Scheduling Games in the Dark

Nguyen Kim Thang
(joint work with Christoph Durr)

Aarhus
March 9th, 09

Outline

* Scheduling Games

ㅁ Definition \& Motivation
\square Summary of results

* Existence of pure Nash equilibrium
\square Potential argument
* Inefficiency of equilibria
\square Price of anarchy

Scheduling Games

Scheduling Games

* n jobs (players) and m machines: a job chooses a machine to execute. The processing time of job i on machine j is $p_{i j}$

Scheduling Games

* n jobs (players) and m machines: a job chooses a machine to execute. The processing time of job i on machine j is $p_{i j}$
* Such a job-machine assignment σ is a strategy profile.

The load of machine j is $\ell_{j}=\sum p_{i j}$

$$
i: \sigma(i)=j
$$

Scheduling Games

* n jobs (players) and m machines: a job chooses a machine to execute. The processing time of job i on machine j is $p_{i j}$
* Such a job-machine assignment σ is a strategy profile.

The load of machine j is $\ell_{j}=\sum p_{i j}$

$$
i: \sigma(i)=j
$$

* Each machine specifies a policy how jobs assigned to the machine are to be scheduled (e.g., SPT, LPT, ...).
* The cost c_{i} of a job i is its completion time.
*The social cost is the makespan, i.e. $\max _{j} \ell_{j}=\max _{i} c_{i}$

Coordination Mechanism

Coordination Mechanism

* Coordination mechanism aim to design policies such that the self-interested behaviors lead to equilibria with small PoA.

Coordination Mechanism

* Coordination mechanism aim to design policies such that the self-interested behaviors lead to equilibria with small PoA.
* Communication is hard or costly (large-scale autonomous systems in the Internet).

Coordination Mechanism

* Coordination mechanism aim to design policies such that the self-interested behaviors lead to equilibria with small PoA.
* Communication is hard or costly (large-scale autonomous systems in the Internet).
* Policies are designed based on local information.

Coordination Mechanism

* Coordination mechanism aim to design policies such that the self-interested behaviors lead to equilibria with small PoA.
* Communication is hard or costly (large-scale autonomous systems in the Internet).
* Policies are designed based on local information.
- Strongly local policy: a machine looks only at proc. time of jobs assigned to the machine.

$$
\sigma(i)=j \longrightarrow p_{i j}
$$

Coordination Mechanism

* Coordination mechanism aim to design policies such that the self-interested behaviors lead to equilibria with small PoA.
* Communication is hard or costly (large-scale autonomous systems in the Internet).
* Policies are designed based on local information.
- Strongly local policy: a machine looks only at proc. time of jobs assigned to the machine.

$$
\sigma(i)=j \longrightarrow p_{i j}
$$

\square Local policy: depends only on the parameters of jobs assigned to it. $\sigma(i)=j \longrightarrow p_{i j^{\prime}} \forall j^{\prime}$

Policies

* Strongly local policies:

Policies

* Strongly local policies:
\square Shortest Processing Time First (SPT)

Policies

* Strongly local policies:
\square Shortest Processing Time First (SPT) machine I
 machine 2 machine 3

Policies

* Strongly local policies:
\square Shortest Processing Time First (SPT)
machine I
machine 2 machine 3

Policies

* Strongly local policies:
\square Shortest Processing Time First (SPT) machine I machine 2 machine 3
- Longest Processing Time First (LPT)

Policies

* Strongly local policies:
\square Shortest Processing Time First (SPT) machine I machine 2 machine 3

ㅁ Longest Processing Time First (LPT)

- MAKESPAN: if $\sigma(i)=j$

$$
c_{i}=\ell_{j}
$$

Policies

Policies

* Local policies:
- Inefficiency-based policy: greedily schedule jobs in increasing order of $\rho_{i}=p_{i j} / q_{i}$ where

$$
q_{i}=\min _{j^{\prime}} p_{i j^{\prime}}
$$

Policies

* Local policies:
- Inefficiency-based policy: greedily schedule jobs in increasing order of $\rho_{i}=p_{i j} / q_{i}$ where

$$
q_{i}=\min _{j^{\prime}} p_{i j^{\prime}}
$$

* Typically, a policy depends on the processing time of jobs assigned to the machine.

