
Online scheduling to
maximize throughput

Nguyen Kim Thang
(joint work with Christoph Durr

and Lukasz Jez)

Online Algorithms
 No (partial) information about future (requests are revealed

litle by litle).

 Guarantee the performance according to certain objective

Online Algorithms
 No (partial) information about future (requests are revealed

litle by litle).

 Guarantee the performance according to certain objective

Competitive ratio
 An algorithm ALG is -competitive if for any instance α I

(maximization problem)
OPT (I)
ALG(I)

≤ α

Competitive ratio
 An algorithm ALG is -competitive if for any instance α I

(maximization problem)

 Measure the performance of an algorithm (worst-case analysis)

 What is a competitive ratio?

 The price of an object (the problem):

Algorithm Adversary
negociation

(lower bound)(upper bound)

 An algorithm is optimal if the bound is tight.

OPT (I)
ALG(I)

≤ α

Model

Enterprise: perishable product (electricity, ice-cream, ...).
Clients: arrive online, different demands.
Goal: maximize the profit.

Profit maximization

$

$

$

Model

Enterprise: perishable product (electricity, ice-cream, ...).
Clients: arrive online, different demands.
Goal: maximize the profit.

Profit maximization

$

$

$Objective: maximize the total
value of jobs completed on time.

Online Scheduling

Jobs: arrive at , processing time
 , deadline , value (weight) .

ri

pi di wi

Contribution

unit
weight

unbounded
processing times

equal processing
times

bounded processing
times (by)k

general

α = 1 α = Θ(log k)

α = Θ(k/ log k)3
√

3
2
≤ α ≤ 5

∞

∞
≤ 4.24

Contribution

unit
weight

unbounded
processing times

equal processing
times

bounded processing
times (by)k

general

α = 1 α = Θ(log k)

α = Θ(k/ log k)3
√

3
2
≤ α ≤ 5

∞

∞

 (Simple) Optimal algorithms (up to a constant)

 General analysis framework

≤ 4.24

Lower bound (arbitrary weights)

0

0

R
R k

k

et/R−1

t

1

B

At

 Theorem: any deterministic algorithm has competitive ratio
Ω(k/ log k)

 Proof: Fix R = k/ ln k

 Define: At =

{
1 ∀0 ≤ t < R

e
t
R−1 ∀ R ≤ t ≤ k.

B = R

Lower bound (arbitrary weights)

0

0

R
R k

k

et/R−1

t

1

B

At

 Theorem: any deterministic algorithm has competitive ratio
Ω(k/ log k)

 Proof: Fix R = k/ ln k

 Define: At =

{
1 ∀0 ≤ t < R

e
t
R−1 ∀ R ≤ t ≤ k.

B = R

 Instance:

At time 0: release job and B A0

 At time : release job t At

 if ALG schedules at time B (t− 1)
otherwise, stop.

 At time : stopk

Lower bound (arbitrary weights)

0

0

R
R k

k

et/R−1

t

1

B

At

 If ALG schedules then ADV schedules BAt∗(0 ≤ t∗ < R)
R/1ratio =

Lower bound (arbitrary weights)

0

0

R
R k

k

et/R−1

t

1

B

At

 If ALG schedules then ADV schedules BAt∗(0 ≤ t∗ < R)

 If ALG schedules then ADV schedules

all jobs At(0 ≤ t ≤ t∗)
At∗(R ≤ t∗ ≤ k)

!R" − 1 +
∫ t∗

R
et/R−1dt ≥ R · et∗/R−1

R/1ratio =

Lower bound (arbitrary weights)

0

0

R
R k

k

et/R−1

t

1

B

At

 If ALG schedules then ADV schedules BAt∗(0 ≤ t∗ < R)

 If ALG schedules then ADV schedules

all jobs At(0 ≤ t ≤ t∗)
At∗(R ≤ t∗ ≤ k)

!R" − 1 +
∫ t∗

R
et/R−1dt ≥ R · et∗/R−1

 If ALG completes then ADV
schedules all jobs

B
At(0 ≤ t∗ ≤ k)

Rek/R−1 = Rk/e ≥ R2

R/1ratio =

Settling the competitivity

i

wj

j

α · wi

 Methods: charging scheme, potential function, etc

Settling the competitivity

i

wj

j

α · wi

 Methods: charging scheme, potential function, etc

ALG

ADV

Settling the competitivity

i

wj

j

α · wi

 Methods: charging scheme, potential function, etc

ALG

ADV

 Def: An unit is scheduled at time if job is scheduled
at that time and the remaining processing time of is

(i, a) t i
i a

Properties of algorithms

 Associate to a capacity function (i, a) π(i, a)

 A job is pending at time if t t + qj ≤ dj

 A critical time of a job is the latest moment that the job is still
pending.

