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Rational behaviors

 What route to go to work?

 Where to open a new 
competitive facility in 
Paris?

where?

 On Wednesday, what 
time to have lunch in 
Polytechnique?
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Game Theory + Algorithms

 Entities in society, each with its own information and 
interests, behave in rational manners.

 Theoretical computer science studies optimization 
problems, seeks to optimum, efficient computing, 
impossibility results, ... etc

 Game theory is a deep theory studying such 
interactions (in economics, political science, ... etc).  
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Algorithmic Game Theory

 Research field on the interface of game theory and 
theoretical computer science (mostly algorithms)

 The field has phenomenally exploded with many 
branches: computing Nash equilibrium, mechanism 
design, inefficiency of equilibria, ... etc 

 Formulating novel goals and problems, fresh looks on 
different issues (inspired by Internet, ...).
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Motivation

 Inspired by real problems.

 Pure equilibria: existence and inefficiency.

 Mathematically beautiful.

 Online Mechanism Design (Online Auction inspired 
by Google, Yahoo! Adwords, ...).
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Outline

 Scheduling Games in the Dark

 Online Algorithmic Mechanism Design

 Existence of equilibria

 Truthful online auction with single-minded 
bidders

 Voronoi Games on graphs

 NP-complete whether there exists an equilibrium

 Social cost discrepancy

 Optimal non-clairvoyant policy
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Voronoi Games 
on Graphs
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Voronoi Games
• Summer holiday is also 
competition season.

• How to make this man 
happy?
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Voronoi Games
• Summer holiday is also 
competition season.

• How to make this man 
happy?

• Application: locations of 
supermarkets, Internet or 
mobile phone providers, ...
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Voronoi Games on graphs

2 5
6 1 5

6 2 1
3

Figure 1: A strategy profile of a graph (players are dots) and the corresponding payoffs.

that the strategy of player i is f ′
i . If player i can strictly improve his payoff by choosing another

strategy, we say that player i is unhappy in f , otherwise he is happy. The best response dynamic
is the process of repeatedly choosing an arbitrary unhappy player, and change it to an arbitrary
best response. A pure Nash equilibrium is defined as a fixed point to the best response dynamic, or
equivalently as a strategy profile where all players are happy. In this paper we consider only pure
Nash equilibria, so we omit from now on the adjective “pure”.

We defined players’ payoffs in such a way, that there is a subtle difference between the Voronoi
game played on graphs and the Voronoi game played on a continuous surface. Consider a situation
where a player i moves to a location already occupied by a single player j, then in the continuous
case player i gains exactly a half of the previous payoff of player j (since it is now shared with i).
However, in our setting (the discrete case), player i can sometimes gain more than a half of the
previous payoff of player j (see figure 2).

Also note that the best responses for a player in our game are computable in polynomial time,
whereas for the Voronoi game in continuous space, the problem seems hard [4].

A simple observation leads to the following bound on the players payoff.

Lemma 1 In a Nash equilibrium the payoff pi of every player i is bounded by n/2k < pi < 2n/k.

Proof: If a player gains p and some other player moves to the same location then both payoffs are
at least p/2. Therefore the ratio between the largest and the smallest payoffs among all players can
be at most 2. If all players have the same payoff, it must be exactly n/k, since the payoffs sum up
to n. Otherwise there is at least one player who gains strictly less than n/k, and another player
who gains strictly more than n/k. This concludes the proof. !

3 Example: the cycle graph

Let G(V,E) be the cycle on n vertices with V = {vi : i ∈ Zn} and E = {(vi, vi+1) : i ∈ Zn}, where
addition is modulo n. The game plays on the undirected cycle, but it will be convenient to fix an
orientation. Let u0, . . . , u!−1 be the distinct facilities chosen by k players in a strategy profile f
with ! ≤ k, numbered according to the orientation of the cycle. For every j ∈ Z!, let cj ≥ 1 be the
number of players who choose the facility uj and let dj ≥ 1 be the length of the directed path from
uj to uj+1 following the orientation of G. Now the strategy profile is defined by these 2! numbers,
up to permutation of the players. We decompose the distance into dj = 1+2aj + bj , for 0 ≤ bj ≤ 1,
where 2aj + bj is the number of vertices between facilities uj and uj+1. So if bj = 1, then there is
a vertex in midway at equal distance from uj and uj+1.

