Pure equilibria: Existence and inefficiency \& Online Auction

Nguyen Kim Thang

Ecole Polytechnique June 24th, 2009

Rational behaviors

Rational behaviors

*What route to go to work?

Rational behaviors

*What route to go to work?

*Where to open a new competitive facility in Paris?

Rational behaviors

* What route to go to work?

*Where to open a new competitive facility in Paris?
* On Wednesday, what time to have lunch in
Polytechnique?

Game Theory + Algorithms

* Entities in society, each with its own information and interests, behave in rational manners.
* Game theory is a deep theory studying such interactions (in economics, political science, ... etc).
* Theoretical computer science studies optimization problems, seeks to optimum, efficient computing, impossibility results, ... etc

Algorithmic Game Theory

* Research field on the interface of game theory and theoretical computer science (mostly algorithms)
* Formulating novel goals and problems, fresh looks on different issues (inspired by Internet, ...).
* The field has phenomenally exploded with many branches: computing Nash equilibrium, mechanism design, inefficiency of equilibria, ... etc

Motivation

* Pure equilibria: existence and inefficiency.
* Online Mechanism Design (Online Auction inspired by Google, Yahoo! Adwords, ...).
* Inspired by real problems.
* Mathematically beautiful.

Outline

*Voronoi Games on graphs
\square NP-complete whether there exists an equilibrium
\square Social cost discrepancy

* Scheduling Games in the Dark
- Existence of equilibria
- Optimal non-clairvoyant policy
* Online Algorithmic Mechanism Design
-Truthful online auction with single-minded bidders

Voronoi Games on Graphs

Voronoi Games

- Summer holiday is also competition season.

- How to make this man happy?

Voronoi Games

- Summer holiday is also competition season.
- How to make this man happy?

- Application: locations of supermarkets, Internet or mobile phone providers, ...

Voronoi Games

- Summer holiday is also competition season.

- How to make this man happy?

Voronoi Games on graphs

- Given $G(V, E), k$ players whose strategy set is V
- A vertex (client) is assigned in equal fraction to the closest players
- Utility $=$ fractional amount of vertices assigned to the player.

- Social cost $=$ sum of distances over all vertices to the closest player. (k-median optimization problem)

Equilibrium and Complexity

* Equilibrium: strategy profile that is resilient to deviation of each player.

Equilibrium and Complexity

* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium

Pure equilibrium

Equilibrium and Complexity

* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium choose a distribution over strategies

Equilibrium and Complexity

* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium

Pure equilibrium deterministically choose a strategy

Equilibrium and Complexity

* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium
Pure equilibrium always exists (by Nash)

Equilibrium and Complexity

* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium

Pure equilibrium always exists (by Nash)

Finding: PPADcomplete

Equilibrium and Complexity

* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium

Pure equilibrium

Finding: PPADcomplete

Finding: PLS-
complete

Equilibrium and Complexity

* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium always exists (by Nash)

Finding: PPADcomplete

Pure equilibrium

Finding: PLScomplete

Existence:
NP-hardness

Equilibrium and Complexity

* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium

Pure equilibrium always exists (by Nash)

Finding: PPADcomplete

Finding: PLScomplete

Existence:
NP-hardness

Framework in proving NPhardness

Negated gadget for property P of a game

A larger game which encodes a
NP-hard problem

NP-hardness in deciding whether a game possesses property P

Framework in proving NPhardness

"counter example"
Negated gadget for property P of a game

A larger game which encodes a
NP-hard problem

NP-hardness in deciding whether a game possesses property P

Framework in proving NPhardness

"counter example"
Negated gadget for property P of a game

A larger game which encodes a
NP-hard problem

NP-hardness in deciding whether a game possesses property P
-Voronoi Games

- Matrix Scheduling Games
- Connection Games

Gadget

Lemma: There is no Nash equilibrium with 2 players.

Proof: By sym., the first player choose u_{2}.
Then the second player moves to u_{6} and gains 5 .
Now the first player can move to u_{7} to increase his utility.

Gadget

Lemma: There is no Nash

 equilibrium with 2 players.Proof: By sym., the first player choose u_{2}.
Then the second player moves to u_{6} and gains 5 .
Now the first player can move to u_{7} to increase his utility.