Properties of algorithms

 Associate to a capacity function (i, a) π(i, a)

 Desirable properties:

 validity: if job is pending for ALG at then ALG j t

(i, a) tschedules a unit at such that π(i, a) ≥ wj/pj

 A job is pending at time if t t + qj ≤ dj

 A critical time of a job is the latest moment that the job is still
pending.

Properties of algorithms

 Associate to a capacity function (i, a) π(i, a)

 Desirable properties:

 validity: if job is pending for ALG at then ALG j t

(i, a) tschedules a unit at such that π(i, a) ≥ wj/pj

 -monotonicity: if the ALG schedules with
and at then

(i, a) a > 1
(i′, a′) (t + 1) ρ · π(i′, a′) ≥ π(i, a)

ρ

 A job is pending at time if t t + qj ≤ dj

 A critical time of a job is the latest moment that the job is still
pending.

General charging scheme
 Each unit of job completed by ADV has weight wj/pjj

General charging scheme
 Each unit of job completed by ADV has weight wj/pjj

Type 1 charge

(j, b)

(j, 1)ALG

ADV

General charging scheme
 Each unit of job completed by ADV has weight wj/pjj

Type 1 charge

(j, b)

(j, 1)ALG

ADV

Type 2 charge

(j, b)

ALG

ADV

(i, a) (i0, 1)

next job
completion

π(i, a) ≥ wj/pj

General charging scheme
 Each unit of job completed by ADV has weight wj/pjj

Type 1 charge

(j, b)

(j, 1)ALG

ADV

Type 2 charge

(j, b)

ALG

ADV

(i, a) (i0, 1)

next job
completion

π(i, a) ≥ wj/pj

Type 3 charge

(j, b)

ALG

ADV

(i, a)(i0, 1)

critical time of j
π(i, a) < wj/pj

Main lemmas
 Lemma: a job receives at most charge of type 2i0

π(i0, 1)
1− ρ

Main lemmas
 Lemma: a job receives at most charge of type 2i0

π(i0, 1)
1− ρ

 Proof:

(j, b)

ALG

ADV

(i, a) (i0, 1)

next job
completion

π(i, a) ≥ wj/pj

(i′, a′)

(j′, b′)

(i′0, 1)

previous job completion

Main lemmas
 Lemma: a job receives at most charge of type 2i0

π(i0, 1)
1− ρ

 Proof:

(j, b)

ALG

ADV

(i, a) (i0, 1)

next job
completion

π(i, a) ≥ wj/pj

(i′, a′)

(j′, b′)

(i′0, 1)

previous job completion

∑

j

wj

pj
≤

∑

i

π(i, a) ≤
∑

k

ρkπ(i0, 1) ≤ π(i0, 1)
1− ρ

Total
charge:

type 2 monotonicity

Main lemmas
 Lemma: set of job units that are type 3 charged to

Then
J i0

|J | ≤ k − 1 and wj/pj ≤ π(i0, 1) ∀j ∈ J

Main lemmas
 Lemma: set of job units that are type 3 charged to

Then
J i0

|J | ≤ k − 1 and wj/pj ≤ π(i0, 1) ∀j ∈ J

 Proof:

(j, b)

ALG

ADV

(i, a)(i0, 1)

π(i, a) < wj/pj
tcritical time of js

t0

(!, c)

Main lemmas
 Lemma: set of job units that are type 3 charged to

Then
J i0

|J | ≤ k − 1 and wj/pj ≤ π(i0, 1) ∀j ∈ J

 Proof:

(j, b)

ALG

ADV

(i, a)(i0, 1)

π(i, a) < wj/pj
tcritical time of js

t0

(!, c)

 : otherwise, t0 ≤ t wj/pj ≤ π(", c) ≤ π(i, a)

Main lemmas
 Lemma: set of job units that are type 3 charged to

Then
J i0

|J | ≤ k − 1 and wj/pj ≤ π(i0, 1) ∀j ∈ J

 Proof:

(j, b)

ALG

ADV

(i, a)(i0, 1)

π(i, a) < wj/pj
tcritical time of js

t0

(!, c)

 : otherwise, t0 ≤ t wj/pj ≤ π(", c) ≤ π(i, a)

 is critical time s

Moreover

s + qj(s) = dj

t < dj

Main lemmas
 Lemma: set of job units that are type 3 charged to

Then
J i0

|J | ≤ k − 1 and wj/pj ≤ π(i0, 1) ∀j ∈ J

 Proof:

(j, b)

ALG

ADV

(i, a)(i0, 1)

π(i, a) < wj/pj
tcritical time of js

t0

(!, c)

 : otherwise, t0 ≤ t wj/pj ≤ π(", c) ≤ π(i, a)

 is critical time s

Moreover

s + qj(s) = dj

t < dj

Hence,

Then:
t− s < qj(s) ≤ pj ≤ k

|J | ≤ k − 1

Smith ratio algorithm
 Algorithm: at any time, schedule the pending job that maximizes wj/pj

Smith ratio algorithm
 Algorithm: at any time, schedule the pending job that maximizes wj/pj

 Theorem: the Smith ratio algorithm is -competitive2k

Smith ratio algorithm
 Algorithm: at any time, schedule the pending job that maximizes wj/pj

 Theorem: the Smith ratio algorithm is -competitive2k

 Proof: Define: π(i, a) = wi/a

 The algorithm satisfies validity: π(i, a) ≥ wj/pj

 The algorithm is -monotone(k − 1)/k

Smith ratio algorithm
 Algorithm: at any time, schedule the pending job that maximizes wj/pj

 Theorem: the Smith ratio algorithm is -competitive2k

Let be an unit scheduled before(j, b) (i, a)

If (i, a) = (j, b− 1) then
k − 1

k
π(i, a) =

k − 1
k

wj

b− 1
≥ wj

b
= π(j, b)

Otherwise,
k − 1

k
π(i, a) =

k − 1
k

wi

pi
≥ k − 1

k

wj

pj
≥ wj

b
= π(j, b)

 Proof: Define: π(i, a) = wi/a

 The algorithm satisfies validity: π(i, a) ≥ wj/pj

 The algorithm is -monotone(k − 1)/k

Smith ratio algorithm
 Algorithm: at any time, schedule the pending job that maximizes wj/pj

 Theorem: the Smith ratio algorithm is -competitive2k

Let be an unit scheduled before(j, b) (i, a)

If (i, a) = (j, b− 1) then
k − 1

k
π(i, a) =

k − 1
k

wj

b− 1
≥ wj

b
= π(j, b)

Otherwise,
k − 1

k
π(i, a) =

k − 1
k

wi

pi
≥ k − 1

k

wj

pj
≥ wj

b
= π(j, b)

 Proof: Define: π(i, a) = wi/a

 The algorithm satisfies validity: π(i, a) ≥ wj/pj

 The algorithm is -monotone(k − 1)/k

Total charge of job :i0 wi0 +
wi0

1− (k − 1)/k
+ (k − 1)wi0

Optimal algorithm
 Algorithm: at any time, schedule the pending job that maximizes

π(j, qj) := wjα
qj−1 := wj

(
1− c2 ln k

k

)qj−1

 Theorem: the Smith ratio algorithm is -competitive(4k/ ln k)

Optimal algorithm
 Algorithm: at any time, schedule the pending job that maximizes

π(j, qj) := wjα
qj−1 := wj

(
1− c2 ln k

k

)qj−1

 Theorem: the Smith ratio algorithm is -competitive(4k/ ln k)

 Proof (sketch):
 The algorithm satisfies validity: π(i, a) ≥ wj/pj

 The algorithm is -monotoneα

Total charge of job :i0 wi0 + O

(
k

ln k

)
wi0 +

∑

j∈J

wi0

f(pj)

where f(x) = xαx−1

Conclusion
 Optimal algorithms and a general framework for the model

 Constant competitive algorithms for a variant where jobs have
equal lengths competitive randomized algos.O(log k)

 Directions: Close the gap

 Equal length jobs (2.59 < ratio < 4.25)

 Randomized algorithms Ω(
√

log k/ log log k), O(log k)

Thank you!