3

• Given                  players whose strategy set is           G(V,E), k V

• A vertex (client) is assigned in 
equal fraction to the closest 
players

• Utility = fractional amount of 
vertices assigned to the player.

• Social cost = sum of distances 
over all vertices to the closest 
player. (k-median optimization 
problem)
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Equilibrium and Complexity
 Equilibrium: strategy profile that is resilient to deviation 

of each player.
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Equilibrium and Complexity
 Equilibrium: strategy profile that is resilient to deviation 

of each player.

Mixed equilibrium Pure equilibrium
choose a distribution 

over strategies
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Equilibrium and Complexity
 Equilibrium: strategy profile that is resilient to deviation 

of each player.

Mixed equilibrium Pure equilibrium
deterministically 
choose a strategy
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 Equilibrium: strategy profile that is resilient to deviation 
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Mixed equilibrium Pure equilibrium

always exists (by Nash)
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Equilibrium and Complexity
 Equilibrium: strategy profile that is resilient to deviation 

of each player.

Mixed equilibrium Pure equilibrium

Finding: PPAD-
complete

Finding: PLS-
complete

always exists (by Nash)

Existence: 
NP-hardnessNP-

complete

P NP

PLSPPAD
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Framework in proving NP-
hardness

Negated gadget for 
property P of a game +

A larger game 
which encodes a 
NP-hard problem

NP-hardness in deciding whether a game 
possesses property P
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Framework in proving NP-
hardness

Negated gadget for 
property P of a game +

A larger game 
which encodes a 
NP-hard problem

NP-hardness in deciding whether a game 
possesses property P

“counter example”

 Voronoi Games 
 Matrix Scheduling Games
 Connection Games
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Gadget

u1 u2 u3 u4

u5 u6

u7 u8

u9

Figure 3: Example of a graph with no Nash equilibrium for 2 players.

Theorem 1 Given a graph G(V,E) and a set of k players, deciding the existence of Nash equilib-
rium for k players on G is NP-complete.

Proof: The problem is clearly in NP, since best responses can be computed in polynomial time,
therefore it can be verified efficiently if a strategy profile is a Nash equilibrium.

The proof of NP-hardness is by the reduction from 3-Partition, which is unary NP-complete
[6]. In this later problem we are given integers a1, . . . , a3m and B such that B/4 < ai < B/2
for every 1 ≤ i ≤ 3m,

∑3m
i=1 = mB and have to partition them into disjoint sets P1, . . . , Pm ⊆

{1, . . . , 3m} such that for every 1 ≤ j ≤ m we have
∑

i∈Pj
ai = B.

We construct a weighted graph G(V,E) with the weight function w : V → N and a set U ⊆ V
such that for k = m + 1 players (m ≥ 2) there is a Nash equilibrium to the generalized Voronoi
game 〈G, U, w, k〉 if and only if there is a solution to the 3-Partition instance. We define the
constants c =

(3m
3

)
+ 1 and d =

⌊
Bc−c+c/m

5

⌋
+ 1. The graph G consists of 3 parts. In the first part

V1, there is for every 1 ≤ i ≤ 3m a vertex vi of weight aic. There is also an additional vertex v0 of
weight 1. In the second part V2, there is for every triplet (i, j, k) with 1 ≤ i < j < k ≤ 3m a vertex
uijk of unit weight. — Ideally we would like to give it weight zero, but there seems to be no simple
generalization of the game which allows zero weights, while preserving the set of Nash equilibria.
— Every vertex uijk is connected to v0, vi, vj and vk. The third part V3, consists of the 9 vertex
graph of figure 3 where each of the vertices u1, . . . , u9 has weight d. To complete our construction,
we define the facility set U := V2 ∪ V3.