Gadget

Lemma: There is no Nash equilibrium with 2 players.

Proof: By sym., the first player choose u_{2}.
Then the second player moves to u_{6} and gains 5 .
Now the first player can move to u_{7} to increase his utility.

NP-hardness

Theorem: It is NP-hard to decide whether a Voronoi game admits an equilibrium.

Proof (high-level):

Inefficiency

How good is an equilibrium ?

Inefficiency

social cost

How good is an equilibrium ?

Inefficiency

social cost

Delaunay triangulation

Delaunay triangulation

-

$$
0
$$

* Delaunay triangulation:

Delaunay triangulation

* Delaunay triangulation:

Delaunay triangulation

* Delaunay triangulation:
* Delaunay graph: a strategy profile f, there exists an edge (i, j) if i, j are neighbors.

Delaunay triangulation

* Delaunay triangulation:
* Delaunay graph: a strategy profile f, there exists an edge (i, j) if i, j are neighbors.

Delaunay triangulation

* Delaunay triangulation:
* Delaunay graph: a strategy profile f, there exists an edge (i, j) if i, j are neighbors.

Social cost discrepancy

Theorem: The social cost discrepancy is $\Omega(\sqrt{n / k})$ and $O(\sqrt{k n})$

Proof:

- Consider two equilibria and Δ.
- Partition the Delaunay graph corresponding to • into regions.
- Showing that each location of Δ is not so far from a region above (compared to the diameter of the region).

Improvements

Theorem: - If $k \leq n / 4$ then the discrepancy is $O(\sqrt{n})$

- If there exist constants $c_{1} \geq c_{2}, n_{0}$ such that: $\forall n \geq n_{0}: n / c_{1} \leq k \leq n / c_{2}$ then the discrepancy is $\Theta(1)$
- If there exists constant d such that $k \geq n-d$ then the discrepancy is $\Theta(n)$

Improvements

Theorem: - If $k \leq n / 4$ then the discrepancy is $O(\sqrt{n})$

- If there exist constants $c_{1} \geq c_{2}, n_{0}$ such that: $\forall n \geq n_{0}: n / c_{1} \leq k \leq n / c_{2}$ then the discrepancy is $\Theta(1)$
- If there exists constant d such that $k \geq n-d$ then the discrepancy is $\Theta(n)$

Scheduling Games in the Dark

Scheduling Games

* n jobs (players) and m machines: a job chooses a machine to execute. The processing time of job i on machine j is $p_{i j}$
* The cost c_{i} of a job i is its completion time.
* The social cost is the makespan, i.e. $\max _{i} c_{i}$
* Each machine specifies a policy how jobs assigned to the machine are to be scheduled.

Scheduling Games

* n jobs (players) and m machines: a job chooses a machine to execute. The processing time of job i on machine j is $p_{i j}$
* The cost c_{i} of a job i is its completion time.
* The social cost is the makespan, i.e. $\max _{i} c_{i}$
* Each machine specifies a policy how jobs assigned to the machine are to be scheduled.
- Eg: Shortest Processing Time First (SPT)
machine I \square machine 2
machine 3

Scheduling Games

* n jobs (players) and m machines: a job chooses a machine to execute. The processing time of job i on machine j is $p_{i j}$
* The cost c_{i} of a job i is its completion time.
* The social cost is the makespan, i.e. $\max _{i} c_{i}$
* Each machine specifies a policy how jobs assigned to the machine are to be scheduled.
- Eg: Shortest Processing Time First (SPT)
machine I machine 2 machine 3

Scheduling Games

* n jobs (players) and m machines: a job chooses a machine to execute. The processing time of job i on machine j is $p_{i j}$
* The cost c_{i} of a job i is its completion time.
* The social cost is the makespan, i.e. $\max _{i} c_{i}$
* Each machine specifies a policy how jobs assigned to the machine are to be scheduled.
- Eg: Shortest Processing Time First (SPT)
machine I machine 2 machine 3

Non-clairvoyant policies

* Typically, a policy depends on the processing time of jobs assigned to the machine.

