

Scheduling Games in the Dark

Nguyen Kim Thang (joint work with Christoph Durr)

Aarhus March 9th, 09

Outline

- Scheduling Games
 - Definition & Motivation
 - Summary of results
- * Existence of pure Nash equilibrium
 - Potential argument
- * Inefficiency of equilibria
 - Price of anarchy

* n jobs (players) and m machines: a job chooses a machine to execute. The processing time of job i on machine j is p_{ij}

- * n jobs (players) and m machines: a job chooses a machine to execute. The processing time of job i on machine j is p_{ij}
- * Such a job-machine assignment σ is a strategy profile. The load of machine j is $\ell_j = \sum_{i:\sigma(i)=j} p_{ij}$

- * n jobs (players) and m machines: a job chooses a machine to execute. The processing time of job i on machine j is p_{ij}
- * Such a job-machine assignment σ is a strategy profile. The load of machine j is $\ell_j = \sum_{i:\sigma(i)=j} p_{ij}$
- * Each machine specifies a policy how jobs assigned to the machine are to be scheduled (e.g., SPT, LPT, ...).
- *The cost c_i of a job i is its completion time.
- *The social cost is the makespan, i.e. $\max_j \ell_j = \max_i c_i$

* Coordination mechanism aim to design policies such that the self-interested behaviors lead to equilibria with small PoA.

- * Coordination mechanism aim to design policies such that the self-interested behaviors lead to equilibria with small PoA.
- * Communication is hard or costly (large-scale autonomous systems in the Internet).

- * Coordination mechanism aim to design policies such that the self-interested behaviors lead to equilibria with small PoA.
- * Communication is hard or costly (large-scale autonomous systems in the Internet).
- * Policies are designed based on local information.

- * Coordination mechanism aim to design policies such that the self-interested behaviors lead to equilibria with small PoA.
- * Communication is hard or costly (large-scale autonomous systems in the Internet).
- * Policies are designed based on local information.
 - □ Strongly local policy: a machine looks only at proc. time of jobs assigned to the machine.

$$\sigma(i) = j \longrightarrow p_{ij}$$

- * Coordination mechanism aim to design policies such that the self-interested behaviors lead to equilibria with small PoA.
- * Communication is hard or costly (large-scale autonomous systems in the Internet).
- * Policies are designed based on local information.
 - □ Strongly local policy: a machine looks only at proc. time of jobs assigned to the machine.

$$\sigma(i) = j \longrightarrow p_{ij}$$

□ Local policy: depends only on the parameters of jobs assigned to it. $\sigma(i) = j \longrightarrow p_{ij'} \forall j'$

* Strongly local policies:

- * Strongly local policies:
 - Shortest Processing Time First (SPT)

- * Strongly local policies:
 - Shortest Processing Time First (SPT)

machine I

machine 2

machine 3

- * Strongly local policies:
 - Shortest Processing Time First (SPT)

machine I

machine 2

machine 3

- * Strongly local policies:
 - Shortest Processing Time First (SPT)

```
machine I
machine 2
machine 3
```

Longest Processing Time First (LPT)

- * Strongly local policies:
 - Shortest Processing Time First (SPT)

machine I

machine 2

machine 3

- Longest Processing Time First (LPT)
- \square MAKESPAN: if $\sigma(i) = j$

$$c_i = \ell_j$$

* Local policies:

 \square Inefficiency-based policy: greedily schedule jobs in increasing order of $\rho_i = p_{ij}/q_i$ where

$$q_i = \min_{j'} p_{ij'}$$

* Local policies:

 $lue{}$ Inefficiency-based policy: greedily schedule jobs in increasing order of $ho_i=p_{ij}/q_i$ where

$$q_i = \min_{j'} p_{ij'}$$

*Typically, a policy depends on the processing time of jobs assigned to the machine.

Non-clairvoyant policies

Non-clairvoyant policies

- *What about policies that do not require this knowledge?
 - Incomplete information games
 - Private information of jobs
 - Jobs can influence on their completion time by misreporting their processing time

Non-clairvoyant policies

- *What about policies that do not require this knowledge?
 - Incomplete information games
 - Private information of jobs
 - Jobs can influence on their completion time by misreporting their processing time

* RANDOM: schedules jobs in a random order.