U

w(u1,2,4) = 1

w(u1,2,3) = 1

w(u3n−2,3n−1,3n) = 1

w(v1) = a1c

w(v2) = a2c

w(v3) = a3c

w(v3n) = a3nc

w(u1) = d w(u3) = d

w(u4) = d

w(u6) = d

w(u2) = d

w(u5) = d

w(u7) = d

w(u8) = d

w(u9) = d

w(v0) = 1

w(u1,2,5) = 1

Figure 4: Reduction from 3-Partition.

First we show that if there is a solution P1, . . . , Pm to the 3-Partition instance then there is
a Nash equilibrium for this graph. Simply for every 1 ≤ q ≤ m if Pq = {i, j, k} then player q is

6

Lemma: There is no Nash 
equilibrium with 2 players.

Proof: By sym., the first player
choose u2.
Then the second player moves 
to u6 and gains 5.
Now the first player can move to 
u7 to increase his utility.
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NP-hardness
Theorem: It is NP-hard to decide whether a Voronoi 
game admits an equilibrium.

Proof (high-level): 

u1 u2 u3 u4

u5 u6

u7 u8

u9

Figure 3: Example of a graph with no Nash equilibrium for 2 players.

Theorem 1 Given a graph G(V,E) and a set of k players, deciding the existence of Nash equilib-
rium for k players on G is NP-complete.

Proof: The problem is clearly in NP, since best responses can be computed in polynomial time,
therefore it can be verified efficiently if a strategy profile is a Nash equilibrium.

The proof of NP-hardness is by the reduction from 3-Partition, which is unary NP-complete
[6]. In this later problem we are given integers a1, . . . , a3m and B such that B/4 < ai < B/2
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i=1 = mB and have to partition them into disjoint sets P1, . . . , Pm ⊆

{1, . . . , 3m} such that for every 1 ≤ j ≤ m we have
∑
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We construct a weighted graph G(V,E) with the weight function w : V → N and a set U ⊆ V
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game 〈G, U, w, k〉 if and only if there is a solution to the 3-Partition instance. We define the
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graph of figure 3 where each of the vertices u1, . . . , u9 has weight d. To complete our construction,
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Figure 4: Reduction from 3-Partition.

First we show that if there is a solution P1, . . . , Pm to the 3-Partition instance then there is
a Nash equilibrium for this graph. Simply for every 1 ≤ q ≤ m if Pq = {i, j, k} then player q is

6
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Inefficiency
How good is an equilibrium ?
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Inefficiency

social cost

optimum

the worst Nash
equilibrium 

the best Nash 
equilibrium

price of 
anarchy (PoA) 

price of stability
(PoS)

How good is an equilibrium ?
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Inefficiency

social cost

optimum

the worst Nash
equilibrium 

the best Nash 
equilibrium

price of 
anarchy (PoA) 

price of stability
(PoS)

 social cost 
discrepancy

Social cost discrepancy: 
       worst Nash / best Nash
Ideas:

•Measure the degree of 
choice in a game.
•Unfair to compare the 
cost with OPT in selfish 
setting.

How good is an equilibrium ?
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Delaunay triangulation
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Delaunay triangulation

 Delaunay graph: a strategy 
profile   , there exists an edge                      

i, j
f

(i, j) if       are neighbors.  

 Delaunay triangulation:                      
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Social cost discrepancy

• Consider two equilibria
and   .

• Partition the Delaunay graph 
corresponding to    into regions.

• Showing that each location 
of     is not so far from a 
region above (compared to 
the diameter of the region).

r
4r

▴ ▴

▴
▴ ▴

▴

▴
▴▴

▴

▴

Theorem: The social cost discrepancy is                 Ω(
√

n/k)
and O(

√
kn)

Proof: 
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Improvements
• If               then the discrepancy isTheorem:              k ≤ n/4 O(

√
n)

• If there exist constants                   such that:                

then the discrepancy is 

• If there exists constant    such that                k ≥ n− dd

then the discrepancy is 

0 nn− d

Ω(
√

n/k)
O(
√

n)
Θ(1) Θ(n)

Θ(n)

Θ(1)

n/c1 n/c2

∀ n ≥ n0 : n/c1 ≤ k ≤ n/c2

c1 ≥ c2, n0

k
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Improvements
• If               then the discrepancy isTheorem:              k ≤ n/4 O(

