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ABSTRACT
When a computer system schedules jobs there is typically a signifi-

cant cost associated with preempting a job during execution. This

cost can be from the expensive task of saving the memory’s state

and loading data into and out of memory. There is a need for non-

preemptive system schedulers to avoid the costs of preemption on

desktops, servers and data centers. Despite this need, there is a gap

between theory and practice. Indeed, few non-preemptive online
schedulers are known to have strong foundational guarantees. This

gap is likely due to strong lower bounds on any online algorithm for

popular objectives. Indeed, typical worst case analysis approaches,

and even resource augmented approaches such as speed augmenta-

tion, result in all algorithms having poor performance guarantees.

This paper considers online non-preemptive scheduling prob-

lems in the worst-case model where the algorithm is allowed to

reject a small fraction of jobs. By rejecting only few jobs, this

paper shows that the strong lower bounds can be circumvented.

This model can be used to discover scheduling policies with desir-

able worst-case guarantees. Specifically, the paper presents algo-

rithms for minimizing the total flow-time and minimizing the total

weighted flow-time plus energy under the speed-scaling mecha-

nism. The algorithms have a small constant competitive ratio while

rejecting only a constant fraction of jobs. Beyond specific results,

the paper asserts that alternative models beyond speed augmenta-

tion should be explored to aid in the discovery of good schedulers

in the face of the requirement of being online and non-preemptive.
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1 INTRODUCTION
Designing efficient system schedulers is critical for optimizing sys-

tem performance. Many environments require the scheduler to

be non-preemptive, ensuring each job is scheduled on a machine

without interruption. The need for non-preemption arises because

preemption requires saving the state of a program and writing the

state to memory or disk. For large complex tasks, the overhead cost

of saving state is so large that it has to be avoided entirely.

Designing theoretically efficient online non-preemptive sched-

ulers is challenging. Strong lower bounds have been shown, even

for simple instances [7, 13]. The difficulty lies in the pessimism of

assuming the algorithm is online and must be robust to all problem

instances combined with irrevocable nature of scheduling non-

preemptive jobs.

In order to overcome strong theoretical barriers when design-

ing scheduling algorithms, Kalyanasundaram and Pruhs [12] and

Phillips et al. [15] proposed using resource augmentation in terms

of speed augmentation and the machine augmentation, respectively.
The idea is to either give the algorithm faster processors or extra ma-

chines versus the adversary. Thesemodels provide a tool to establish

a theoretical explanation for the good performance of algorithms in

practice. Indeed, many practical heuristics have been shown to be

competitive in the online preemptive model where the algorithm

is given resource augmentation. Non-preemptive environments

have resisted the discovery of strong theoretical schedulers. De-

signing meaningful algorithms for non-preemptive problems is an

important direction in scheduling [3]. Specifically, it is known that

https://doi.org/10.1145/3210377.3210402
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a non-preemptive algorithm cannot have a small reasonable com-

petitive ratio using only speed or machine augmentation [14] for

the popular average flow time objective.

Recently, Choudhury et al. [8] extended the resource augmen-

tation model to allow rejection (some jobs need not be completed

and are rejected). By combining rejection and speed augmentation,

Lucarelli et al. [14] gave competitive algorithms for non-preemptive

flow-time problems. An intriguing question is the power of rejection

versus resource augmentation. Is there a competitive algorithm that

only uses rejection? This would establish that theoretically rejec-

tion is more powerful since there are lower bounds using resource

augmentation. This paper answers this question positively.

1.1 Models, Problems and Contribution
Non-Preemptive Total Flow-time Minimization. In this problem,

we are given a set of unrelated machinesM and jobs arrive online.

Each job j ∈ J is characterized by a release time r j and it takes a

different processing time pi j if it is executed on each machine i ∈ M.