- * RANDOM: schedules jobs in a random order.
 - \square In the strategy profile σ , i is assigned to j

$$c_{i} = p_{ij} + \frac{1}{2} \sum_{i':\sigma(i')=j,i'\neq i} p_{i'j}$$
$$= \frac{1}{2} (p_{ij} + \ell_{j})$$

- * RANDOM: schedules jobs in a random order.
 - \square In the strategy profile σ , i is assigned to j

$$c_{i} = p_{ij} + \frac{1}{2} \sum_{i':\sigma(i')=j,i'\neq i} p_{i'j}$$
$$= \frac{1}{2} (p_{ij} + \ell_{j})$$

 \square A job i on machine j has an incentive to move to machine j' iff:

$$p_{ij} + \ell_j > 2p_{ij'} + \ell_{j'}$$

* EQUI: schedules jobs in parallel, assigning each job an equal fraction of the processor.

* EQUI: schedules jobs in parallel, assigning each job an equal fraction of the processor.

* EQUI: schedules jobs in parallel, assigning each job an equal fraction of the processor.

If there are k jobs on machine j s.t: $p_{1j} \leq \ldots \leq p_{kj}$

$$c_i = p_{1j} + \ldots + p_{i-1,j} + (k-i+1)p_{ij}$$

* EQUI: schedules jobs in parallel, assigning each job an equal fraction of the processor.

If there are k jobs on machine j s.t: $p_{1j} \leq \ldots \leq p_{kj}$

$$c_i = p_{1j} + \ldots + p_{i-1,j} + (k-i+1)p_{ij}$$

$$p_{1j} \leq \ldots \leq p_{ij} \leq \ldots \leq p_{kj}$$
sum
number

Models

* Def: A job i is balanced if $\max p_{ij}/\min p_{ij} \leq 2$

- * Def of models:
 - $lue{}$ Identical machines: $p_{ij} = p_i \ \forall j$ for some length p_i
 - $lue{}$ Uniform machines: $p_{ij} = p_i/s_j$ for some speed s_j
 - \square Unrelated machines: p_{ij} arbitrary

Existence of equilibrium

*Theorem:

The game under RANDOM policy is a potential game for 2 unrelated machines with balanced jobs but it is not for more than 3 machines. For uniform machines, balanced jobs, there always exists equilibrium.

The game under EQUI policy is a potential game.

Inefficiency

*Theorem: For unrelated machines, the PoA of policy EQUI is at most 2m — interestingly, that matches the best clairvoyant policy.

* PoA is not increased when processing times are unknown to the machines.

Standard definitions

* Def: A job is unhappy if it can decrease its cost by changing the strategy (other players' strategies are fixed)

* Def: a best response (best move) of a job is the strategy which minimizes the cost of the job (while other players' strategies are fixed)

* Def: Best-response dynamic is a process that let an arbitrary unhappy job make a best response.

*Theorem:

• The game under RANDOM policy is a potential game for uniform machines with balanced jobs (balanced speeds).

* Jobs have length $p_1 \leq p_2 \leq \ldots \leq p_n$ $p_{ij} = p_i/s_j$ * Machines have speed $s_1 \geq s_2 \geq \ldots \geq s_m$

- * Jobs have length $p_1 \le p_2 \le \ldots \le p_n$ $p_{ij} = p_i/s_j$ * Machines have speed $s_1 \ge s_2 \ge \ldots \ge s_m$
- *Lemma: Consider a job i making a best move from a to b. If there is a new unhappy job with index greater than i, then $s_a > s_b$

- * Jobs have length $p_1 \le p_2 \le \ldots \le p_n$ $p_{ij} = p_i/s_j$ * Machines have speed $s_1 \ge s_2 \ge \ldots \ge s_m$
- *Lemma: Consider a job i making a best move from a to b. If there is a new unhappy job with index greater than i, then $s_a>s_b$
- * Proof: let i' be a new unhappy job.

