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Existence: 
NP-hardness

 Matrix Scheduling Games
 Connection Games
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Outline

 Connection Games / Weighted Connection Games

 NP-hardness:

 Conclusion and open questions

 equilibrium in Weighted Connection Games.
 “good” cost-sharing protocol.
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Weighted Connection Games

 Similar to Connection Games but now each player has 
weight 

 weighted Shapley cost-sharing: cost of a player 

wi

∑

e∈Pi

ce · wi/We where We =

∑

j:e∈Pj

wj
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where S = ∪iPiΦ(S) =
∑

e∈S

ne∑

k=1

ce/k,

if a player i changes path     by path Pi P
′
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 Lemma [Chen et al]:  There does not always exist Nash 
equilibrium in Weighted Connection Games.
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NP-hardness
• Theorem: It is NP-hard to decide whether a given 
weighted connection game with Shapley cost-sharing 
admits an equilibrium.

• Proof: Reduction from MONOTONE3SAT.

MONOTONE3SAT: X = {x1, x2, . . . , xn} C = {c1, c2, . . . , cm}

c = (x1 ∨ x2 ∨ x3) c = (x̄1 ∨ x̄2 ∨ x̄3)or

Network:
 Each player     for a literal    and player     for a clause px

pcx c

 Plug the gadget as a subnetwork 

 Additional players

either
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c1 = x1 ∨ x2 ∨ x3
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x =

{
1 if px uses 1-path,

0 if px uses 0-path.



Reduction Network

x =

{
1 if px uses 1-path,

0 if px uses 0-path.

c = 1 ∀c



Inefficiency of equilibria

the worst Nash
equilibrium price of anarchy

(PoA) = worst NE/OPT

price of stability (PoS) 
= best NE/OPT

the best Nash
equilibrium 

OPT

Good equilibria ?
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Price of Stability

1/21 1/3 1/n

1 + ε

s1 s2 s3 sn

t
PoS = log n

Why other cost-sharing protocol 
with small PoS ?

  -admissible cost-sharing 
protocol:

 Budget balance
 Separability

 Stability
   -fairnessε

if there is more than two players using an 
edge then no one pays more than                                 
            fraction of this edge’s cost. (1− ε)

ε

Shapley



Price of Stability

1/21 1/3 1/n

1 + ε

s1 s2 s3 sn

t
PoS = log n

Why other cost-sharing protocol 
with small PoS ?

  -admissible cost-sharing 
protocol:

 Budget balance
 Separability

 Stability
   -fairnessε

Does there exist such a 
protocol with PoS =   ?1

ε

Shapley
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is at least 3/2.

• Proof:  OPT is the backbone path of cost 

 In NE, no one uses entirely the backbone. 

 NE             ≥ 3(n − 1)/2

n + 1



PoS in admissible cost-sharing
• Lemma: For any admissible cost-sharing protocol, PoS 
is at least 3/2.

• Proof:  OPT is the backbone path of cost 

 In NE, no one uses entirely the backbone. 

 NE             ≥ 3(n − 1)/2

n + 1



NP-hardness



NP-hardness

• Theorem: Deciding if there exists an   -admissible 
cost-sharing protocol for a given network such that 
the PoS           is NP-hard. 

ε

≤ 3/2

• Proof: Same technique to the previous proof.

MONOTONE3SAT: X = {x1, x2, . . . , xn} C = {c1, c2, . . . , cm}

c = (x1 ∨ x2 ∨ x3) c = (x̄1 ∨ x̄2 ∨ x̄3)or



Reduction Network 
2α + (1 − ε)α < β < 3α

(m − 1)β + (1 − ε)α < M < M + 2 < mβ

2(M + mβ + nmα) < k



Conclusion and open question

 Present a technique in proving NP-hardness 
for problems about Nash equilibrium.
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 Present a technique in proving NP-hardness 
for problems about Nash equilibrium.

 ? Designing cost-sharing protocol on (un)directed 
network with small PoS



Conclusion and open question

Thank you!