Non-clairvoyant policies

Non-clairvoyant policies

*What about policies that do not require this knowledge?

- Incomplete information games
\square Private information of jobs
\square Jobs can influence on their completion time by misreporting their processing time

Non-clairvoyant policies

*What about policies that do not require this knowledge?

- Incomplete information games
\square Private information of jobs
- Jobs can influence on their completion time by misreporting their processing time

Non-clairvoyant policies

existence
small PoA
Nash equilibrium

Natural policies

* RANDOM: schedules jobs in a random order.

Natural policies

* RANDOM: schedules jobs in a random order.
- In the strategy profile σ, i is assigned to j

$$
\begin{aligned}
c_{i} & =p_{i j}+\frac{1}{2} \sum_{i^{\prime}: \sigma\left(i^{\prime}\right)=j, i^{\prime} \neq i} p_{i^{\prime} j} \\
& =\frac{1}{2}\left(p_{i j}+\ell_{j}\right)
\end{aligned}
$$

Natural policies

* RANDOM: schedules jobs in a random order.
- In the strategy profile σ, i is assigned to j

$$
\begin{aligned}
c_{i} & =p_{i j}+\frac{1}{2} \sum_{i^{\prime}: \sigma\left(i^{\prime}\right)=j, i^{\prime} \neq i} p_{i^{\prime} j} \\
& =\frac{1}{2}\left(p_{i j}+\ell_{j}\right)
\end{aligned}
$$

$\square \mathrm{A}$ job i on machine j has an incentive to move to machine j^{\prime} iff:

$$
p_{i j}+\ell_{j}>2 p_{i j^{\prime}}+\ell_{j^{\prime}}
$$

Natural policies

* EQUI: schedules jobs in parallel, assigning each job an equal fraction of the processor.

Natural policies

* EQUI: schedules jobs in parallel, assigning each job an equal fraction of the processor.

Natural policies

* EQUI: schedules jobs in parallel, assigning each job an equal fraction of the processor.

If there are k jobs on machine j s.t: $p_{1 j} \leq \ldots \leq p_{k j}$

$$
c_{i}=p_{1 j}+\ldots+p_{i-1, j}+(k-i+1) p_{i j}
$$

Natural policies

* EQUI: schedules jobs in parallel, assigning each job an equal fraction of the processor.

If there are k jobs on machine j s.t: $p_{1 j} \leq \ldots \leq p_{k j}$

$$
\begin{aligned}
c_{i}= & p_{1 j}+\ldots+p_{i-1, j}+(k-i+1) p_{i j} \\
& p_{1 j} \leq \ldots \leq p_{i j} \leq \ldots \leq p_{k j} \\
& \stackrel{\text { sum }}{\longleftrightarrow} \stackrel{\text { number }}{\longleftrightarrow}
\end{aligned}
$$

Models

* Def: A job i is balanced if $\max p_{i j} / \min p_{i j} \leq 2$
* Def of models:
- Identical machines: $p_{i j}=p_{i} \forall j$ for some length p_{i}
- Uniform machines: $p_{i j}=p_{i} / s_{j}$ for some speed s_{j}
- Unrelated machines: $p_{i j}$ arbitrary

Existence of equilibrium

* Theorem:

OThe game under RANDOM policy is a potential game for 2 unrelated machines with balanced jobs but it is not for more than 3 machines. For uniform machines, balanced jobs, there always exists equilibrium.

OThe game under EQUI policy is a potential game.

Inefficiency

* Theorem: For unrelated machines, the PoA of policy EQUI is at most $2 m$ - interestingly, that matches the best clairvoyant policy.
* PoA is not increased when processing times are unknown to the machines.

Existence of equilibrium

Standard definitions

* Def: A job is unhappy if it can decrease its cost by changing the strategy (other players' strategies are fixed)
* Def: a best response (best move) of a job is the strategy which minimizes the cost of the job (while other players' strategies are fixed)
* Def: Best-response dynamic is a process that let an arbitrary unhappy job make a best response.