The characteristics of each job become known to the algorithm only

after its arrival. The jobs should be scheduled non-preemptively,
that is a job is considered to be successfully executed only if it is

executed on a machine i ∈ M for pi j continuous time units. Given

a schedule S, the completion time of a job j ∈ J is denoted by

Cj . Then, its flow-time is defined as Fj = Cj − r j , that is the total
amount of time during which j remains in the system. Our goal

is to create a non-preemptive schedule that minimizes the total

flow-times of all jobs, i.e.,

∑
j Fj .

The problem has been studied in [14] in the model of speed

augmentation and rejection. Specifically, Lucarelli et al. [14] gave a

O (1/(ϵr ·ϵs ))-competitive algorithm that uses machines with speed

(1 + ϵs ) and reject at most ϵr -fraction of jobs for arbitrarily small

ϵr , ϵs > 0. A natural question is whether speed augmentation is

necessary. Our main result answers positively this question.

Theorem 1.1. For the non-preemptive total flow-time minimiza-

tion problem, there exists a 2

(
1+ϵ
ϵ

)
2

-competitive algorithm that re-
moves at most 2ϵ fraction of the total number of jobs, for any ϵ > 0.

The design and analysis of the algorithm follow the duality

approach. At the release time of any job j , the algorithm defines the

dual variables associated to the job and assigns j to some machine

based on this definition. The value of the dual variables associated

to j are selected in order to satisfy two key properties: (i) express the
marginal increase of the total weighted flow-time due to the arrival

of the job — the property that has been observed [2] and has become

more and more popular in dual-fitting for online scheduling; and

(ii) capture the information for a future decision of the algorithm

whether job j will be completed or rejected. Moreover, the dual

variables are defined so as to stabilize the schedule and allows us

to maintain a non-preemptive schedule (even with job arrivals and

rejections in the future).

The decision about rejecting a job depends on the load of the

recently released jobs that are waiting in the queue of each machine.

The scheduler rejects a job when this load exceeds a given threshold.

The rejected job is not necessarily the one that just arrived and

caused the excess in the threshold. The following lemma shows that

immediate rejection policies cannot improve the competitive ratio.

Lemma 1.2. Any ϵ-rejection policy which has to decide the rejection
or not of each job immediately upon its arrival, has a competitive
ratio of Ω(

√
∆) for the non-preemptive total flow-time minimization

problem even on a single machine environment, where ∆ is the ratio
of the maximum over the minimum processing time in the instance
and ϵ > 0.

Non-Preemptive Total Flow-time Plus Energy Minimization. We

next consider non-preemptive scheduling in the speed scaling

model. In this model, each machine i ∈ M has a power function of

the form P (si (t )) = si (t )
α
, where si (t ) is the speed of the machine

i at time t and α > 1 is a constant parameter (usually α ∈ (1, 3]).

Each job j ∈ J is now characterized by its weight w j , its release
date r j and, for each machine i ∈ M, a machine-dependent volume
of execution pi j . A non-preemptive schedule in the speed-scaling

model is a schedule in which each job is processed continuously

(without being interrupted) in a machine and a job has a constant

speed during its execution. Note that in the model, it is allowed to

process multiple jobs in parallel on the same machine. The objec-

tive is to schedule jobs non-preemptively so that minimizing the

total weighted flow-time plus the energy consumed for all jobs, i.e.∑
j w jFj +

∑
i
∫ ∞

0

(
si (t )

)α
dt .

Building upon the resilient ideas and techniques from flow-time

minimization, we derive a competitive algorithm for the problem.

Note that this algorithm does not need to process multiple jobs in

parallel on the same machine, although this is permissible by the

described model.

Theorem 1.3. For the non-preemptive total weighted flow-time

plus energy minimization problem, there exists an O
((

1 + 1

ϵ

) α
α−1

)
-

competitive algorithm that rejects jobs of total weight at most an
ϵ-fraction of the total weight of all jobs, for any ϵ > 0.

