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Finding: PPAD- Finding: PLS- Existence:
complete complete NP-hardness

O Matrix Scheduling Games
O Connection Games
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Qutline

Connection Games / Weighted Connection Games

NP-hardness:

O equilibrium in Weighted Connection Games.
O0%good” cost-sharing protocol.

Conclusion and open questions
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Weighted Connection Games

Similar to Connection Games but now each player has
weight w;

weighted Shapley cost-sharing: cost of a player

Zce'wi/We where W, = Z W

ec P; jZGEPj
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Existence of equilibrium

The Connection Games always possesses a Nash
equilibrium

(I)(S) — >:>:Ce/k7 where S — UZPfL
ecS k=1
if a player i changes path P; by path P;
0 < Z Ce/Ne — Z Ce/(Me + 1)
ec P; ec P! — (I)(S) _ (I)(S \ Pz L Pz/)

Lemma [Chen et al]: There does not always exist Nash
equilibrium in Weighted Connection Games.
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NP-hardness

e [heorem: It is NP-hard to decide whether a given
weighted connection game with Shapley cost-sharing
admits an equilibrium.

* Proof: Reduction from MONOTONE3SAT.
MONOTONE3SAT: X = {z,22,...,2,} C={c,c2,...,cm}

either c¢= (z1 Va2V x3) or c¢=(r1VI2V7ZTs)

Network:
Each player p,. for a literal x and player p. for a clause c

Plug the gadget as a subnetwork

Additional players
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Inefficiency of equilibria

the worst Nash
>

equilibrium

the best Nash i
—

equilibrium

OPT —*1

Good equilibria ?

price of anarchy

(PoA) = worst NE/OPT

price of stability (PoS)
= best NE/OPT
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Why other cost-sharing protocol
with small PoS ?

e-admissible cost-sharing
protocol:

Budget balance

Separability Edge’s cost is
Stability ~ shared only to
e-fairness Players using it
PoS =logn
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Price of Stability

Why other cost-sharing protocol
with small PoS ?

e-admissible cost-sharing
protocol:

Budget balance
Separability
Stability
e-fairness | Shapley
if there is more than two players usingan ' =logn

edge then no one pays more than
(1 — €) fraction of this edge’s cost.




Price of Stability

Why other cost-sharing protocol
with small PoS ?

e-admissible cost-sharing
protocol:

Budget balance

Separability

Stability

e-fairness

Does there exist such a PoS = logn

protocol with PoS =1?




PoS in admissible cost-sharing

e [emma: For any admissible cost-sharing protocol, PoS
is at least 3/2.

* Proof: % OPT is the backbone path of cost n + 1

In NE, no one uses entirely the backbone.

NE > 3(n — 1)/2
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NP-hardness

e [heorem: Deciding if there exists an e-admissible

cost-sharing protocol for a given network such that
the PoS < 3/2 is NP-hard.

* Proof: Same technique to the previous proof.
MONOTONES3SAT: X = {z1,22,...,2,} C={c1,c2,... m}

C:(Cbl\/afg\/xg) or 62(3_31\/552\/553)




Reduction Network

20+ (1 —6)a < B < 3a
m—-—1)+(1—-—cla<M<M+2<mp
2(M + mpB + nma) < k

f."".' §
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o Present a technique in proving NP-hardness
for problems about Nash equilibrium.

O ? Designing cost-sharing protocol on (un)directed
network with small PoS
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