RANDOM, uniform machines

*Theorem:
OThe game under RANDOM policy is a potential game for uniform machines with balanced jobs (balanced speeds).

RANDOM, uniform machines

RANDOM, uniform machines

* Jobs have length $p_{1} \leq p_{2} \leq \ldots \leq p_{n}$
* Machines have speed $s_{1} \geq s_{2} \geq \ldots \geq s_{m}$

$$
p_{i j}=p_{i} / s_{j}
$$

RANDOM, uniform machines

* Jobs have length $p_{1} \leq p_{2} \leq \ldots \leq p_{n} \quad p_{i j}=p_{i} / s_{j}$
* Machines have speed $s_{1} \geq s_{2} \geq \ldots \geq s_{m}$
* Lemma: Consider a job i making a best move from a to b. If there is a new unhappy job with index greater than i, then $s_{a}>s_{b}$

RANDOM, uniform machines

* Jobs have length $p_{1} \leq p_{2} \leq \ldots \leq p_{n} \quad p_{i j}=p_{i} / s_{j}$
* Machines have speed $s_{1} \geq s_{2} \geq \ldots \geq s_{m}$
* Lemma: Consider a job i making a best move from a to b. If there is a new unhappy job with index greater than i, then $s_{a}>s_{b}$
* Proof: let i^{\prime} be a new unhappy job.

RANDOM, uniform machines

* Jobs have length $p_{1} \leq p_{2} \leq \ldots \leq p_{n} \quad p_{i j}=p_{i} / s_{j}$
* Machines have speed $s_{1} \geq s_{2} \geq \ldots \geq s_{m}$
* Lemma: Consider a job i making a best move from a to b. If there is a new unhappy job with index greater than i, then $s_{a}>s_{b}$
* Proof: let i^{\prime} be a new unhappy job.
- i^{\prime} was happy on machine c and now i^{\prime} has an incentive to move to machine a

RANDOM, uniform machines

* Jobs have length $p_{1} \leq p_{2} \leq \ldots \leq p_{n} \quad p_{i j}=p_{i} / s_{j}$
* Machines have speed $s_{1} \geq s_{2} \geq \ldots \geq s_{m}$
* Lemma: Consider a job i making a best move from a to b. If there is a new unhappy job with index greater than i, then $s_{a}>s_{b}$
* Proof: let i^{\prime} be a new unhappy job.
- i^{\prime} was happy on machine c and now i^{\prime} has an incentive to move to machine a
- i^{\prime} was happy on machine b and now i^{\prime} has an incentive to move to machine c

RANDOM, uniform machines

* Proof: let i^{\prime} be a new unhappy job.
- i^{\prime} was happy on machine c and now i^{\prime} has an incentive to move to machine a

$$
\begin{aligned}
& \ell_{a}+p_{i} / s_{a}>\ell_{b}+2 p_{i} / s_{b} \\
& \ell_{c}+p_{i^{\prime}} / s_{c}>\left(\ell_{a}-p_{i} / s_{a}\right)+2 p_{i^{\prime}} / s_{a} \\
& \ell_{c}+p_{i^{\prime}} / s_{c} \leq \ell_{b}+2 p_{i^{\prime}} / s_{b}
\end{aligned}
$$

RANDOM, uniform machines

* Proof: let i^{\prime} be a new unhappy job.
- i^{\prime} was happy on machine c and now i^{\prime} has an incentive to move to machine a

$$
\begin{aligned}
& \ell_{a}+p_{i} / s_{a}>\ell_{b}+2 p_{i} / s_{b} \\
& \ell_{c}+p_{i^{\prime}} / s_{c}>\left(\ell_{a}-p_{i} / s_{a}\right)+2 p_{i^{\prime}} / s_{a} \\
& \ell_{c}+p_{i^{\prime}} / s_{c} \leq \ell_{b}+2 p_{i^{\prime}} / s_{b}
\end{aligned}
$$

Hence, $\left(s_{a}-s_{b}\right)\left(p_{i^{\prime}}-p_{i}\right)>0$

RANDOM, uniform machines

* Proof: let i^{\prime} be a new unhappy job.
- i^{\prime} was happy on machine b and now i^{\prime} has an incentive to move to machine c

$$
\left(p_{i}-p_{i^{\prime}}\right)\left(2 s_{b}-s_{c}\right)>0
$$

RANDOM, uniform machines

* Proof: let i^{\prime} be a new unhappy job.
- i^{\prime} was happy on machine b and now i^{\prime} has an incentive to move to machine c

$$
\left(p_{i}-p_{i^{\prime}}\right)\left(2 s_{b}-s_{c}\right)>0
$$

-The lemma follows.