Non-Preemptive Energy Minimization. Subsequently, we consider
the non-preemptive energyminimization scheduling problem in the

speed scaling model. The setting is similar to the previous problem

but a job j ∈ J now has a release date r j , a deadline dj and a

processing volume pi j if it is assigned to machine i ∈ M. Every job

has to be processed non-preemptively and to be completed before

its deadline. The goal is to minimize the total energy consumption∑
i
∑
t Pi

(
si (t )

)
where Pi is the power function of machine i . (In

this case we consider the discrete time setting.)

No competitive algorithm is known in the non-preemptivemultiple-

machine environment. Despite of some similarities to the problem

of minimizing energy plus flow-time, the main difference is that

in the latter, one can make a trade-off between energy and flow-

time and derive a competitive algorithm whereas for the energy

minimization problem, one has to deal directly with a non-linear

objective. The critical issue is that no linear program (LP) with

relatively small integrality gap was known. In order to derive a

competitive algorithm for this problem, we make use of the primal-

dual approach based on configuration LP recently developed in

[17]. The approach consists of introducing exponential number of

variables to the natural formulation in order to reduce the integral-

ity gap. Then, in contrast to current rounding techniques based on

configuration LPs, the approach maintains greedily a competitive

solution in the sense of primal-dual (without solving exponential

size LPs). Interestingly, using this approach, the power functions
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are not required to be convex (a crucial property for prior analyses)

and the competitive ratio is characterized by a notion of smoothness

defined as follows.

Definition 1.4. A set function f : 2
N → R+ is (λ, µ )-smooth if

for any set A = {a1, . . . ,an } ⊆ N and any collection B1 ⊆ B2 ⊆

. . . ⊆ Bn ⊆ B ⊆ N , the following inequality holds.

n∑
i=1

[
f
(
Bi ∪ ai

)
− f

(
Bi

)]
≤ λ f

(
A
)
+ µ f

(
B
)

Theorem 1.5. Assume that all power functions are (λ, µ )-smooth.
Then, there is a λ/(1−µ )-competitive algorithm for the non-preemptive
energy minimization scheduling problem. In particular, if Pi (s ) = sαi
for αi ≥ 1 then the algorithm is O (αα )-competitive where α =
maxi αi .

In the following lemma we consider the case of typical power

functions of the form P (s ) = sα , and we show that the above result

is asymptotically optimal as a function of α .

Lemma 1.6. Any deterministic algorithm is at least (α/9)α -compe-
titive for the non-preemptive energy minimization problem even in a
single machine environment.

1.2 Related Work
For the online non-preemptive scheduling problem of minimizing

total weighted flow-time, any algorithm has at least Ω(n) competi-

tive ratio, even for single machine where n is the number of jobs

(as mentioned in [7]). In identical machine environments, Phillips

et al. [15] gave a constant competitive algorithm that usesm log P
machines (recall that the adversary usesm machines), where P is

the ratio of the largest to the smallest processing time. Moreover,

an O (logn)-machine O (1)-speed algorithm that returns the opti-

mal schedule has been presented in [15] for the unweighted flow-

time objective. Epstein and van Stee [11] proposed an ℓ-machines

O (min{
ℓ
√
P , ℓ
√
n})-competitive algorithm for the unweighted case

on a single machine. This algorithm is optimal up to a constant

factor for constant ℓ. Recently, Lucarelli et al. [14] consider the

problem in the model of speed augmentation and rejection. They

showed that without rejection, no algorithm is competitive even on

single machine with speed arbitrarily faster than that of adversary.

Moreover, they gave a scalableO (1/(ϵr ·ϵs ))-competitive algorithm

that uses machines with speed (1+ϵs ) and reject at most ϵr fraction
of jobs for arbitrarily small ϵr , ϵs > 0.