√
n)

• If there exist constants                   such that:                

then the discrepancy is 

• If there exists constant    such that                k ≥ n− dd

then the discrepancy is 

0 nn− d

Ω(
√

n/k)
O(
√

n)
Θ(1) Θ(n)

Θ(n)

Θ(1)

n/c1 n/c2

∀ n ≥ n0 : n/c1 ≤ k ≤ n/c2

c1 ≥ c2, n0

k

Economic view
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Scheduling Games 
in the Dark
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Scheduling Games
    jobs (players) and      machines: a job chooses a 

machine to execute.  The processing time of job   on 
machine    is 

 Each machine specifies a policy how jobs assigned to 
the machine are to be scheduled.

n m

 The cost     of a job   is its completion time. 

i
j pij

ci i

 The social cost is the makespan, i.e.  max
i

ci
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Non-clairvoyant policies
 Typically, a policy depends on the processing time of jobs 

assigned to the machine.
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Non-clairvoyant policies
 Typically, a policy depends on the processing time of jobs 

assigned to the machine.

 What about policies that do not require this knowledge?

 Incomplete information games

 Private information of jobs
 Jobs cannot influence on their completion time 

by misreporting their processing time
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Non-clairvoyant policies
 Typically, a policy depends on the processing time of jobs 

assigned to the machine.

 What about policies that do not require this knowledge?

 Incomplete information games

 Private information of jobs
 Jobs cannot influence on their completion time 

by misreporting their processing time

Non-clairvoyant policies

existence
Nash equilibrium

small PoA
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Natural policies
 RANDOM: schedules jobs in a random order.

ci = pij +
1
2

∑

i′:σ(i′)=j,i′ !=i

pi′j

In the strategy profile   ,   is assigned to   :         σ i j
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Natural policies
 RANDOM: schedules jobs in a random order.

 EQUI: schedules jobs in parallel, assigning each job an 
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Natural policies
 RANDOM: schedules jobs in a random order.

 EQUI: schedules jobs in parallel, assigning each job an 
equal fraction of the processor.  

ci = pij +
1
2

∑

i′:σ(i′)=j,i′ !=i

pi′j

In the strategy profile   ,   is assigned to   :         σ i j

A

B

C

C

D

pA = 1
pB = 1

pC = 2
pD = 3

0 4 6 7
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Natural policies
 RANDOM: schedules jobs in a random order.

 EQUI: schedules jobs in parallel, assigning each job an 
equal fraction of the processor.  

ci = pij +
1
2

∑

i′:σ(i′)=j,i′ !=i

pi′j

In the strategy profile   ,   is assigned to   :         σ i j

ci = p1j + . . . + pi−1,j + (k − i + 1)pij

If there are    jobs on machine    s.t: p1j ≤ . . . ≤ pkjk j
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Definitions

i Def:  A job   is balanced if max pij/ min pij ≤ 2

 Def of models:
 Identical machines:                    for some length 

 Uniform machines:                    for some speed

 Unrelated machines:        arbitrary

pij = pi ∀j

pij = pi/sj

pij

sj

pi
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Definitions

 Def: Best-response dynamic is a process that let an 
arbitrary unhappy player (job) make a best response -- a 
strategy that maximizes player’s utility.

 Def:  A job is unhappy if it can decrease its cost by 
changing the strategy (other players’ strategies are fixed) 
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Our results

identical uniform unrelated

RANDOM NE non-
convergence

EQUI NE  NE NE

 Existence of equilibria: potential argument.

Idea:               • Best-response dynamic may cycle

• New dynamic to break the cycle.
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 Existence of equilibria: potential argument.

NE for balanced 
jobs
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• New dynamic to break the cycle.
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Our results

identical uniform unrelated

RANDOM NE non-
convergence

EQUI NE  NE NE

 Existence of equilibria: potential argument.

NE for balanced 
jobs

Idea:               • Best-response dynamic may cycle

• New dynamic to break the cycle.

