# NP-hardness of pure Nash equilibrium using negated gadgets

#### NGUYEN Kim Thang Ecole Polytechnique, France

\* Equilibrium: strategy profile that is resilient to deviation of each player.

\* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium

Pure equilibrium

\* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium choose a distribution over strategies Pure equilibrium

\* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium

Pure equilibrium deterministically choose a strategy

\* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium always exists (by Nash) Pure equilibrium

\* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium always exists (by Nash) Finding: PPADcomplete Pure equilibrium

\* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium always exists (by Nash) Finding: PPADcomplete Pure equilibrium

Finding: PLScomplete

\* Equilibrium: strategy profile that is resilient to deviation of each player.

Mixed equilibrium always exists (by Nash) Finding: PPADcomplete Pure equilibrium

Finding: PLScomplete Existence: NP-hardness

Matrix Scheduling GamesConnection Games

### Framework in proving NPhardness

Negated gadget for property *P* of a game

A larger game+ which encodes aNP-hard problem

NP-hardness in deciding whether a game possesses property P



### Framework in proving NPhardness

"counter example"

Negated gadget for property *P* of a game

A larger game + which encodes a NP-hard problem

NP-hardness in deciding whether a game possesses property P



#### Outline

#### Connection Games / Weighted Connection Games

\* NP-hardness:

equilibrium in Weighted Connection Games.
 "good" cost-sharing protocol.

Conclusion and open questions

#### **Connection Games**

\*G(V, E) directed graph with cost  $c: E \to \mathbf{Q}$ 

\* n players, each chooses (deterministically) a path  $P_i$  to connect her source  $s_i$  and sink  $t_i$ 

\* social cost: 
$$\sum_{e \in \bigcup_i P_i} c_e$$
  
\* Shapley cost-sharing: cost  
of a player

$$\sum_{e \in P_i} c_e / n_e$$



#### **Connection Games**

\*G(V, E) directed graph with cost  $c: E \to \mathbf{Q}$ 

\* n players, each chooses (deterministically) a path  $P_i$  to connect her source  $s_i$  and sink  $t_i$ 

\* social cost: 
$$\sum_{e \in \cup_i P_i} c_e$$

Shapley cost-sharing: cost of a player

$$\sum_{e \in P_i} c_e / n_e$$



#### Weighted Connection Games

\* Similar to Connection Games but now each player has weight  $w_i$ 

\* weighted Shapley cost-sharing: cost of a player

$$\sum_{e \in P_i} c_e \cdot w_i / W_e \quad \text{where} \quad W_e = \sum_{j:e \in P_j} w_j$$

#### Existence of equilibrium

#### Existence of equilibrium

\* The Connection Games always possesses a Nash equilibrium

$$\Phi(S) = \sum_{e \in S} \sum_{k=1}^{n_e} c_e / k, \text{ where } S = \bigcup_i P_i$$

if a player *i* changes path  $P_i$  by path  $P'_i$ 

$$0 < \sum_{e \in P_i} c_e / n_e - \sum_{e \in P'_i} c_e / (n_e + 1)$$
$$= \Phi(S) - \Phi(S \setminus P_i \cup P'_i)$$

#### Existence of equilibrium

\* The Connection Games always possesses a Nash equilibrium

$$\Phi(S) = \sum_{e \in S} \sum_{k=1}^{n_e} c_e / k, \text{ where } S = \bigcup_i P_i$$

if a player *i* changes path  $P_i$  by path  $P'_i$ 

$$0 < \sum_{e \in P_i} c_e / n_e - \sum_{e \in P'_i} c_e / (n_e + 1)$$
$$= \Phi(S) - \Phi(S \setminus P_i \cup P'_i)$$

\* Lemma [Chen et al]: There does not always exist Nash equilibrium in Weighted Connection Games.























































#### NP-hardness

- *Theorem*: It is NP-hard to decide whether a given weighted connection game with Shapley cost-sharing admits an equilibrium.
- **Proof**: Reduction from MONOTONE3SAT.

