π(i, a)

    is critical time s

Moreover

s + qj(s) = dj

t < dj

Hence,

Then:
t− s < qj(s) ≤ pj ≤ k

|J | ≤ k − 1
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Let         be an unit scheduled before(j, b) (i, a)

If (i, a) = (j, b− 1) then
k − 1

k
π(i, a) =
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b
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Smith ratio algorithm
 Algorithm: at any time, schedule the pending job that maximizes wj/pj

 Theorem: the Smith ratio algorithm is     -competitive2k

Let         be an unit scheduled before(j, b) (i, a)

If (i, a) = (j, b− 1) then
k − 1

k
π(i, a) =

k − 1
k

wj

b− 1
≥ wj

b
= π(j, b)

Otherwise,
k − 1

k
π(i, a) =

k − 1
k

wi

pi
≥ k − 1

k

wj

pj
≥ wj

b
= π(j, b)

 Proof: Define: π(i, a) = wi/a

 The algorithm satisfies validity: π(i, a) ≥ wj/pj

 The algorithm is                -monotone(k − 1)/k

Total charge of job    :i0 wi0 +
wi0

1− (k − 1)/k
+ (k − 1)wi0
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Optimal algorithm
 Algorithm: at any time, schedule the pending job that maximizes

π(j, qj) := wjα
qj−1 := wj

(
1− c2 ln k

k

)qj−1

 Theorem: the Smith ratio algorithm is               -competitive(4k/ ln k)

 Proof (sketch):
 The algorithm satisfies validity: π(i, a) ≥ wj/pj

 The algorithm is    -monotoneα

Total charge of job    :i0 wi0 + O

(
k

ln k

)
wi0 +

∑

j∈J

wi0

f(pj)

where f(x) = xαx−1



Conclusion
 Optimal algorithms and a general framework for the model

 Constant competitive algorithms for a variant where jobs have 
equal lengths                      competitive randomized algos.O(log k)

 Directions: Close the gap

 Equal length jobs (2.59 < ratio < 4.25)

 Randomized algorithms Ω(
√

log k/ log log k), O(log k)



Thank you!