Tuesday, July 7, 2009



RANDOM, uniform machines
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RANDOM, uniform machines

 Jobs have length 
 Machines have speed

p1 ≤ p2 ≤ . . . ≤ pn

s1 ≥ s2 ≥ . . . ≥ sm

pij = pi/sj
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RANDOM, uniform machines

 Jobs have length 
 Machines have speed

p1 ≤ p2 ≤ . . . ≤ pn

s1 ≥ s2 ≥ . . . ≥ sm

pij = pi/sj

 Dynamic: among all unhappy jobs, let the one with the 
greatest index make a best move.
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Potential function
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Potential function

 For any strategy profile   , let    be the unhappy job with 
greatest index.

σ t

fσ(i) =

{
1 if 1 ≤ i ≤ t,

0 otherwise.
1 0t
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Potential function

 For any strategy profile   , let    be the unhappy job with 
greatest index.

σ t

fσ(i) =

{
1 if 1 ≤ i ≤ t,

0 otherwise.
1 0t

                                                             lex. decreasesΦ(σ) = (fσ(1), sσ(1), . . . , fσ(n), sσ(n))
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Potential function

 For any strategy profile   , let    be the unhappy job with 
greatest index.

σ t

fσ(i) =

{
1 if 1 ≤ i ≤ t,

0 otherwise.
1 0t

                                                             lex. decreasesΦ(σ) = (fσ(1), sσ(1), . . . , fσ(n), sσ(n))

 Dominance: either the number of unhappy players 
decreases or the lexicographical order of machines’ 
speeds are decreased. 
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Our results

identical uniform unrelated

RANDOM NE non-
convergence

EQUI NE  NE NE

 Existence of equilibria: potential argument.

NE for balanced 
jobs

Idea:               • Best-response dynamic may cycle

• New dynamic to break the cycle.

• Dominance: either the number of 
unhappy players decreases or the 
lexicographical order of machines’ 
speeds are decreased. 
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Our results

 Theorem:  For unrelated machines, the PoA of policy 
EQUI is at most 2m – interestingly, that matches the 
best clairvoyant policy. 

 PoA is not increased when 
processing times are unknown 
to the machines.

the worst
NE

PoA

OPT
 The knowledge about jobs’ 

characteristics is not 
necessarily needed.
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Online Mechanism 
Design
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Mechanism Design

Goal: self-interested behavior yields desired 
outcomes. 

Define the game
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Online Auction 
 A company produces one perishable item per time unit 

(items have to be immediately delivered to bidders, e.g. 
electricity, ice-cream, ...)
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Online Auction 
 A company produces one perishable item per time unit 

(items have to be immediately delivered to bidders, e.g. 
electricity, ice-cream, ...)

 Single-minded bidders arrive online: a customer arrives 
at    , pays      if he receives     items before deadline    , 
otherwise he pays nothing.    

wi ki diri
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Online Auction 
 A company produces one perishable item per time unit 

(items have to be immediately delivered to bidders, e.g. 
electricity, ice-cream, ...)

 Opt. prob: maximize the welfare            over all 
satisfied bidders.

∑

i

wi

 Single-minded bidders arrive online: a customer arrives 
at    , pays      if he receives     items before deadline    , 
otherwise he pays nothing.    

wi ki diri
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Online Auction 
 A company produces one perishable item per time unit 

(items have to be immediately delivered to bidders, e.g. 
electricity, ice-cream, ...)

 Opt. prob: maximize the welfare            over all 
satisfied bidders.

∑

i

wi

 Single-minded bidders arrive online: a customer arrives 
at    , pays      if he receives     items before deadline    , 
otherwise he pays nothing.    

wi ki diri

 Mechanism design:       are private
 Bidders may misreport 

their value. They bid 

wi

bi
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Truthful Auction Design
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Truthful Auction Design

allocation algorithm: 
determine the set of 

satisfied bidders

payment algorithm: 
determine how much 
a bidder has to pay

Auction: 
receives all bids
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Truthful Auction Design

ui =

{
wi − pi if satisfied,

0 otherwise.