Potential function

Potential function

* Dynamic: among all unhappy jobs, let the one with the greatest index make a best move.

Potential function

* Dynamic: among all unhappy jobs, let the one with the greatest index make a best move.
* For any strategy profile σ, let t be the unhappy job with greatest index.

$$
f_{\sigma}(i)= \begin{cases}1 & \text { if } 1 \leq i \leq t \\ 0 & \text { otherwise }\end{cases}
$$

Potential function

* Dynamic: among all unhappy jobs, let the one with the greatest index make a best move.
* For any strategy profile σ, let t be the unhappy job with greatest index.

$$
f_{\sigma}(i)= \begin{cases}1 & \text { if } 1 \leq i \leq t \\ 0 & \text { otherwise }\end{cases}
$$

* $\Phi(\sigma)=\left(f_{\sigma}(1), s_{\sigma(1)}, \ldots, f_{\sigma}(n), s_{\sigma(n)}\right)$ lex. decreases

Potential function

$$
* \Phi(\sigma)=\left(f_{\sigma}(1), s_{\sigma(1)}, \ldots, f_{\sigma}(n), s_{\sigma(n)}\right) \text { lex. decreases }
$$

Potential function

* $\Phi(\sigma)=\left(f_{\sigma}(1), s_{\sigma(1)}, \ldots, f_{\sigma}(n), s_{\sigma(n)}\right)$ lex. decreases
* t^{\prime} is the unhappy player with greatest index in σ^{\prime}

Potential function

* $\Phi(\sigma)=\left(f_{\sigma}(1), s_{\sigma(1)}, \ldots, f_{\sigma}(n), s_{\sigma(n)}\right)$ lex. decreases
* t^{\prime} is the unhappy player with greatest index in σ^{\prime}

II $t^{\prime}<t$

$$
\begin{aligned}
\Phi(\sigma) & =\left(1, s_{\sigma(1)}, \ldots, 1, s_{\sigma\left(t^{\prime}\right)}, 1, s_{\sigma\left(t^{\prime}+1\right)}, \ldots, 1, s_{\sigma(t)}, \ldots\right) \\
\Phi\left(\sigma^{\prime}\right) & =\left(1, s_{\sigma(1)}, \ldots, 1, s_{\sigma\left(t^{\prime}\right)}, 0, s_{\sigma\left(t^{\prime}+1\right)}, \ldots, 0, s_{\sigma^{\prime}(t)}, \ldots\right)
\end{aligned}
$$

Potential function

* $\Phi(\sigma)=\left(f_{\sigma}(1), s_{\sigma(1)}, \ldots, f_{\sigma}(n), s_{\sigma(n)}\right)$ lex. decreases
* t^{\prime} is the unhappy player with greatest index in σ^{\prime}

$$
\begin{aligned}
& \text { - If } t^{\prime}<t \\
& \Phi(\sigma)=\left(1, s_{\sigma(1)}, \ldots, 1, s_{\sigma\left(t^{\prime}\right)}, 1, s_{\sigma\left(t^{\prime}+1\right)}, \ldots, 1, s_{\sigma(t)}, \ldots\right) \\
& \Phi\left(\sigma^{\prime}\right)=\left(1, s_{\sigma(1)}, \ldots, 1, s_{\sigma\left(t^{\prime}\right)}, 0, s_{\sigma\left(t^{\prime}+1\right)}, \ldots, 0, s_{\sigma^{\prime}(t)}, \ldots\right) \\
& \square \text { If } t^{\prime}>t \\
& \quad \Phi(\sigma)=\left(1, s_{\sigma(1)}, \ldots, 1, s_{\sigma(t)}, \ldots, 0, s_{\sigma\left(t^{\prime}\right)}, \ldots\right) \\
& \Phi\left(\sigma^{\prime}\right)=\left(1, s_{\sigma(1)}, \ldots, 1, s_{\sigma^{\prime}(t)}, \ldots, 0, s_{\sigma\left(t^{\prime}\right)}, \ldots\right)
\end{aligned}
$$