Non-clairvoyant policies

* Typically, a policy depends on the processing time of jobs assigned to the machine.
* What about policies that do not require this knowledge?
\square Private information of jobs
- Jobs cannot influence on their completion time by misreporting their processing time
- Incomplete information games

Non-clairvoyant policies

* Typically, a policy depends on the processing time of jobs assigned to the machine.
* What about policies that do not require this knowledge?
- Private information of jobs
- Jobs cannot influence on their completion time by misreporting their processing time
- Incomplete information games

Non-clairvoyant policies

existence
small PoA
Nash equilibrium

Natural policies

* RANDOM: schedules jobs in a random order.

In the strategy profile σ, i is assigned to j :

$$
c_{i}=p_{i j}+\frac{1}{2} \sum_{i^{\prime}: \sigma\left(i^{\prime}\right)=j, i^{\prime} \neq i} p_{i^{\prime} j}
$$

Natural policies

* RANDOM: schedules jobs in a random order.

In the strategy profile σ, i is assigned to j :

$$
c_{i}=p_{i j}+\frac{1}{2} \sum_{i^{\prime}: \sigma\left(i^{\prime}\right)=j, i^{\prime} \neq i} p_{i^{\prime} j}
$$

* EQUI: schedules jobs in parallel, assigning each job an equal fraction of the processor.

Natural policies

* RANDOM: schedules jobs in a random order.

In the strategy profile σ, i is assigned to j :

$$
c_{i}=p_{i j}+\frac{1}{2} \sum_{i^{\prime}: \sigma\left(i^{\prime}\right)=j, i^{\prime} \neq i} p_{i^{\prime} j}
$$

* EQUI: schedules jobs in parallel, assigning each job an equal fraction of the processor.

\[

\]

Natural policies

* RANDOM: schedules jobs in a random order.

In the strategy profile σ, i is assigned to j :

$$
c_{i}=p_{i j}+\frac{1}{2} \sum_{i^{\prime}: \sigma\left(i^{\prime}\right)=j, i^{\prime} \neq i} p_{i^{\prime} j}
$$

* EQUI: schedules jobs in parallel, assigning each job an equal fraction of the processor.

If there are k jobs on machine j s.t: $p_{1 j} \leq \ldots \leq p_{k j}$

$$
c_{i}=p_{1 j}+\ldots+p_{i-1, j}+(k-i+1) p_{i j}
$$

Definitions

* Def: A job i is balanced if $\max p_{i j} / \min p_{i j} \leq 2$
* Def of models:
\square Identical machines: $p_{i j}=p_{i} \forall j$ for some length p_{i}
\square Uniform machines: $p_{i j}=p_{i} / s_{j}$ for some speed s_{j}
- Unrelated machines: $p_{i j}$ arbitrary

Definitions

* Def: A job is unhappy if it can decrease its cost by changing the strategy (other players' strategies are fixed)
* Def: Best-response dynamic is a process that let an arbitrary unhappy player (job) make a best response -- a strategy that maximizes player's utility.

Our results

* Existence of equilibria: potential argument.

	identical	uniform	unrelated
RANDOM	$N E$		non- convergence
EQUI	$N E$	$N E$	$N E$

Idea: - Best-response dynamic may cycle

- New dynamic to break the cycle.

Our results

* Existence of equilibria: potential argument.

	identical	uniform	unrelated
RANDOM	$N E$	$N E$ for balanced jobs	non- convergence
EQUI	$N E$	$N E$	$N E$

Idea: - Best-response dynamic may cycle

- New dynamic to break the cycle.

Our results

* Existence of equilibria: potential argument.

	identical	uniform	unrelated
RANDOM	$N E$	NE for balanced jobs	non- convergence
EQUI	$N E$	$N E$	$N E$

Idea: - Best-response dynamic may cycle

- New dynamic to break the cycle.

RANDOM, uniform machines

RANDOM, uniform machines

* Jobs have length $p_{1} \leq p_{2} \leq \ldots \leq p_{n} \quad p_{i j}=p_{i} / s_{j}$
* Machines have speed $s_{1} \geq s_{2} \geq \ldots \geq s_{m}$

RANDOM, uniform machines

* Jobs have length $p_{1} \leq p_{2} \leq \ldots \leq p_{n} \quad p_{i j}=p_{i} / s_{j}$
* Machines have speed $s_{1} \geq s_{2} \geq \ldots \geq s_{m}$
* Dynamic: among all unhappy jobs, let the one with the greatest index make a best move.

