Improved Online Scheduling in Maximizing Throughput of Equal Length Jobs

> Nguyen Kim Thang (university Paris-Dauphine, France)

Motivation

-Profit maximization

Enterprise: perishable product (electricity, ice-cream, ...).
Clients: single-minded, arrive online, different demands.
Goal: maximize the profit.

Model

-Online Scheduling

Jobs: arrive at r_i , processing time p_i , deadline d_i , value (weight) w_i .

Preemption is necessary

Objective: maximize the total value of jobs completed on time.

Preemption with restart: when a job is scheduled again, it must be executed from the beginning (e.g., data broadcast).

Preemption with resume: when a job is scheduled again, the previously done work can be resumed (e.g., ATM network).

Competitive ratio

 ${}^{\rm O}\mbox{An algorithm}$ ALG is $\alpha {\rm -competitive}$ if for any instance I

$$\frac{OPT(I)}{ALG(I)} \leq \alpha \quad \text{(maximization problem)}$$

Competitive ratio

 ${}^{\rm O}\mbox{An algorithm}$ ALG is $\alpha\mbox{-competitive}$ if for any instance I

 $\frac{OPT(I)}{ALG(I)} \leq \alpha \quad \text{(maximization problem)}$

What is a competitive ratio?

• Measure the performance of an algorithm (worst-case analysis)

• The price of an object (the problem):

negotiation Algorithm \longleftarrow Adversary (upper bound) (lower bound)

Contribution

	equal processing times	bounded processing times (by k)	unbounded processing times
unit weight	$\alpha = 1$	$\alpha = \Theta(\log k)$	∞
general	$\frac{3\sqrt{3}}{2} \le \alpha \le 5$ ≤ 4.24	$\alpha = \Theta(k/\log k)$	∞

Contribution

	equal processing times	bounded processing times (by k)	unbounded processing times
unit weight	$\alpha = 1$	$\alpha = \Theta(\log k)$	∞
general	$\frac{3\sqrt{3}}{2} \le \alpha \le 5$ ≤ 4.24	$\alpha = \Theta(k/\log k)$	∞

Improved algorithms for both models of preemption

Weights and correlation between jobs' deadlines

Settling the competitivity

Dethods: charging scheme, potential function, etc.

Settling the competitivity

Methods: charging scheme, potential function, etc

Starting point

• Paradox: low weight, imminent deadline which jobs? ←───

higher weight, later deadline

Starting point

Paradox: low weight, which jobs? higher weight, imminent deadline
 Iater deadline

• p : initial job length, $q_j(t)$: length of job j at time t

• A job j is pending at time t if $t + q_j(t) \le d_j$

Starting point

Paradox: low weight, which jobs? higher weight, imminent deadline
 Iater deadline

- p : initial job length, $q_j(t)$: length of job j at time t
- A job j is pending at time t if $t + q_j(t) \le d_j$
- A 5-competitive algorithm (preemption with restart)

At any time

• If no currently scheduled job, schedule the pending one with highest weight

• If a new pending job arrive with weight at least twice that of the currently scheduled job, then schedule the new one (by interrupting the current job)

Observations

• Correlation among jobs' deadlines is ignored

Treatment:

• A job *i* is urgent at time *t* if $d_i < t + q_i(t) + p$

 Some job would be delayed by new urgent jobs (even with low weight)

• Ensure no significant lost if new heavy jobs arrive.

 ${\rm \circ}$ Initially, set $Q=\emptyset, \alpha=0, 1<\beta<3/2$

 $^{\Box}$ At time t , let i,j be a new released job and the currently scheduled job, respectively. At any interruption, if $\alpha>0$ then $\alpha:=\alpha+1$

 ${\rm \circ}$ Initially, set $Q=\emptyset, \alpha=0, 1<\beta<3/2$

 $^{\Box}$ At time t , let i,j be a new released job and the currently scheduled job, respectively. At any interruption, if $\alpha>0$ then $\alpha:=\alpha+1$

• If $w_i \geq 2w_j, w_i \geq 2^{\alpha}w(Q)$ do

schedule i

set
$$Q = \emptyset, \alpha = 0$$

 ${\rm \circ}$ Initially, set $Q=\emptyset, \alpha=0, 1<\beta<3/2$

 $^{\Box}$ At time t , let i,j be a new released job and the currently scheduled job, respectively. At any interruption, if $\alpha>0$ then $\alpha:=\alpha+1$

• If
$$w_i \geq 2w_j, w_i \geq 2^{lpha} w(Q)$$
 do

• If
$$\alpha = 0, \beta w_j \le w_i \le 2w_j$$
 do
i urgent and $d_j \ge t + 2p$

schedule iset $Q = \emptyset, \alpha = 0$

schedule job which is $\arg \max\{w_{\ell} : d_{\ell} < t + 2p\}$ set $Q = \{j\}, \alpha = 1$

• Initially, set $Q = \emptyset, \alpha = 0, 1 < \beta < 3/2$

 \Box At time t, let i, j be a new released job and the currently scheduled job, respectively. At any interruption, if $\alpha > 0$ then $\alpha := \alpha + 1$

• If
$$w_i \geq 2w_j, w_i \geq 2^{lpha} w(Q)$$
 do

• If
$$\alpha = 0, \beta w_j \le w_i \le 2w_j$$
 do
i urgent and $d_j \ge t + 2p$

schedule iset $Q = \emptyset, \alpha = 0$

schedule job which is $\arg \max\{w_{\ell} : d_{\ell} < t + 2p\}$ set $Q = \{j\}, \alpha = 1$

do • If *i* is urgent $w_i \ge 2w_j + w_{j'}$ no job ℓ such that $S_{i}(t) + 2p \leq d_{\ell} < t + 2p, w_{\ell} \geq w_{i}$

schedule i

The charging scheme

I Theorem: the algorithm is $(2 + \sqrt{5})$ -competitive

**<sup>{
m M}** Theorem: there is a $(2+\sqrt{5})$ -competitive algorithm for model of preemption with resume</sup>

Conclusion

Improved algorithms for both models of preemption

^D Open questions:

 ${\rm \circ}$ Settling the right competitive ratio $\,2.5 \leq \alpha \leq 4.24$

• Interesting: not to reduce the gap but new methods.

Thank you!

Thank Kristoffer!