For the online non-preemptive scheduling problem of minimiz-

ing total weighted flow-time plus energy, to the best of our knowl-

edge, no competitive algorithm is known. However, the problem

in the preemptive setting has been widely studied. Bansal et al. [5]

gave an O (α/ logα )-competitive algorithm for weighted flow-time

plus energy in a single machine where the energy function is sα .
Based on linear programming and dual-fitting, Anand et al. [2]

proved an O (α2)-competitive algorithm for unrelated machines.

Subsequently, Nguyen [16] and Devanur and Huang [10] presented

an O (α/ logα )-competitive algorithms for unrelated machines by

dual fitting and primal dual approaches, respectively.

For the online non-preemptive scheduling problem of minimiz-

ing total energy consumption, no competitive algorithm is known.

Even in the preemptive scheduling in which migration of jobs

between machines are not allowed, no algorithm with provable

performance is given. The difficulty, as mentioned earlier, is due

to the integrality gap barrier of all currently known formulations.

In single machine where the issue of non-migration does not exist,

Bansal et al. [6] gave a 2

(
α

α−1

)α
eα -competitive algorithm. More-

over, Bansal et al. [4] showed that no deterministic algorithm has

competitive ratio less than eα−1/α . Albers et al. [1] considered
the case where jobs are allowed to be executed preemptively and

migration between machines is permitted. For this problem, they

proposed an algorithm based on the Average Rate algorithm [18]

and they showed a competitive ratio of (1 + ϵ ) (αα 2
α−1 + 1).

2 MINIMIZE TOTAL FLOW-TIME
Linear Programming Formulation. In order to formulate our prob-

lem as a linear program, for each job j ∈ J , machine i ∈ M and

time t ≥ r j , we introduce a binary variable xi j (t ) which is equal to

one if j is processed on i at time t , and zero otherwise. We use two

lower bounds on the flow-time of each job j ∈ J , assuming that it

is dispatched to machine i: its fractional flow-time which is defined

as

∫ ∞
r j

t−r j
pi j xi j (t )dt (see for example [2]), and its processing time

pi j =
∫ ∞
r j

xi j (t )dt . Then, the linear programming formulation for

the problem of minimizing the total flow-time follows.

min

∑
i ∈M

∑
j ∈J

∫ ∞

r j

( t − r j
pi j

+ 1

)
xi j (t )dt

∑
i ∈M

∫ ∞

0

xi j (t )

pi j
dt ≥ 1 ∀j∑

j ∈J

xi j (t ) ≤ 1 ∀i, t

xi j (t ) ∈{0, 1} ∀i, j, t

Note that the objective value of the above linear program is

at most twice that of the optimal non-preemptive schedule. We

relax the above integer linear program by replacing the integrality

constraints for each xi j (t ) with 0 ≤ xi j (t ) ≤ 1. The dual of the

relaxed linear program is the following.

max

∑
j ∈J

λj −
∑
i ∈M

∫ ∞

0

βi (t ) dt

λj

pi j
− βi (t ) ≤

t − r j

pi j
+ 1 ∀i, j, t

λj ≥ 0 ∀j

βi (t ) ≥ 0 ∀i, t

In the rejection model considered in this article, we assume that

the algorithm is allowed to reject some jobs. This can be interpreted

in the primal linear program by considering only the variables

corresponding to the non-rejected jobs, that is the algorithm does

not have to satisfy the first constraint for the rejected jobs.

The Algorithm and Definition of Dual Variables. We next define

the scheduling, the rejection and the dispatching policies of our

algorithm which is denoted byA. Let ϵ , 0 < ϵ < 1, be an arbitrarily

small constant which indicates the fraction of the total number of
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jobs that will be rejected. Each job is immediately dispatched to

a machine upon its arrival. Let Ui (t ) be the set of pending jobs at

time t dispatched to machine i ∈ M, that is the jobs dispatched to i
that have been released but not yet completed or rejected at time t .
Moreover, let qi j (t ) be the remaining processing time at time t of a
job j ∈ J which has been dispatched to the machine i .