Potential function

* $\Phi(\sigma)=\left(f_{\sigma}(1), s_{\sigma(1)}, \ldots, f_{\sigma}(n), s_{\sigma(n)}\right)$ lex. decreases
* t^{\prime} is the unhappy player with greatest index in σ^{\prime}

$$
\text { If } t^{\prime}<t
$$

$$
\Phi(\sigma)=\left(1, s_{\sigma(1)}, \ldots, 1, s_{\sigma\left(t^{\prime}\right)}, 1, s_{\sigma\left(t^{\prime}+1\right)}, \ldots, 1, s_{\sigma(t)}, \ldots\right)
$$

$$
\Phi\left(\sigma^{\prime}\right)=\left(1, s_{\sigma(1)}, \ldots, 1, s_{\sigma\left(t^{\prime}\right)}, 0, s_{\sigma\left(t^{\prime}+1\right)}, \ldots, 0, s_{\sigma^{\prime}(t)}, \ldots\right)
$$

- If $t^{\prime}>t$

$$
\begin{aligned}
\Phi(\sigma) & =\left(1, s_{\sigma(1)}, \ldots, 1, s_{\sigma(t)}, \ldots, 0, s_{\sigma\left(t^{\prime}\right)}, \ldots\right) \\
\Phi\left(\sigma^{\prime}\right) & =\left(1, s_{\sigma(1)}, \ldots, 1, s_{\sigma^{\prime}(t)}, \ldots, 0, s_{\sigma\left(t^{\prime}\right)}, \ldots\right)
\end{aligned}
$$

by Lemma: $s_{\sigma(t)}>s_{\sigma^{\prime}(t)}$

RANDOM, unrel. machines

RANDOM, unrel. machines

* Theorem:

OThe game under RANDOM policy is a potential game for 2 unrelated machines with balanced jobs but it is not for more than 3 machines.

RANDOM, unrel. machines

* Theorem:

OThe game under RANDOM policy is a potential game for 2 unrelated machines with balanced jobs but it is not for more than 3 machines.

* Proof:
\square Let $\sigma:\{1, \ldots, n\} \rightarrow\{1,2\}$ be the current profile.
ㅁThe following potential decreases strictly

$$
\Phi=\left|\ell_{1}-\ell_{2}\right|+3 \sum_{i} \max \left\{p_{i \sigma(i)}-p_{i \overline{\sigma(i)}}, 0\right\}
$$

EQUI

EQUI

* Theorem:

O The game under EQUI policy is a strong potential game.

EQUI

* Theorem:

O The game under EQUI policy is a strong potential game.

* Proof:
- Let σ be the current profile.
-The following exact potential decreases strictly

$$
\Phi=\frac{1}{2} \sum_{i}\left(c_{i}+p_{i \sigma(i)}\right)
$$

Inefficiency of equilibria

Inefficiency

* Theorem: For unrelated machines, the PoA of policy EQUI is at most 2 m .
* The knowledge about jobs' characteristics is not necessarily needed.

Proof (sketch)

Proof (sketch)

If there are k jobs on machine j s.t: $p_{1 j} \leq \ldots \leq p_{k j}$

$$
c_{i}=p_{1 j}+\ldots+p_{i-1, j}+(k-i+1) p_{i j}
$$

Proof (sketch)

If there are k jobs on machine j s.t: $p_{1 j} \leq \ldots \leq p_{k j}$

$$
c_{i}=p_{1 j}+\ldots+p_{i-1, j}+(k-i+1) p_{i j}
$$

* Proof:

$$
\begin{array}{ll}
q_{i}:=\min _{j} p_{i j} \\
Q(i):=\arg \min _{j} p_{i j}
\end{array} \quad \sum_{i=1}^{n} q_{i} \leq m \cdot O P T
$$

