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Scheduling Games
    jobs (players) and     machines: a job chooses a 

machine to execute.  The processing time of job   on 
machine    is 

n m
i

j pij

Tuesday, November 16, 2010



Scheduling Games
    jobs (players) and     machines: a job chooses a 

machine to execute.  The processing time of job   on 
machine    is 

n m
i

j pij

 Such a job-machine assignment    is a strategy profile. σ
The load of machine    is   j !j =

∑

i:σ(i)=j

pij

Tuesday, November 16, 2010



Scheduling Games

 Each machine specifies a policy how jobs assigned to 
the machine are to be scheduled (e.g., SPT, LPT, ...).

    jobs (players) and     machines: a job chooses a 
machine to execute.  The processing time of job   on 
machine    is 

n m
i

j pij

 The cost     of a job   is its completion time. ci i

 Such a job-machine assignment    is a strategy profile. σ
The load of machine    is   j !j =

∑

i:σ(i)=j

pij

 The social cost is the makespan, i.e.  max
j

!j = max
i

ci
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Coordination Mechanism
 Coordination mechanism aim to design policies such 

that the self-interested behaviors lead to equilibria with 
small PoA.
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that the self-interested behaviors lead to equilibria with 
small PoA.

 Communication is hard or costly (large-scale 
autonomous systems in the Internet). 
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Coordination Mechanism

 Policies are designed based on local information.

 Coordination mechanism aim to design policies such 
that the self-interested behaviors lead to equilibria with 
small PoA.

 Communication is hard or costly (large-scale 
autonomous systems in the Internet). 

 Strongly local policy: a machine looks only at 
proc. time of jobs assigned to the machine.

σ(i) = j pij

 Local policy: depends only on the parameters 
of jobs assigned to it. σ(i) = j pij′ ∀j′
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Policies
 Strongly local policies:
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Policies
 Strongly local policies:

 Shortest Processing Time First (SPT)
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 Shortest Processing Time First (SPT)
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machine 2
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Policies
 Strongly local policies:

 Shortest Processing Time First (SPT)
machine 1
machine 2
machine 3

 Longest Processing Time First (LPT)

 MAKESPAN: if 

ci = !j

σ(i) = j
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Policies
 Local policies:

 Inefficiency-based policy: greedily schedule jobs 
in increasing order of                    where ρi = pij/qi

qi = min
j′

pij′
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Policies
 Local policies:

 Inefficiency-based policy: greedily schedule jobs 
in increasing order of                    where ρi = pij/qi

qi = min
j′

pij′

 Typically, a policy depends on the processing 
time of jobs assigned to the machine.
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Non-clairvoyant policies

 What about policies that do not require this knowledge?
 Incomplete information games
 Private information of jobs
 Jobs can influence on their completion time by 

misreporting their processing time
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Non-clairvoyant policies

 What about policies that do not require this knowledge?
 Incomplete information games
 Private information of jobs
 Jobs can influence on their completion time by 

misreporting their processing time

Non-clairvoyant policies

existence
Nash equilibrium

small PoA
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Natural policies
 RANDOM: schedules jobs in a random order.
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Natural policies
 RANDOM: schedules jobs in a random order.

ci = pij +
1
2

∑

i′:σ(i′)=j,i′ !=i

pi′j

σ i j In the strategy profile   ,   is assigned to

=
1
2

(pij + !j)
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Natural policies
 RANDOM: schedules jobs in a random order.

 A job   on machine    has an incentive to move 
to machine    iff: 

i j
j′

pij + !j > 2pij′ + !j′

ci = pij +
1
2

∑

i′:σ(i′)=j,i′ !=i

pi′j

σ i j In the strategy profile   ,   is assigned to

=
1
2

(pij + !j)
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Natural policies
 EQUI: schedules jobs in parallel, assigning each job an 

equal fraction of the processor.  
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Natural policies
 EQUI: schedules jobs in parallel, assigning each job an 
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ci = p1j + . . . + pi−1,j + (k − i + 1)pij

If there are    jobs on machine    s.t: p1j ≤ . . . ≤ pkjk j
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Natural policies
 EQUI: schedules jobs in parallel, assigning each job an 

equal fraction of the processor.  

ci = p1j + . . . + pi−1,j + (k − i + 1)pij

If there are    jobs on machine    s.t: p1j ≤ . . . ≤ pkjk j

A
B

C

C

D

pA = 1
pB = 1

pC = 2
pD = 3

0 4 6 7

p1j ≤ . . . ≤ pij ≤ . . . ≤ pkj

sum number
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Models

 Def of models:

 Def:  A job   is balanced if i max pij/ min pij ≤ 2

 Identical machines:                    for some length 

 Uniform machines:                    for some speed

 Unrelated machines:        arbitrary

pij = pi ∀j

pij = pi/sj

pij

sj

pi
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Existence of equilibrium

 The game under EQUI policy is a potential game.