Potential function

Potential function

* For any strategy profile σ, let t be the unhappy job with greatest index.

$$
f_{\sigma}(i)= \begin{cases}1 & \text { if } 1 \leq i \leq t, \\ 0 & \text { otherwise }\end{cases}
$$

Potential function

* For any strategy profile σ, let t be the unhappy job with greatest index.

$$
f_{\sigma}(i)= \begin{cases}1 & \text { if } 1 \leq i \leq t \\ 0 & \text { otherwise }\end{cases}
$$

* $\Phi(\sigma)=\left(f_{\sigma}(1), s_{\sigma(1)}, \ldots, f_{\sigma}(n), s_{\sigma(n)}\right)$ lex. decreases

Potential function

* For any strategy profile σ, let t be the unhappy job with greatest index.

$$
f_{\sigma}(i)= \begin{cases}1 & \text { if } 1 \leq i \leq t \\ 0 & \text { otherwise }\end{cases}
$$

* $\Phi(\sigma)=\left(f_{\sigma}(1), s_{\sigma(1)}, \ldots, f_{\sigma}(n), s_{\sigma(n)}\right)$ lex. decreases
* Dominance: either the number of unhappy players decreases or the lexicographical order of machines' speeds are decreased.

Our results

* Existence of equilibria: potential argument.

	identical	uniform	unrelated
RANDOM	$N E$	NE for balanced jobs	non- convergence
EQUI	$N E$	$N E$	$N E$

Idea: - Best-response dynamic may cycle

- New dynamic to break the cycle.
- Dominance: either the number of unhappy players decreases or the lexicographical order of machines' speeds are decreased.

Our results

* Theorem: For unrelated machines, the PoA of policy EQUI is at most $2 m$ - interestingly, that matches the best clairvoyant policy.
* PoA is not increased when processing times are unknown to the machines.
* The knowledge about jobs’ characteristics is not necessarily needed.

Online Mechanism Design

Mechanism Design

Define the game

Goal: self-interested behavior yields desired outcomes.

Online Auction

* A company produces one perishable item per time unit (items have to be immediately delivered to bidders, e.g. electricity, ice-cream, ...)

Online Auction

* A company produces one perishable item per time unit (items have to be immediately delivered to bidders, e.g. electricity, ice-cream, ...)
* Single-minded bidders arrive online: a customer arrives at r_{i}, pays w_{i} if he receives k_{i} items before deadline d_{i}, otherwise he pays nothing.

Online Auction

* A company produces one perishable item per time unit (items have to be immediately delivered to bidders, e.g. electricity, ice-cream, ...)
* Single-minded bidders arrive online: a customer arrives at r_{i}, pays w_{i} if he receives k_{i} items before deadline d_{i}, otherwise he pays nothing.
* Opt. prob: maximize the welfare $\sum_{i} w_{i}$ over all
satisfied bidders.

Online Auction

* A company produces one perishable item per time unit (items have to be immediately delivered to bidders, e.g. electricity, ice-cream, ...)
* Single-minded bidders arrive online: a customer arrives at r_{i}, pays w_{i} if he receives k_{i} items before deadline d_{i}, otherwise he pays nothing.
* Opt. prob: maximize the welfare $\sum_{i} w_{i}$ over all
satisfied bidders.
* Mechanism design: $\square w_{i}$ are private
- Bidders may misreport their value. They bid b_{i}

Truthful Auction Design

Truthful Auction Design

Auction:
receives all bids

allocation algorithm: determine the set of satisfied bidders
payment algorithm: determine how much
a bidder has to pay

Truthful Auction Design

Auction:
receives all bids

allocation algorithm: determine the set of satisfied bidders
payment algorithm: determine how much
a bidder has to pay

$$
u_{i}= \begin{cases}w_{i}-p_{i} & \text { if satisfied } \\ 0 & \text { otherwise }\end{cases}
$$

Goal: self-interested behavior yields truthfulness, $b_{i}=w_{i}$

Truthful Auction Design

Auction:
receives all bids

allocation algorithm: determine the set of satisfied bidders
payment algorithm: determine how much
a bidder has to pay

Truthful Auction Design

Auction:
receives all bids

allocation algorithm: determine the set of satisfied bidders

\author{

monotone:

 a winner still wins if he raises his bid}

payment algorithm: determine how much a bidder has to pay

Monotone algorithm

* Our problem:
- design a monotone allocation algorithm
\square verify whether the critical payment scheme can be computed efficiently.

