Online scheduling to
maximize throughput

Nguyen Kim Thang
(joint work with Christoph Durr
and Lukasz Jez)

Online Algorithms

© No (partial) information about future (requests are revealed
litle by litle).

6 Guarantee the performance according to certain objective

Online Algorithms

© No (partial) information about future (requests are revealed
litle by litle).

6 Guarantee the performance according to certain objective

. . - - -
e, s ‘
I
. &% .
- o RS B *
. ‘~ - - o
" - -~ 3

Competitive ratio

© An algorithm ALG is a-competitive if for any instance [

OPT(I) < o (maximization problem)
o
ALG(T) = P

Competitive ratio

© An algorithm ALG is a-competitive if for any instance [

OPT(I)
ALG(I)

O0What is a competitive ratio!

< o« (maximization problem)

© Measure the performance of an algorithm (worst-case analysis)

O The price of an object (the problem):

negociation
Algorithm < > Adversary

(upper bound) (lower bound)

© An algorithm is optimal if the bound is tight.

Model

~Profit maximization

Enterprise: perishable product (electricity, ice-cream, ...).

Clients: arrive online, different demands.
Goal: maximize the profit.

Model

~Profit maximization

Enterprise: perishable product (electricity, ice-cream, ...).

Clients: arrive online, different demands.
Goal: maximize the profit.

~Online Scheduling

Jobs:arrive at r;, processing time
pi, deadline d;, value (weight) w; .

Objective: maximize the total
value of jobs completed on time.

Contribution

equal processing| bounded processing unbounded
times times (by k) processing times

unit B
weight o = O(logk)

general a = 0O(k/logk)

Contribution

equal processing| bounded processing unbounded
times times (by k) processing times

unit B
weight o = O(log k)

general <5 a = 0O(k/logk)
4.24

@ (Simple) Optimal algorithms (up to a constant)

@ General analysis framework

Lower bound (arbitrary weights)

@ Theorem: any deterministic algorithm has competitive ratio
Q(k/logk)

OProof: oFix R=Fk/Ink
o Define: {1 VO<t< R
A, =

e 'V R<t<k
B=R

Lower bound (arbitrary weights)

@ Theorem: any deterministic algorithm has competitive ratio
Q(k/logk)

OProof: oFix R=Fk/Ink
o Define: {1 VO<t< R
A, =

e 'V R<t<k
B=R

O |nstance:

+ At time O: release jobBand Ay R

+ At time t: release job A;
if ALG schedules B at time (¢t — 1)

otherwise, stop. 0
+ At time £ : stop

Lower bound (arbitrary weights)

o If ALG schedules A+ (0 < t* < R) then ADV schedules B
ratio = R /1

Lower bound (arbitrary weights)

o If ALG schedules A+ (0 < t* < R) then ADV schedules B
ratio = R /1

o If ALG schedules A« (R < t* < k) then ADV schedules

all jobs A:(0 <t <t%) t/R—1
€

o
R|—1 —I—/ et/ Blqr > Rt /BT 4,
R

Lower bound (arbitrary weights)

o If ALG schedules A+ (0 < t* < R) then ADV schedules B
ratio = R /1

o If ALG schedules A« (R < t* < k) then ADV schedules

all jobs A:(0 <t <t%) t/R—1
€

o
R|—1 —I—/ et/ Blqr > Rt /BT 4,
R

o If ALG completes 5 then ADV
schedules all jobs A:(0 <t* < k)

Re* =1 = Rk/e > R’

Settling the competitivity

0 Methods: charging scheme, potential function, etc

Wy
0 « Z 0

Settling the competitivity

0 Methods: charging scheme, potential function, etc

Settling the competitivity

0 Methods: charging scheme, potential function, etc

a Def: An unit (i, a)is scheduled at time ¢ if job 7 is scheduled
at that time and the remaining processing time of 7 is a

Properties of algorithms

O A job is pending at time ¢ if t + ¢; < d;

O A critical time of a job is the latest moment that the job is still
pending.

o Associate (%, @) to a capacity function 7 (i, a)

Properties of algorithms

O A job is pending at time ¢ if t + ¢; < d;

O A critical time of a job is the latest moment that the job is still
pending.

o Associate (%, @) to a capacity function 7 (i, a)

0 Desirable properties:

o validity: if job 7 is pending for ALG at ¢ then ALG
schedules a unit (7, a) at ¢ such that 7(i,a) > w;/p;

Properties of algorithms

O A job is pending at time ¢ if t + ¢; < d;

O A critical time of a job is the latest moment that the job is still
pending.

o Associate (%, @) to a capacity function 7 (i, a)

0 Desirable properties:

o validity: if job 7 is pending for ALG at ¢ then ALG
schedules a unit (7, a) at ¢ such that 7(i,a) > w;/p;

op-monotonicity: if the ALG schedules (¢, a)with a > 1
and (i',a’) at (t + 1) then p - (¢, a’) > 7 (i, a)

General charging scheme

© Each unit of job j completed by ADV has weight w; /p;

General charging scheme

© Each unit of job j completed by ADV has weight w; /p;

Type | charge

General charging scheme

© Each unit of job j completed by ADV has weight w; /p;

“next job
Type | charge Type 2 charge completion

ALG (G 1) ALG >
™~ t

(J;b) ADV (7,0) m(i,a) > w;/p;

General charging scheme

© Each unit of job j completed by ADV has weight w; /p;