- * Jobs have length $p_1 \le p_2 \le \ldots \le p_n$ $p_{ij} = p_i/s_j$ * Machines have speed $s_1 \ge s_2 \ge \ldots \ge s_m$
- *Lemma: Consider a job i making a best move from a to b. If there is a new unhappy job with index greater than i, then $s_a>s_b$
- * Proof: let i' be a new unhappy job.
 - \square i' was happy on machine c and now i' has an incentive to move to machine a

- * Jobs have length $p_1 \le p_2 \le \ldots \le p_n$ $p_{ij} = p_i/s_j$ * Machines have speed $s_1 \ge s_2 \ge \ldots \ge s_m$
- *Lemma: Consider a job i making a best move from a to b. If there is a new unhappy job with index greater than i, then $s_a>s_b$
- * Proof: let i' be a new unhappy job.
 - \square i' was happy on machine c and now i' has an incentive to move to machine a
 - \square i' was happy on machine b and now i' has an incentive to move to machine c

- * Proof: let i' be a new unhappy job.
 - \square i' was happy on machine c and now i' has an incentive to move to machine a

$$\ell_a + p_i/s_a > \ell_b + 2p_i/s_b$$

 $\ell_c + p_{i'}/s_c > (\ell_a - p_i/s_a) + 2p_{i'}/s_a$

 $\ell_c + p_{i'}/s_c \le \ell_b + 2p_{i'}/s_b$

- * Proof: let i' be a new unhappy job.
 - \square i' was happy on machine c and now i' has an incentive to move to machine a

$$\ell_a + p_i/s_a > \ell_b + 2p_i/s_b$$

 $\ell_c + p_{i'}/s_c > (\ell_a - p_i/s_a) + 2p_{i'}/s_a$

 $\ell_c + p_{i'}/s_c \le \ell_b + 2p_{i'}/s_b$

Hence,
$$(s_a - s_b)(p_{i'} - p_i) > 0$$

- * Proof: let i' be a new unhappy job.
 - \square i' was happy on machine b and now i' has an incentive to move to machine c

$$(p_i - p_{i'})(2s_b - s_c) > 0$$

- * Proof: let i' be a new unhappy job.
 - \square i' was happy on machine b and now i' has an incentive to move to machine c

$$(p_i - p_{i'})(2s_b - s_c) > 0$$

☐ The lemma follows.

* Dynamic: among all unhappy jobs, let the one with the greatest index make a best move.

* Dynamic: among all unhappy jobs, let the one with the greatest index make a best move.

* For any strategy profile σ , let t be the unhappy job with greatest index.

$$f_{\sigma}(i) = \begin{cases} 1 & \text{if } 1 \leq i \leq t, \\ 0 & \text{otherwise.} \end{cases}$$

* Dynamic: among all unhappy jobs, let the one with the greatest index make a best move.

* For any strategy profile σ , let t be the unhappy job with greatest index.

$$f_{\sigma}(i) = \begin{cases} 1 & \text{if } 1 \leq i \leq t, \\ 0 & \text{otherwise.} \end{cases}$$

*
$$\Phi(\sigma) = (f_{\sigma}(1), s_{\sigma(1)}, \dots, f_{\sigma}(n), s_{\sigma(n)})$$
 lex. decreases

*
$$\Phi(\sigma) = (f_{\sigma}(1), s_{\sigma(1)}, \dots, f_{\sigma}(n), s_{\sigma(n)})$$
 lex. decreases

- * $\Phi(\sigma) = (f_{\sigma}(1), s_{\sigma(1)}, \dots, f_{\sigma}(n), s_{\sigma(n)})$ lex. decreases
- * t' is the unhappy player with greatest index in σ'

- * $\Phi(\sigma) = (f_{\sigma}(1), s_{\sigma(1)}, \dots, f_{\sigma}(n), s_{\sigma(n)})$ lex. decreases
- * t' is the unhappy player with greatest index in σ'

$$\Box$$
 If $t' < t$

$$\Phi(\sigma) = (1, s_{\sigma(1)}, \dots, 1, s_{\sigma(t')}, 1, s_{\sigma(t'+1)}, \dots, 1, s_{\sigma(t)}, \dots)$$

$$\Phi(\sigma') = (1, s_{\sigma(1)}, \dots, 1, s_{\sigma(t')}, 0, s_{\sigma(t'+1)}, \dots, 0, s_{\sigma'(t)}, \dots)$$