Let k be the job that is executed on machine i at time t . We

always consider the jobs in Ui (t ) \ {k } sorted in non-decreasing

order with respect to their processing times; in case of ties, we

consider the jobs in earliest release time order. We say that a job

j ∈ Ui (t ) \ {k } precedes (resp. succeeds) a job ℓ ∈ Ui (t ) \ {k } if j
appears before (resp. after) ℓ in the above order, and we write j ≺ ℓ
(resp. j ≻ ℓ). We use the symbols ⪯ and ⪰ to express the fact that j
may coincide with ℓ. The scheduling policy of the algorithm A is

the following: whenever a machine i ∈ M becomes idle at a time t ,
schedule on i the job j ∈ Ui (t ) that precedes any other job inUi (t ).

We use two different rules for defining our rejection policy. The
first rule handles the arrival of a big group of jobs during the execu-

tion of a long job as in [14]. The second rule simulates and replaces

the utility of speed-augmentation.

Rejection Rule 1. At the beginning of the execution of a job j ∈
J on machine i , we introduce a counter vj which is ini-

tialized to zero. Whenever a job ℓ is dispatched to machine

i during the execution of j, we increase vj by 1. Then, we

interrupt and reject the job j the first time when vj ≥
1

ϵ .

Rejection Rule 2. For eachmachine i ∈ M, wemaintain a counter

ci which is initialized to zero at t = 0. Whenever a job j is
dispatched to a machine i , we increase ci by 1. Then, we

reject the job with the largest processing time in Ui (t ) \ {k }
the first time when ci = 1 + 1

ϵ , and we reset ci to zero.

Let R be the set of all rejected jobs. By slightly abusing the notation,

we denote the rejection time of a job j ∈ R by Cj . Moreover, we

define the flow-time of a rejected job j ∈ R to be the difference

between its rejection time and its arrival time, and we denote it by

Fj .
At the arrival of a new job j ∈ J , let ∆i j be the increase in the

total flow-time if we decide to dispatch the job j to the machine i .
Fix a machine i and let k be the job that is executed on i at r j . Then,
assuming that j is dispatched to i (i.e., assuming that j ∈ Ui (r j )),
we have that

∆i j = qik (r j ) · 1{if k is not rejected (due to Rule 1)}
+

∑
ℓ⪯j

piℓ

+
∑
ℓ≻j

pi j

−

(
qik (r j ) +

∑
ℓ,j

qik (r j )

)
· 1{if k is rejected due to Rule 1}

−

(
qik (r j ) +

∑
ℓ,j

piℓ + pi jmax

)
· 1{if jmax is rejected due to Rule 2}

where the first term corresponds to the flow-time of the new job j,
the second term corresponds to the increase of the flow-time for

the jobs inUi (r j ) due to the dispatching of j to machine i , the third
term corresponds to the decrease of the flow-time for the jobs in

Ui (r j ) ∪ {k } due to the rejection of k (according to Rule 1), and

the forth term corresponds to the decrease of the flow-time of the

largest job jmax due to its rejection (according to Rule 2). Based on

the above, we define

λi j =
1

ϵ
pi j +

∑
ℓ⪯j

piℓ +
∑
ℓ≻j

pi j

Then, our dispatching policy is the following: at the arrival of a new

job j at time r j , dispatch j to the machine i∗ = argmini ∈Mλi j .
The quantity λi j is strongly related with the marginal increase

∆i j . However, all negative terms that appear in ∆i j have been

eliminated in λi j . Moreover, the positive quantity qik (r j ) does not

appear in λi j , but we have added the term
1

ϵ pi j . The intuition for

the definition of λi j is to charge an upper bound to the marginal

increase ∆i j to the λiℓ quantities of some jobs dispatched to i .
Specifically, the quantity

