On (Group) Strategy-proof Mechanisms without Payment for Facility Location Games

Nguyen Kim Thang

WINE'I0

Outline

Facility Games

- Definitions
- Results

Our main results

• High level ideas.

Conclusion & Further directions

Facility Games

- A network is represented by a graph G(V, E)
- d(u, v) =minimum-length path.

• n agents, agent i has location $x_i \in V$

• A det mechanism $f: V^n \to V$ $\mathbf{x} = \langle x_1, \dots, x_n \rangle \mapsto F$ Agent's cost: $d(x_i, F)$

• A random mechanism $f: V^n \to \Delta(V)$ $\mathbf{x} = \langle x_1, \dots, x_n \rangle \mapsto P$ Agent's cost: $\mathbb{E}_{F \sim P}[d(x_i, F)]$

Facility Games

- A network is represented by a graph G(V, E)
- d(u, v) =minimum-length path.

• n agents, agent i has location $x_i \in V$

• A det mechanism $f: V^n \to V$ $\mathbf{x} = \langle x_1, \dots, x_n \rangle \mapsto F$ Agent's cost: $d(x_i, F)$

Facility Games

• A mechanism is strategy-proof if $\forall i$

 $cost(x_i, f(x'_i, \mathbf{x}_{-i})) \ge cost(x_i, f(\mathbf{x}))$

• A mechanism is group strategy-proof if for all $S \subset N$, there exists $i \in S$ $cost(x_i, f(x'_S, \mathbf{x}_{-S})) > cost(x_i, f(\mathbf{x}))$

Social objective functions:

$$\sum_{i \in N} cost(x_i, F)$$

 $^{\rm O}{\rm A}$ mechanism f is $\alpha\text{-approximation}$ if

$$cost(f) \le \alpha \cdot OPT$$

	Line graphs	General graphs
Det	$1 \ GSP$	$n \ GSP$ (upper bound) $(n-1) \ SP$ (lower bound)
Ran	$1 \; GSP$	

	Line graphs	General graphs
Det	$1 \ GSP$	$n \ GSP$ (upper bound) $(n-1) \ SP$ (lower bound)
Ran	$1 \ GSP$	(2 - 2/n) SP, n GSP (u.b)

	Line graphs	General graphs
Det	$1 \ GSP$	n GSP (upper bound) (n-1) SP (lower bound)
Ran	$1 \; GSP$	$(2 - 2/n) SP, n GSP (u.b)$ $\left(2 - \frac{4}{n^{1/3}}\right) SP, \Omega(n^{1-\epsilon}) GSP$

	Line graphs	General graphs
Det	$1 \ GSP$	$n \ GSP$ (upper bound) $(n-1) \ SP$ (lower bound)
Ran	$1 \; GSP$	$(2 - 2/n) SP, n GSP (u.b)$ $\left(2 - \frac{4}{n^{1/3}}\right) SP, \Omega(n^{1-\epsilon}) GSP$

Designing (G)SP mechanism without money is expensive

Framework of lower bound

Fix a graph

• An instance differs from the previous one in some agents' locations

• Connect instances using strategy-proofness.

GSP mechanisms

 Dictatorship: open the facility at location of some fixed agent.

 \mathbf{V} GSP and *n*-approximation.

Deterministic lower bound by theorem of Schummer and Vohra. (Any SP mechanism on a cycle graph is dictatorship.)

GSP mechanisms

 Dictatorship: open the facility at location of some fixed agent.

 \mathbf{V} GSP and *n*-approximation.

Deterministic lower bound by theorem of Schummer and Vohra. (Any SP mechanism on a cycle graph is dictatorship.)

^I Thm: no randomized GSP mechanism is better than $n^{1-3\epsilon}/3$ - approximation.

 Case I: facility is opened in U
 All agents but the first one move to v₁. The facility is not opened at v₁

$$\frac{(n-1)(1-\epsilon)}{2-\epsilon} \approx \frac{n-1}{2}$$

 Case I: facility is opened in U
 All agents but the first one move to v₁. The facility is not opened at v₁

$$\frac{(n-1)(1-\epsilon)}{2-\epsilon} \approx \frac{n-1}{2}$$

 Case I: facility is opened in U
 All agents but the first one move to v₁. The facility is not opened at v₁

$$\frac{(n-1)(1-\epsilon)}{2-\epsilon} \approx \frac{n-1}{2}$$

 Case I: facility is opened in U
 All agents but the first one move to v₁. The facility is not opened at v₁

$$\frac{(n-1)(1-\epsilon)}{2-\epsilon} \approx \frac{n-1}{2}$$

 v_n

• Case 2: facility is opened in V All agents but the last one move to v_n . Again, $\frac{(n-1)(1-\epsilon)}{2-\epsilon} \approx \frac{n-1}{2}$

 Case I: facility is opened in U
 All agents but the first one move to v₁. The facility is not opened at v₁

$$\frac{(n-1)(1-\epsilon)}{2-\epsilon} \approx \frac{n-1}{2}$$

 v_n

• Case 2: facility is opened in V All agents but the last one move to v_n . Again, $\frac{(n-1)(1-\epsilon)}{2-\epsilon} \approx \frac{n-1}{2}$

Weakness

The argument does not carry.