 Theorem:

 The game under RANDOM policy is a potential game 
for 2 unrelated machines with balanced jobs but it is not 
for more than 3 machines. For uniform machines, 
balanced jobs, there always exists equilibrium.
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Inefficiency 

 Theorem:  For unrelated machines, the PoA of policy 
EQUI is at most 2m – interestingly, that matches the 
best clairvoyant policy. 

 PoA is not increased 
when processing times 
are unknown to the 
machines.

the worst
NE

PoA

OPT
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Existence of equilibrium
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Standard definitions

 Def:  A job is unhappy if it can decrease its cost by 
changing the strategy (other players’ strategies are fixed) 

 Def:  a best response (best move) of a job is the 
strategy which minimizes the cost of the job 
(while other players’ strategies are fixed)

 Def: Best-response dynamic is a process that let an 
arbitrary unhappy job make a best response.
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RANDOM, uniform machines

 Theorem:

 The game under RANDOM policy is a potential 
game for uniform machines with balanced jobs 
(balanced speeds).
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RANDOM, uniform machines

 Jobs have length 
 Machines have speed

p1 ≤ p2 ≤ . . . ≤ pn

s1 ≥ s2 ≥ . . . ≥ sm

pij = pi/sj

Tuesday, November 16, 2010
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 Jobs have length 
 Machines have speed

p1 ≤ p2 ≤ . . . ≤ pn

s1 ≥ s2 ≥ . . . ≥ sm

pij = pi/sj

 Lemma: Consider a job   making a best move from    
to   . If there is a new unhappy job with index greater 
than   , then sa > sb

i

i

a
b
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to   . If there is a new unhappy job with index greater 
than   , then sa > sb

i

i

a
b

 Proof:  let    be a new unhappy job. i′
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a
b

 Proof:  let    be a new unhappy job. i′

    was happy on machine    and now    has an 
incentive to move to machine 
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a
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 Lemma: Consider a job   making a best move from    
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than   , then sa > sb
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i

a
b

 Proof:  let    be a new unhappy job. i′
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c
b

    was happy on machine    and now    has an 
incentive to move to machine 

i′ i′c
a
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RANDOM, uniform machines
 Proof:  let    be a new unhappy job. i′

    was happy on machine    and now    has an 
incentive to move to machine 

i′ i′c
a

!c + pi′/sc ≤ !b + 2pi′/sb

!c + pi′/sc > (!a − pi/sa) + 2pi′/sa

!a + pi/sa > !b + 2pi/sb
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RANDOM, uniform machines
 Proof:  let    be a new unhappy job. i′

    was happy on machine    and now    has an 
incentive to move to machine 

i′ i′c
a

!c + pi′/sc ≤ !b + 2pi′/sb

!c + pi′/sc > (!a − pi/sa) + 2pi′/sa

!a + pi/sa > !b + 2pi/sb

(sa − sb)(pi′ − pi) > 0Hence,

Tuesday, November 16, 2010



RANDOM, uniform machines
 Proof:  let    be a new unhappy job. i′

    was happy on machine    and now    has an 
incentive to move to machine 

i′ i′

c
b

(pi − pi′)(2sb − sc) > 0
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RANDOM, uniform machines
 Proof:  let    be a new unhappy job. i′

    was happy on machine    and now    has an 
incentive to move to machine 

i′ i′

c
b

(pi − pi′)(2sb − sc) > 0

 The lemma follows.
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Potential function
 Dynamic: among all unhappy jobs, let the one with the 

greatest index make a best move.
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Potential function
 Dynamic: among all unhappy jobs, let the one with the 

greatest index make a best move.

 For any strategy profile   , let    be the unhappy job with 
greatest index.

σ t

fσ(i) =

{
1 if 1 ≤ i ≤ t,

0 otherwise.
1 0t
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Potential function
 Dynamic: among all unhappy jobs, let the one with the 

greatest index make a best move.

 For any strategy profile   , let    be the unhappy job with 
greatest index.

σ t

fσ(i) =

{
1 if 1 ≤ i ≤ t,

0 otherwise.
1 0t

                                                            lex. decreasesΦ(σ) = (fσ(1), sσ(1), . . . , fσ(n), sσ(n))
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Potential function
                                                            lex. decreasesΦ(σ) = (fσ(1), sσ(1), . . . , fσ(n), sσ(n))
    is the unhappy player with greatest index in t′ σ′
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Potential function
                                                            lex. decreasesΦ(σ) = (fσ(1), sσ(1), . . . , fσ(n), sσ(n))
    is the unhappy player with greatest index in t′ σ′

t′ < t

Φ(σ) = (1, sσ(1), . . . , 1, sσ(t′), 1, sσ(t′+1), . . . , 1, sσ(t), . . .)
Φ(σ′) = (1, sσ(1), . . . , 1, sσ(t′), 0, sσ(t′+1), . . . , 0, sσ′(t), . . .)

 If
0

0

1

1 t′

t
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Potential function
                                                            lex. decreasesΦ(σ) = (fσ(1), sσ(1), . . . , fσ(n), sσ(n))
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t′ < t

Φ(σ) = (1, sσ(1), . . . , 1, sσ(t′), 1, sσ(t′+1), . . . , 1, sσ(t), . . .)
Φ(σ′) = (1, sσ(1), . . . , 1, sσ(t′), 0, sσ(t′+1), . . . , 0, sσ′(t), . . .)