∑
ℓ⪯j piℓ +

∑
ℓ≻j pi j is charged to λi j . If

the positive quantity qik (r j ) exists, then it is charged to the term

1

ϵ pik of λik (i.e., to the job k that is executed on i at the arrival of
j). The rejection Rule 1 guarantees that this term is sufficient for all

jobs arrived and dispatched to i during the execution of k .
In order to deal with the ignored negative terms, we expand the

notion of completion time of each job j ∈ J . Let D j be the set of

jobs that are rejected due to Rule 1 after the release time of j and
before its completion or rejection (including j in case it is rejected),

that is the jobs that cause a decrease to the flow time of j due to
Rule 1. Moreover, we denote by jk the job released at the moment

we reject a job k ∈ R. Then, we say that a job j ∈ J which is

dispatched to machine i is definitively finished at the time

C̃j = Cj +
∑
k ∈D j

qik (r jk )

+

(
qik (r jj ) +

∑
ℓ,jj

piℓ + pi j

)
· 1{if j is rejected due to Rule 2}

Let Vi (t ) be the set of jobs that are completed or rejected at time

t but not yet definitively finished. Intuitively, at the completion

or rejection of job j at time Cj is moved from the set of pending

jobs Ui (t ) to the set of not yet definitively finished jobs Vi (t ), and
it remains to this set until the time C̃j . Let Ri (t ) ⊆ Vi (t ) be the set
of jobs that are already rejected due to Rule 2 at time t but they are

not yet definitively finished.

It remains to formally define the dual variables. At the arrival

of a job j ∈ J , we set λj =
ϵ

1+ϵ mini ∈M λi j and we never change

this value again. Moreover, for each i ∈ M and t ≥ 0, we set

βi (t ) =
ϵ

(1+ϵ )2 ( |Ui (t ) | + |Vi (t ) |). Note that, given any fixed time t ,

βi (t ) may increase if a new job arrives at any time t ′ < t . However,
βi (t ) never decreases in the case of rejection since the rejected jobs

are transferred to the set Vi (t ) where they remain until they are

definitively finished.

Analysis. We first show the following lemma which relates all

but ci jobs inUi (t ) to some jobs in Ri (t ).

Lemma 2.1. Fix a machine i and a time t . Consider the jobs in Ri (t )
sorted in non-decreasing order of the time they are definitively finished;
letk1,k2, . . . ,kr be this order, where r = |Ri (t ) |. There is a partition of
the jobs inUi (t ) into at most r + 1 subsets,U 1

i (t ),U
2

i (t ), . . . ,U
r+1

i (t )
such that

(i) |U ℓ
i (t ) | ≤

1

ϵ , for 1 ≤ ℓ ≤ r ,
(ii) |U r+1

i (t ) | ≤ ci ,
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(iii) for each job j ∈ U ℓ
i (t ), 1 ≤ ℓ ≤ r , the estimated completion

time of j assuming that no other job is released after time t is
at most C̃kℓ .

Proof. The proof is based on induction on time. We consider

only times which correspond to discrete events that modify the

sets Ui (t ) and Ri (t ), i.e., arrival of a new job, completion of a job,

rejection of a job according to Rule 2 and definitive finish of a job

in Ri (t ).
At the arrival of the first job dispatched to machine i , we have

that ci = 1 and the statement directly holds. Let us assume that the

partition exists at an event which occurs at time t . We will show

that this holds also for the next event at time t ′ ≥ t . We consider

the following three cases.

• If a job j completes at time t ′, then j is removed from Ui (t
′)

without affecting the mapping implied by the statement of the

lemma.