Monotone algorithm

* Our problem:
- design a monotone allocation algorithm
\square verify whether the critical payment scheme can be computed efficiently.
* Maximizing the welfare $\sum_{i} w_{i}$ is NP-hard even offline.

Monotone algorithm

* Our problem:
- design a monotone allocation algorithm
\square verify whether the critical payment scheme can be computed efficiently.
* Maximizing the welfare $\sum_{i} w_{i}$ is NP-hard even offline.
* Scheduling problem: $1 \mid r_{i}$ - online, $p m t n \mid \sum_{i} w_{i}$
... with monotone algorithm

Online Algorithm

* Def: an online algorithm $A L G$ is c-competitive if for any instance I, the outcome $c \cdot A L G(I) \geq O P T(I)$
* Technique: charging scheme

Online Algorithm

* Def: an online algorithm $A L G$ is c-competitive if for any instance I, the outcome $c \cdot A L G(I) \geq O P T(I)$
* Technique: charging scheme

Our results

* Theorem: If $k_{i} \leq k \forall i$ then
- The Smith algorithm which serves the bidder that maximizes b_{i} / q_{i} is $2 k$-competitive where q_{i} is the remaining demands of bidder i.
- The algo which serves the bidder that maximizes $b_{i} \cdot \alpha^{q_{i}-1}$ is $\Theta(k / \log k)$-competitive where $\alpha=1-(1-\epsilon)^{2} \cdot(\ln k) / k$.
- There exists a 5-competitive alg. if $k_{i}=k \forall i$

Our results

* Theorem: If $k_{i} \leq k \forall i$ then
- The Smith algorithm which serves the bidder that maximizes b_{i} / q_{i} is $2 k$-competitive where q_{i} is the remaining demands of bidder i.
- The algo which serves the bidder that maximizes $b_{i} \cdot \alpha^{q_{i}-1}$ is $\Theta(k / \log k)$-competitive where $\alpha=1-(1-\epsilon)^{2} \cdot(\ln k) / k$. Optimal alg.
- There exists a 5-competitive alg. if $k_{i}=k \forall i$

Our results

* Theorem: If $k_{i} \leq k \forall i$ then
- The Smith algorithm which serves the bidder that maximizes b_{i} / q_{i} is $2 k$-competitive where q_{i} is the remaining demands of bidder i.
- The algo which serves the bidder that maximizes $b_{i} \cdot \alpha^{q_{i}-1}$ is $\Theta(k / \log k)$-competitive where $\alpha=1-(1-\epsilon)^{2} \cdot(\ln k) / k$. Optimal alg.
- There exists a 5-competitive alg. if $k_{i}=k \forall i$
* Proof: Using general charging scheme.

Our results

* Theorem: If $k_{i} \leq k \forall i$ then
- The Smith algorithm which serves the bidder that maximizes b_{i} / q_{i} is $2 k$-competitive where q_{i} is the remaining demands of bidder i.
- The algo which serves the bidder that maximizes $b_{i} \cdot \alpha^{q_{i}-1}$ is $\Theta(k / \log k)$-competitive where $\alpha=1-(1-\epsilon)^{2} \cdot(\ln k) / k$. Optimal alg.
- There exists a 5-competitive alg. if $k_{i}=k \forall i$
* Corollary: there exists truthful optimal mechanism with the same competitive ratio.

Summary

Given game

Players $\longleftrightarrow \Phi \longleftrightarrow$ Social objective (maximize their utilities)

Summary

Given game

Summary

Given game
Players $\longleftrightarrow \Phi \longleftrightarrow$ Social objective (maximize their utilities)

Design games (algorithms)
(a little more control, much better quality of outcomes)

Thank you!