“next job
Type | charge Type 2 charge completion

t

(J;b) ADV (7,0) m(i,a) > w;/p;

critical time of)

Type 3 charge i,a) < w;i/p,

il
e (D—(

ADV |(4,b)

Main lemmas

L . (1
@ Lemma:a job 7o receives at most charge of type 2

Main lemmas

W(io, 1)

@ Lemma:a job 7o receives at most .
— P

charge of type 2

O Proof:

“next job
- completion

ALG i1 ’ (i, a)) —[io. L

- previous job completion

t

ADV e (5,0) m(i,a) i/ P;

Main lemmas

W(io, 1)

@ Lemma:a job 7o receives at most .
— P

charge of type 2

O Proof:

“next job
- completion

ALG (i()a 1 ' . >

- previous job completion

Main lemmas

@ Lemma: J set of job units that are type 3 charged to 7
Then |J| <k—1 and w;/p; <m(ig,1)VjeJ

Main lemmas

@ Lemma: J set of job units that are type 3 charged to 7
Then |J| <k—1 and w;/p; <m(ig,1)VjeJ
0 Proof: S critical time of j 4

?50 m(i,a) < w;/p;

ADV |(4,b)

Main lemmas

@ Lemma: J set of job units that are type 3 charged to 7
Then |J| <k—1 and w;/p; <m(ig,1)VjeJ

0 Proof: S critical time of j 4 |
?50 - w(ia) <w;/p;

ADV |(4,b)

© tg < t:otherwise, w;/p; < (¢, c) < (i, a)

Main lemmas

@ Lemma: J set of job units that are type 3 charged to 7
Then |J| <k—1 and w;/p; <m(ig,1)VjeJ

O Proof: S critical time of t |
?50 - w(ia) <w;/p;

ADV " ()

© tg < t:otherwise, w;/p; < (¢, c) < (i, a)

O S is critical time s + C_Zj(S) — dj

Moreover ¢ < d;

Main lemmas

@ Lemma: J set of job units that are type 3 charged to 7
Then |J| <k—1 and w;/p; <m(ig,1)VjeJ

0 Proof: S critical time of j 4 |
?50 - w(ia) <w;/p;

© tg < t:otherwise, w;/p; < (¢, c) < (i, a)
© s is critical time s+ q;(s) = d; Then:
Moreover t < d; t—s<qi(s)<pj<h
Hence, |J| <k —1

Smith ratio algorithm

0 Algorithm: at any time, schedule the pending job that maximizes w; /p,

Smith ratio algorithm

gorithm: at any time, schedule the pending job that maximizes w; /p,

neorem: the Smith ratio algorithm is 2k -competitive

Smith ratio algorithm

0 Algorithm: at any time, schedule the pending job that maximizes w; /p,

@ Theorem: the Smith ratio algorithm is 2k -competitive
0 Proof: Define: 7(i,a) = w;/a

© The algorithm satisfies validity: 7(¢,a) > w;/p,

© The algorithm is (k — 1) /k -monotone

Smith ratio algorithm

0 Algorithm: at any time, schedule the pending job that maximizes w; /p,

@ Theorem: the Smith ratio algorithm is 2k -competitive
0 Proof: Define: 7(i,a) = w;/a

© The algorithm satisfies validity: 7(¢,a) > w;/p,

© The algorithm is (k — 1) /k -monotone

Let (7, b) be an unit scheduled before (¢, a)

. . k—1 k—1 w; W5
If (¢,a) =(j,b—1) th a) = > 20— n(ib

Otherwise, L1 L1 I
—_— —_ w. —_ w. w.
. — 1 > j > J — . b
k W(Z,CL) k p@ —_— k pj —_ b 7-‘-(.]7)

Smith ratio algorithm

0 Algorithm: at any time, schedule the pending job that maximizes w; /p,

@ Theorem: the Smith ratio algorithm is 2k -competitive
0 Proof: Define: 7(i,a) = w;/a

© The algorithm satisfies validity: 7(¢,a) > w;/p,

© The algorithm is (k — 1) /k -monotone

Let (7, b) be an unit scheduled before (¢, a)

. . k—1 kE—1 w; W ;
|f 1,Q) = ,b—l th) — J >—]: b
20) = (b= 1) then B (i ay = B2 L5 M)

Otherwise,
k—1 , k—lwz k—le' W 4
7‘-(27&) — > > —= =
k k pi kD

Total charge of job 1p: w;,

Optimal algorithm

0 Algorithm: at any time, schedule the pending job that maximizes

AN
ay) = wya® =y (1= 0E)

@ Theorem: the Smith ratio algorithm is(4k/ In k)-competitive

Optimal algorithm

0 Algorithm: at any time, schedule the pending job that maximizes

m(j,) = wja% T = w; (1

@ Theorem: the Smith ratio algorithm is(4k/ In k)-competitive

0 Proof (sketch):
© The algorithm satisfies validity: m(%,a) > w;/p;

O The algorithm is «-monotone

k w;
Total charge of job 79: w;, + O <_> w;. - io
= O Ink/ ;E; f ;)

Conclusion

@ Optimal algorithms and a general framework for the model

@ Constant competitive algorithms for a variant where jobs have
equal lengths —— O(log k) competitive randomized algos.

0 Directions: Close the gap

o Equal length jobs (2.59 < ratio < 4.25)

o Randomized algorithms (+/log k/ loglog k), O(log k)