**MONOTONE3SAT:**  $X = \{x_1, x_2, ..., x_n\}$   $C = \{c_1, c_2, ..., c_m\}$ either  $c = (x_1 \lor x_2 \lor x_3)$  or  $c = (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$ 

Network:

\* Each player  $p_{\boldsymbol{x}}$  for a literal  $\boldsymbol{x}$  and player  $p_{c}$  for a clause c

- Plug the gadget as a subnetwork
- \*Additional players



















$$x = \begin{cases} 1 & \text{if } p_x \text{ uses 1-path,} \\ 0 & \text{if } p_x \text{ uses 0-path.} \end{cases}$$



$$x = \begin{cases} 1 & \text{if } p_x \text{ uses 1-path,} \\ 0 & \text{if } p_x \text{ uses 0-path.} \end{cases}$$





### Inefficiency of equilibria









## Why other cost-sharing protocol with small PoS ?



Why other cost-sharing protocol with small PoS ?

 $\epsilon$ -admissible cost-sharing protocol:

\* Budget balance

\* Separability

\* Stability

\*  $\epsilon$ -fairness





 $S_1$ 

Why other cost-sharing protocol with small PoS ?

 $\epsilon$ -admissible cost-sharing protocol:

\* Budget balance

\* Separability Edge's cost is

\* Stability shared only to

\*  $\epsilon$ -fairness players using it

 $1 + \epsilon$  $s_2$  $s_3$  $s_n$ 1/32/nShapley  $PoS = \log n$ 

Why other cost-sharing protocol with small PoS ?

 $\epsilon$ -admissible cost-sharing protocol:

\* Budget balance

\* Separability

Stability
 There exists NE
 *ϵ*-fairness



 $1 + \epsilon$ 

 $s_n$ 

/n

Shapley

Why other cost-sharing protocol with small PoS ?

 $\epsilon$ -admissible cost-sharing protocol:

- \* Budget balance
- \* Separability
- \* Stability
- \*  $\epsilon$ -fairness

if there is more than two players using an  $r' = \log n$ edge then no one pays more than  $(1 - \epsilon)$  fraction of this edge's cost.

 $s_2$ 

 $S_1$ 

 $s_3$ 

1/3

Why other cost-sharing protocol with small PoS ?

 $\epsilon$ -admissible cost-sharing protocol:

- \* Budget balance
- \* Separability
- \* Stability
- ★ *e*-fairness

 $1 + \epsilon$  $s_2$  $s_3$  $s_n$  $S_1$ 1/3/nShapley  $PoS = \log n$ 

Does there exist such a protocol with PoS = 1?

#### PoS in admissible cost-sharing

- Lemma: For any admissible cost-sharing protocol, PoS is at least 3/2.
- Proof: \* OPT is the backbone path of cost n + 1
  \* In NE, no one uses entirely the backbone.
  \* NE ≥ 3(n − 1)/2



#### PoS in admissible cost-sharing

- Lemma: For any admissible cost-sharing protocol, PoS is at least 3/2.
- Proof: \* OPT is the backbone path of cost n + 1
  \* In NE, no one uses entirely the backbone.
  \* NE ≥ 3(n − 1)/2



#### NP-hardness

### NP-hardness

• Theorem: Deciding if there exists an  $\epsilon$ -admissible cost-sharing protocol for a given network such that the PoS  $\leq 3/2$  is NP-hard.

• **Proof**: Same technique to the previous proof.

**MONOTONE3SAT:**  $X = \{x_1, x_2, \dots, x_n\}$   $C = \{c_1, c_2, \dots, c_m\}$  $c = (x_1 \lor x_2 \lor x_3)$  or  $c = (\bar{x}_1 \lor \bar{x}_2 \lor \bar{x}_3)$ 

 $2\alpha + (1 - \epsilon)\alpha < \beta < 3\alpha$  $(m - 1)\beta + (1 - \epsilon)\alpha < M < M + 2 < m\beta$  $2(M + m\beta + nm\alpha) < k$ 



#### Conclusion and open question

Present a technique in proving NP-hardness for problems about Nash equilibrium.

### Conclusion and open question

Present a technique in proving NP-hardness for problems about Nash equilibrium.

Period Protocol on (un)directed network with small PoS

#### Conclusion and open question

Thank you!