 If
0

0

1

1 t′

t

t′ > t

Φ(σ) = (1, sσ(1), . . . , 1, sσ(t), . . . , 0, sσ(t′), . . .)

Φ(σ′) = (1, sσ(1), . . . , 1, sσ′(t), . . . , 0, sσ(t′), . . .)

 If
0

0

1

1 t′

t
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Potential function
                                                            lex. decreases

by Lemma: sσ(t) > sσ′(t)

Φ(σ) = (fσ(1), sσ(1), . . . , fσ(n), sσ(n))
    is the unhappy player with greatest index in t′ σ′

t′ < t
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 If
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RANDOM, unrel. machines 
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RANDOM, unrel. machines 
 Theorem:

 The game under RANDOM policy is a potential 
game for 2 unrelated machines with balanced jobs but 
it is not for more than 3 machines. 
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RANDOM, unrel. machines 
 Theorem:

 The game under RANDOM policy is a potential 
game for 2 unrelated machines with balanced jobs but 
it is not for more than 3 machines. 

 Proof:

 Let                                    be the current profile.σ : {1, . . . , n}→{ 1, 2}

 The following potential decreases strictly

Φ = |!1 − !2| + 3
∑

i

max{piσ(i) − piσ(i), 0}
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EQUI
 Theorem:

 The game under EQUI policy is a strong potential 
game. 
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EQUI
 Theorem:

 The game under EQUI policy is a strong potential 
game. 

 Proof:

 Let     be the current profile.

 The following exact potential decreases strictly

σ

Φ =
1
2

∑

i

(ci + piσ(i))
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Inefficiency 

 Theorem:  For unrelated machines, the PoA of policy 
EQUI is at most 2m. 

 The knowledge about 
jobs’ characteristics is 
not necessarily needed.

the worst
NE

PoA

OPT
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ci = p1j + . . . + pi−1,j + (k − i + 1)pij

If there are    jobs on machine    s.t: p1j ≤ . . . ≤ pkjk j
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Proof (sketch) 

 Proof: qi := min
j

pij

Q(i) := arg min
j

pij

n∑

i=1

qi ≤ m · OPT

 Rename jobs such that q1 ≤ q2 ≤ . . . ≤ qn

ci = p1j + . . . + pi−1,j + (k − i + 1)pij
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 Proof: qi := min
j

pij

Q(i) := arg min
j

pij

n∑

i=1

qi ≤ m · OPT

 Rename jobs such that q1 ≤ q2 ≤ . . . ≤ qn

 Lemma: In any NE, 
ci ≤ 2q1 + . . . + 2qi−1 + (n− i + 1)qi

ci = p1j + . . . + pi−1,j + (k − i + 1)pij

If there are    jobs on machine    s.t: p1j ≤ . . . ≤ pkjk j
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Proof (sketch) 

 Proof: qi := min
j

pij

Q(i) := arg min
j

pij

n∑

i=1

qi ≤ m · OPT

 Rename jobs such that q1 ≤ q2 ≤ . . . ≤ qn

 Lemma: In any NE, 
ci ≤ 2q1 + . . . + 2qi−1 + (n− i + 1)qi

ci = p1j + . . . + pi−1,j + (k − i + 1)pij

If there are    jobs on machine    s.t: p1j ≤ . . . ≤ pkjk j

 Proof:                   c1 ≤ nq1

c2 ≤ q1 + (n− 1)q2

Q(1) = the worst cost on

 = the worst cost on Q(2)
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Proof (sketch) 
 By monotonicity of  (qi)n

i=1

makespan = max
i

ci

≤ max
i

(2q1 + . . . 2qi + (n− i + 1)qi)

≤ 2
∑

i

qi

≤ 2m · OPT

PoA ≤ 2m
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Lower bound 
 Theorem:  The strong PoA of EQUI is at least (m+1)/4. 
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Lower bound 
 Theorem:  The strong PoA of EQUI is at least (m+1)/4. 

 Proof (idea):  
      groups of jobs m J1, . . . , Jm

 Jobs in     can be scheduled only on machines Ji i, i + 1
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Lower bound 
 Theorem:  The strong PoA of EQUI is at least (m+1)/4. 

 Proof (idea):  
      groups of jobs m J1, . . . , Jm

 Jobs in     can be scheduled only on machines Ji i, i + 1

NE

J1 J1

J2 J2

OPT

J1 J2
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Conclusion

 Knowledge of jobs’ characteristics is not necessarily 
needed while restricting to strongly local policies.
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 Study the existence of equilibrium for RANDOM 
in two unrelated machines and in uniform machines.
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Conclusion

 Knowledge of jobs’ characteristics is not necessarily 
needed while restricting to strongly local policies.

 Designing local policy with PoA = o(log m)

 Study the existence of equilibrium for RANDOM 
in two unrelated machines and in uniform machines.
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