• If a job j arrives at time t ′, then ci is increased by one. Let jℓ ,
1 ≤ ℓ ≤ r + 1, be the job with the largest processing time in

U ℓ
i (t ). If pj ≥ pjr , then we set U ℓ

i (t
′) = U ℓ

i (t ) for 1 ≤ ℓ ≤ r

and U r+1

i (t ′) = U r+1

i (t ) ∪ {j} and the partition is valid since ci
is increased. Otherwise, find the biggest z, 1 ≤ z ≤ ℓ, such that

pj < pjz . We set U ℓ
i (t
′) = U ℓ

i (t ) for 1 ≤ ℓ ≤ z − 1, U z
i (t
′) =

U z
i (t ) ∪ {j} \ {jz }, andU

ℓ
i (t
′) = U ℓ

i (t ) ∪ {jℓ−1
} \ {jℓ } for z + 1 ≤

ℓ ≤ r + 1. By these definitions, the first two items of the lemma

are satisfied by the induction hypothesis since each set, except

for U r+1

i , has the same size at times t and t ′. For item (iii), we

observe that the job that is added in each set U ℓ
i , z ≤ ℓ ≤ r ,

has a shorter processing time than the job which is removed.

Hence, the item (iii) holds by the definition of the scheduling

policy. Moreover, if a job k is rejected according to Rule 2 at

time t ′, then Ri (t
′) = Ri (t ) ∪ {k } and U

|Ri (t ′) |
i (t ′) = U r+1

i (t ).

Therefore, the lemma holds since ci ≤ 1 + 1

ϵ and k is the job

with the largest processing time (and hence the largest estimated

completion time) inU r+1

i (t ).
• If the job k1 is definitively finished at time t ′, then assume that

U 1

i (t ) is not empty. Then, by the induction hypothesis each job

j ∈ U 1

i (t ) should complete before t ′, which is a contradiction to

the fact that t ′ is the next event after t .

Therefore, the lemma follows. □

The following corollary is an immediate consequence of Lemma 2.1.

Corollary 2.2. For each t , it holds that |Ui (t ) | ≤ 1

ϵ ( |Ri (t ) | + 1).

The following lemma guarantees that the definition of the dual

variables lead always to a feasible solution for the dual program.

Lemma 2.3. For all i ∈ M, j ∈ J and t ≥ r j , the dual constraint
is feasible.

Proof. For a machine i and a job j, observe that for any fixed

t ≥ r j , the value of βi (t ) may only increase during the execution

of the algorithm. Hence, it is sufficient to prove the constraint

assuming that no job arrives after r j . Assume that the job k is

executed on the machine i at the arrival of the job j. We have the

following cases.

Case 1: The job k is executed at t . By the definition of λj and λi j ,
we have:

λj

pi j
≤

ϵ

1 + ϵ
*.
,

1

ϵ
+

1

pi j

∑
ℓ⪯j

piℓ +
∑
ℓ≻j

1
+/
-
≤

ϵ

1 + ϵ
*.
,

1

ϵ
+

∑
ℓ⪯j

1 +
∑
ℓ≻j

1
+/
-

(since piℓ ≤ pi j for all ℓ ⪯ j)

≤
ϵ

1 + ϵ

(
1

ϵ
+ |Ui (t ) | +

t − r j

pi j

)
(since t − r j ≥ 0)

Case 2:A job z ⪯ j is executed at t . Then, we have t−r j ≥
∑

ℓ≺z piℓ .
Using the definition of λj and λi j , we have:

λj

pi j
≤

ϵ

1 + ϵ
*.
,

1

ϵ
+

1

pi j

∑
ℓ⪯j

piℓ +
∑
ℓ≻j

1
+/
-

=
ϵ

1 + ϵ
*.
,

1

ϵ
+

1

pi j

∑
ℓ≺z

piℓ +
1

pi j

∑
z⪯ℓ⪯j

piℓ +
∑
ℓ≻j

1
+/
-

≤
ϵ

1 + ϵ
*.
,

1

ϵ
+
t − r j

pi j
+

∑
z⪯ℓ⪯j

1 +
∑
ℓ≻j

1
+/
-

(since piℓ ≤ pi j for all ℓ ⪯ j)

≤
ϵ

1 + ϵ

(
1

ϵ
+
t − r j

pi j
+ |Ui (t ) |

)
Case 3:A job z ≻ j is executed at t . Then, we have t−r j ≥

∑
ℓ≺z piℓ .