\square Rename jobs such that $q_{1} \leq q_{2} \leq \ldots \leq q_{n}$

Proof (sketch)

If there are k jobs on machine j s.t: $p_{1 j} \leq \ldots \leq p_{k j}$

$$
c_{i}=p_{1 j}+\ldots+p_{i-1, j}+(k-i+1) p_{i j}
$$

* Proof:

$$
\begin{array}{ll}
q_{i}:=\min _{j} p_{i j} \\
Q(i):=\arg \min _{j} p_{i j}
\end{array} \quad \sum_{i=1}^{n} q_{i} \leq m \cdot O P T
$$

\square Rename jobs such that $q_{1} \leq q_{2} \leq \ldots \leq q_{n}$
\square Lemma: In any NE,

$$
c_{i} \leq 2 q_{1}+\ldots+2 q_{i-1}+(n-i+1) q_{i}
$$

Proof (sketch)

If there are k jobs on machine j s.t: $p_{1 j} \leq \ldots \leq p_{k j}$

$$
c_{i}=p_{1 j}+\ldots+p_{i-1, j}+(k-i+1) p_{i j}
$$

* Proof:

$$
\begin{array}{ll}
q_{i}:=\min _{j} p_{i j} \\
Q(i):=\arg \min _{j} p_{i j}
\end{array} \quad \sum_{i=1}^{n} q_{i} \leq m \cdot O P T
$$

\square Rename jobs such that $q_{1} \leq q_{2} \leq \ldots \leq q_{n}$
\square Lemma: In any NE,

$$
c_{i} \leq 2 q_{1}+\ldots+2 q_{i-1}+(n-i+1) q_{i}
$$

- Proof: $\quad c_{1} \leq n q_{1}=$ the worst cost on $Q(1)$

$$
c_{2} \leq q_{1}+(n-1) q_{2}=\text { the worst cost on } Q(2)
$$

Proof (sketch)

- By monotonicity of $\left(q_{i}\right)_{i=1}^{n}$ makespan $=\max _{i} c_{i}$

$$
\begin{aligned}
& \leq \max _{i}\left(2 q_{1}+\ldots 2 q_{i}+(n-i+1) q_{i}\right) \\
& \leq 2 \sum_{i} q_{i} \\
& \leq 2 m \cdot O P T
\end{aligned}
$$

$$
P o A \leq 2 m
$$

Lower bound

*Theorem: The strong PoA of EQUI is at least $(\mathrm{m}+\mathrm{I}) / 4$.

Lower bound

* Theorem: The strong PoA of EQUI is at least $(\mathrm{m}+\mathrm{I}) / 4$.
* Proof (idea):
- m groups of jobs J_{1}, \ldots, J_{m}
- Jobs in J_{i} can be scheduled only on machines $i, i+1$

Lower bound

* Theorem: The strong PoA of EQUI is at least $(\mathrm{m}+\mathrm{I}) / 4$.
* Proof (idea):
- m groups of jobs J_{1}, \ldots, J_{m}
- Jobs in J_{i} can be scheduled only on machines $i, i+1$

OPT

Lower bound

* Theorem: The strong PoA of EQUI is at least $(\mathrm{m}+\mathrm{I}) / 4$.
* Proof (idea):
- m groups of jobs J_{1}, \ldots, J_{m}
- Jobs in J_{i} can be scheduled only on machines $i, i+1$

OPT

NE

Conclusion

\square Knowledge of jobs' characteristics is not necessarily needed while restricting to strongly local policies.

Conclusion

■ Knowledge of jobs' characteristics is not necessarily needed while restricting to strongly local policies.
\square Study the existence of equilibrium for RANDOM in two unrelated machines and in uniform machines.

Conclusion

\square Knowledge of jobs' characteristics is not necessarily needed while restricting to strongly local policies.
\square Study the existence of equilibrium for RANDOM in two unrelated machines and in uniform machines.
\square Designing local policy with $\mathrm{PoA}=o(\log m)$