• An mechanism opens facility at v_n, u_1 with prob $1 - \delta, \delta$

prevent agents $2, \ldots, n-1$ from collaborating.

old cost of agent 2: $1 - \epsilon$

new cost of agent 2: $(1 - \delta) \cdot (1 - \epsilon) + \delta \cdot 1$

Weakness

The argument does not carry.

• An mechanism opens facility at v_n, u_1 with prob $1 - \delta, \delta$

prevent agents $2, \ldots, n-1$ from collaborating.

old cost of agent 2: $1 - \epsilon$ new cost of agent 2: $(1 - \delta) \cdot (1 - \epsilon) + \delta \cdot 1$

Weakness

The argument does not carry.

• An mechanism opens facility at v_n, u_1 with prob $1 - \delta, \delta$

prevent agents $2, \ldots, n-1$ from collaborating.

old cost of agent 2: $1 - \epsilon$

new cost of agent 2: $(1 - \delta) \cdot (1 - \epsilon) + \delta \cdot 1$

Need: symmetry + asymmetry.

Need: symmetry + asymmetry.
nodify brown edges. $2n^{-\epsilon} > \beta_1 > \beta_2 > \ldots > \beta_{n-1} > n^{-\epsilon}$

• define the length in circular permutation

Need: symmetry + asymmetry.
modify brown edges. $2n^{-\epsilon} > \beta_1 > \beta_2 > \ldots > \beta_{n-1} > n^{-\epsilon}$

• define the length in circular permutation

^DWhy it works?

 harder to prevent agents from collaborating.

• amplify the gap by recursive construction

Image: Contract of the second state of the

• Recursive construction of multiple levels.

• Mechanism (Random dictatorship): open the facility at x_i with probability 1/n.

✓ strategy-proof but not GSP

2-approximation

• Mechanism (Random dictatorship): open the facility at x_i with probability 1/n.

✓ strategy-proof but not GSP

✓ 2-approximation

Can we do better?

• Mechanism (Random dictatorship): open the facility at x_i with probability 1/n.

✓ strategy-proof but not GSP

2-approximation

Can we do better?

☑ Thm:

 $^{\rm O}$ no randomized SP mechanism is better than $\left(2-\frac{4}{n^{1/3}}\right)$ approximation.

Idea

 ${\rm \circ}$ Initially, "good" mechanism has prob. 1/2 at s,t

Idea

• Initially, "good" mechanism has prob. 1/2 at s, t• There exists an agent, let say blue, with cost at least $1 + \epsilon$

Idea

Idea

• Initially, "good" mechanism has prob. 1/2 at s, t• There exists an agent, let say blue, with

cost at least $1 + \epsilon$

Idea

• Initially, "good" mechanism has prob. 1/2 at s, t• There exists an agent, let say blue, with

cost at least $1 + \epsilon$

Idea

 ${}^{\rm O}$ Initially, "good" mechanism has prob. 1/2 at s,t

 $^{\rm O}$ There exists an agent, let say blue, with cost at least $1+\epsilon$

 $^{\rm O}$ Move appropriate blue agents to s , by strategy-proof argue that $~p_s\approx p_t\approx 1/2$.

Idea

 ${}^{\rm O}$ Initially, "good" mechanism has prob. 1/2 at s,t

 $^{\rm O}$ There exists an agent, let say blue, with cost at least $1+\epsilon$

 $^{\rm O}$ Move appropriate blue agents to s , by strategy-proof argue that $~p_s\approx p_t\approx 1/2$.

Idea

 ${}^{\rm O}$ Initially, "good" mechanism has prob. 1/2 at s,t

 $^{\rm O}$ There exists an agent, let say blue, with cost at least $1+\epsilon$

 $^{\rm O}$ Move appropriate blue agents to s , by strategy-proof argue that $\ p_s \approx p_t \approx 1/2$.

Then:
$$\frac{1/2 \cdot (1 + 2 + 2\epsilon) + 1/2 \cdot (1 + 2\epsilon)}{1 + 2\epsilon} \approx 2$$

Idea

 ${}^{\rm O}$ Initially, "good" mechanism has prob. 1/2 at s,t

 $^{\rm O}$ There exists an agent, let say blue, with cost at least $1+\epsilon$

 $^{\rm O}$ Move appropriate blue agents to s , by strategy-proof argue that $\ p_s \approx p_t \approx 1/2$.

Then:
$$\frac{1/2 \cdot (1 + 2 + 2\epsilon) + 1/2 \cdot (1 + 2\epsilon)}{1 + 2\epsilon} \approx 2$$

Complete characterization of performance of randomized (G)SP mechanisms.

• Open a constant facilities:

- easy in term of optimization.
- SP mechanism with bounded ratio?