- * $\Phi(\sigma) = (f_{\sigma}(1), s_{\sigma(1)}, \dots, f_{\sigma}(n), s_{\sigma(n)})$ lex. decreases
- * t' is the unhappy player with greatest index in σ'
 - \Box If t' < t

$$\Phi(\sigma) = (1, s_{\sigma(1)}, \dots, 1, s_{\sigma(t')}, 1, s_{\sigma(t'+1)}, \dots, 1, s_{\sigma(t)}, \dots)$$

$$\Phi(\sigma') = (1, s_{\sigma(1)}, \dots, 1, s_{\sigma(t')}, 0, s_{\sigma(t'+1)}, \dots, 0, s_{\sigma'(t)}, \dots)$$

 \Box If t' > t

$$1 \quad t' \quad 0$$

$$\Phi(\sigma) = (1, s_{\sigma(1)}, \dots, 1, s_{\sigma(t)}, \dots, 0, s_{\sigma(t')}, \dots)$$

$$\Phi(\sigma') = (1, s_{\sigma(1)}, \dots, 1, s_{\sigma'(t)}, \dots, 0, s_{\sigma(t')}, \dots)$$

- * $\Phi(\sigma) = (f_{\sigma}(1), s_{\sigma(1)}, \dots, f_{\sigma}(n), s_{\sigma(n)})$ lex. decreases
- * t' is the unhappy player with greatest index in σ'
 - \Box If t' < t

$$\Phi(\sigma) = (1, s_{\sigma(1)}, \dots, 1, s_{\sigma(t')}, 1, s_{\sigma(t'+1)}, \dots, 1, s_{\sigma(t)}, \dots)$$

$$\Phi(\sigma') = (1, s_{\sigma(1)}, \dots, 1, s_{\sigma(t')}, 0, s_{\sigma(t'+1)}, \dots, 0, s_{\sigma'(t)}, \dots)$$

 \Box If t' > t

$$\Phi(\sigma) = (1, s_{\sigma(1)}, \dots, 1, \underline{s_{\sigma(t)}}, \dots, 0, s_{\sigma(t')}, \dots)$$

$$\Phi(\sigma') = (1, s_{\sigma(1)}, \dots, 1, \underline{s_{\sigma'(t)}}, \dots, 0, s_{\sigma(t')}, \dots)$$

by Lemma: $s_{\sigma(t)} > s_{\sigma'(t)}$

RANDOM, unrel. machines

*Theorem:

The game under RANDOM policy is a potential game for 2 unrelated machines with balanced jobs but it is not for more than 3 machines.

RANDOM, unrel. machines

*Theorem:

The game under RANDOM policy is a potential game for 2 unrelated machines with balanced jobs but it is not for more than 3 machines.

* Proof:

- \square Let $\sigma: \{1,\ldots,n\} \rightarrow \{1,2\}$ be the current profile.
- The following potential decreases strictly

$$\Phi = |\ell_1 - \ell_2| + 3\sum_{i} \max\{p_{i\sigma(i)} - p_{i\overline{\sigma(i)}}, 0\}$$

EQUI

*Theorem:

The game under EQUI policy is a strong potential game.

EQUI

*Theorem:

• The game under EQUI policy is a strong potential game.

* Proof:

- \Box Let σ be the current profile.
- The following exact potential decreases strictly

$$\Phi = \frac{1}{2} \sum_{i} (c_i + p_{i\sigma(i)})$$

Inefficiency

*Theorem: For unrelated machines, the PoA of policy EQUI is at most 2m.

*The knowledge about jobs' characteristics is not necessarily needed.