Goal: self-interested behavior yields truthfulness, bi = wi

allocation algorithm: 
determine the set of 

satisfied bidders

payment algorithm: 
determine how much 
a bidder has to pay

Auction: 
receives all bids
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Truthful Auction Design

allocation algorithm: 
determine the set of 

satisfied bidders

payment algorithm: 
determine how much 
a bidder has to pay

Auction: 
receives all bids
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Truthful Auction Design

monotone: 
a winner still wins if he 

raises his bid

critical bid:
the smallest bid that a 
winner needs to bid in 

order to win.  

allocation algorithm: 
determine the set of 

satisfied bidders

payment algorithm: 
determine how much 
a bidder has to pay

Auction: 
receives all bids
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Monotone algorithm
 Our problem: 

 design a monotone allocation algorithm 

 verify whether the critical payment 
scheme can be computed efficiently.
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Monotone algorithm
 Our problem: 

 design a monotone allocation algorithm 

 verify whether the critical payment 
scheme can be computed efficiently.

 Maximizing the welfare            is NP-hard even offline. 
∑

i

wi
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Monotone algorithm
 Our problem: 

 design a monotone allocation algorithm 

 verify whether the critical payment 
scheme can be computed efficiently.

 Maximizing the welfare            is NP-hard even offline. 
∑

i

wi

1|ri − online, pmtn|
∑

i

wi Scheduling problem: 

... with monotone algorithm
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Online Algorithm

 Def: an online algorithm          is   -competitive if for any 
instance   , the outcome 

ALG
I c · ALG(I) ≥ OPT (I)

c

 Technique: charging scheme
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Online Algorithm

 Def: an online algorithm          is   -competitive if for any 
instance   , the outcome 

ALG
I c · ALG(I) ≥ OPT (I)

c

 Technique: charging scheme

OPTALG
wj

c · wi i

 j
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Our results
 Theorem:  If                 then       

• The Smith algorithm which serves the bidder that 
maximizes           is     -competitive where     is the 
remaining demands of bidder   .         

2k qi

i

• The algo which serves the bidder that 
maximizes                  is                  -competitive     
where                                          .         

Θ(k/ log k)
α = 1− (1− ε)2 · (ln k)/k

• There exists a 5-competitive alg. if ki = k ∀i

ki ≤ k ∀i

bi/qi

bi · αqi−1
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remaining demands of bidder   .         

2k qi

i

• The algo which serves the bidder that 
maximizes                  is                  -competitive     
where                                          .         

Θ(k/ log k)
α = 1− (1− ε)2 · (ln k)/k Optimal alg.

• There exists a 5-competitive alg. if ki = k ∀i

ki ≤ k ∀i

bi/qi

bi · αqi−1
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Our results
 Theorem:  If                 then       

• The Smith algorithm which serves the bidder that 
maximizes           is     -competitive where     is the 
remaining demands of bidder   .         

2k qi

i

• The algo which serves the bidder that 
maximizes                  is                  -competitive     
where                                          .         

Θ(k/ log k)
α = 1− (1− ε)2 · (ln k)/k

 Proof:  Using general charging scheme.       

Optimal alg.

• There exists a 5-competitive alg. if ki = k ∀i

ki ≤ k ∀i

bi/qi

bi · αqi−1
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Our results
 Theorem:  If                 then       

• The Smith algorithm which serves the bidder that 
maximizes           is     -competitive where     is the 
remaining demands of bidder   .         

2k qi

i

• The algo which serves the bidder that 
maximizes                  is                  -competitive     
where                                          .         

Θ(k/ log k)
α = 1− (1− ε)2 · (ln k)/k Optimal alg.

 Corollary: there exists truthful optimal mechanism with 
the same competitive ratio.        

• There exists a 5-competitive alg. if ki = k ∀i

ki ≤ k ∀i

bi/qi

bi · αqi−1
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Summary

Players
(maximize their utilities)

Social objectiveΦ
Given game
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Summary

Players
(maximize their utilities)

Social objectiveΦ

X ?

Given game
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Summary

Players
(maximize their utilities)

Social objectiveΦ

X ?

Given game

Design games (algorithms)
(a little more control,

much better quality of outcomes)
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Thank you!
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