If there are k jobs on machine j s.t: $p_{1j} \leq \ldots \leq p_{kj}$

$$c_i = p_{1j} + \ldots + p_{i-1,j} + (k-i+1)p_{ij}$$

If there are k jobs on machine j s.t: $p_{1j} \leq \ldots \leq p_{kj}$

$$c_i = p_{1j} + \ldots + p_{i-1,j} + (k-i+1)p_{ij}$$

* Proof:

$$q_i := \min_{j} p_{ij}$$

$$Q(i) := \arg\min_{j} p_{ij}$$

$$q_i := \min_{j} p_{ij}$$

$$\sum_{i=1}^{n} q_i \le m \cdot OPT$$

$$Q(i) := \arg\min_{j} p_{ij}$$

 \square Rename jobs such that $q_1 \leq q_2 \leq \ldots \leq q_n$

If there are k jobs on machine j s.t: $p_{1j} \leq \ldots \leq p_{kj}$

$$c_i = p_{1j} + \ldots + p_{i-1,j} + (k-i+1)p_{ij}$$

* Proof:

$$q_i := \min_j p_{ij}$$
 $\sum_{i=1}^{n} Q(i) := \arg\min_j p_{ij}$

$$q_i := \min_j p_{ij}$$

$$\sum_{i=1}^n q_i \le m \cdot OPT$$

$$Q(i) := \arg\min_j p_{ij}$$

- \square Rename jobs such that $q_1 \leq q_2 \leq \ldots \leq q_n$
- Lemma: In any NE,

$$c_i \le 2q_1 + \ldots + 2q_{i-1} + (n-i+1)q_i$$

If there are k jobs on machine j s.t: $p_{1j} \leq \ldots \leq p_{kj}$

$$c_i = p_{1j} + \ldots + p_{i-1,j} + (k-i+1)p_{ij}$$

* Proof:

$$q_i := \min_{j} p_{ij}$$
$$Q(i) := \arg\min_{i} p_{ij}$$

$$q_i := \min_j p_{ij}$$

$$\sum_{i=1}^n q_i \le m \cdot OPT$$

$$Q(i) := \arg\min_j p_{ij}$$

- \square Rename jobs such that $q_1 \leq q_2 \leq \ldots \leq q_n$
- Lemma: In any NE,

$$c_i \le 2q_1 + \ldots + 2q_{i-1} + (n-i+1)q_i$$

 \square Proof: $c_1 \leq nq_1$ = the worst cost on Q(1)

$$c_2 \leq q_1 + (n-1)q_2$$
 = the worst cost on $Q(2)$

 $lue{}$ By monotonicity of $(q_i)_{i=1}^n$

$$\begin{array}{ll} \mathsf{makespan} = & \max_i c_i \\ & \leq & \max_i (2q_1 + \ldots 2q_i + (n-i+1)q_i) \\ & \leq & 2\sum_i q_i \\ & \leq & 2m \cdot OPT \\ & & PoA < 2m \end{array}$$

*Theorem: The strong PoA of EQUI is at least (m+1)/4.

- *Theorem: The strong PoA of EQUI is at least (m+1)/4.
- * Proof (idea):
 - $lue{}$ m groups of jobs J_1,\ldots,J_m
 - $lue{}$ Jobs in J_i can be scheduled only on machines i, i+1

- *Theorem: The strong PoA of EQUI is at least (m+1)/4.
- * Proof (idea):
 - \square m groups of jobs J_1,\ldots,J_m
 - $lue{}$ Jobs in J_i can be scheduled only on machines i, i+1

OPT

- *Theorem: The strong PoA of EQUI is at least (m+1)/4.
- * Proof (idea):
 - $lue{}$ m groups of jobs J_1,\ldots,J_m
 - $lue{}$ Jobs in J_i can be scheduled only on machines i, i+1

Conclusion

Knowledge of jobs' characteristics is not necessarily needed while restricting to strongly local policies.

Conclusion

Knowledge of jobs' characteristics is not necessarily needed while restricting to strongly local policies.

□ Study the existence of equilibrium for RANDOM in two unrelated machines and in uniform machines.

Conclusion

Knowledge of jobs' characteristics is not necessarily needed while restricting to strongly local policies.

□ Study the existence of equilibrium for RANDOM in two unrelated machines and in uniform machines.

 \Box Designing local policy with PoA = $o(\log m)$