Using the definition of λj and λi j , we have:

λj

pi j
≤

ϵ

1 + ϵ
*.
,

1

ϵ
+

1

pi j

∑
ℓ⪯j

piℓ +
∑
ℓ≻j

1
+/
-

=
ϵ

1 + ϵ
*.
,

1

ϵ
+

1

pi j

∑
ℓ≺j

piℓ +
∑

j≺ℓ≺z

piℓ
piℓ
+

∑
ℓ⪰z

1
+/
-

≤
ϵ

1 + ϵ
*.
,

1

ϵ
+

1

pi j

∑
ℓ≺j

piℓ +
∑

j≺ℓ≺z

piℓ
pi j
+

∑
ℓ⪰z

1
+/
-

(since piℓ > pi j for all ℓ ≻ j)

≤
ϵ

1 + ϵ

(
1

ϵ
+
t − r j

pi j
+ |Ui (t ) |

)

Hence, in all the three cases we have:

λj

pi j
≤

ϵ

1 + ϵ

(
1

ϵ
+
t − r j

pi j
+ |Ui (t ) |

)
=

ϵ

1 + ϵ

(
1

ϵ
+
t − r j

pi j
+
|Ui (t ) | + ϵ |Ui (t ) |

1 + ϵ

)
≤

ϵ

1 + ϵ

(
1

ϵ
+
t − r j

pi j
+
|Ui (t ) | + |Ri (t ) | + 1

1 + ϵ

)
(by Corollary 2.2)

≤
1

1 + ϵ
+

ϵ

(1 + ϵ )2
+

ϵ

1 + ϵ

t − r j

pi j
+ βi (t ) < 1 +

t − r j

pi j
+ βi (t )

and the lemma follows. □

Using the above results, we next prove Theorem 1.1.
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Proof of Theorem 1.1. An immediate consequence of the defi-

nition of the two rejection rules is that the jobs rejected by algo-

rithm A is at most a 2ϵ-fraction of the total number of jobs in J .

By Lemma 2.3, we know that the proposed definition of the dual

variables leads to a feasible dual solution. For the objective value of

the dual program, by the definition of λj and C̃j , we have that∑
j ∈J

λj ≥
ϵ

1 + ϵ

∑
j ∈J

(C̃j − r j )

Moreover, by the definition ofUi (t ), Vi (t ) and C̃j , we have that∑
i ∈M

∫ ∞

0

βi (t ) =
ϵ

(1 + ϵ )2

∑
j ∈J

(C̃j − r j )

Then, the dual objective is at least( ϵ

1 + ϵ

)
2 ∑
j ∈J

(C̃j − r j )

Let FAj be the flow time of a job j ∈ J in the schedule con-

structed by algorithm A; recall that, for a rejected job j ∈ R, FAj
corresponds to the time between its release and its rejection. By

definition, we have that C̃j − r j ≥ FAj , for each j ∈ J . Therefore,

taking into account that the objective value of our primal linear

program is at most twice the value of an optimal non-preemptive

schedule, the theorem follows. □

3 MINIMIZE TOTALWEIGHTED FLOW TIME
PLUS ENERGY

Linear Programming Formulation. Let δi j =
w j
pi j be the density

of a job j ∈ J on machine i ∈ M. Let si j (t ) be a variable that

represents the speed at which the job j ∈ J is executed on machine

i ∈ M at time t . Given a constant γ that will be defined later, we

consider the following convex programming formulation for the

problem of minimizing the total weighted flow time plus energy.

min

∑
i ∈M

∑
j ∈J

∫ ∞

r j
si j (t )δi j (t − r j + pi j )dt

+
α

γ (α − 1)

∑
i ∈M

∑
j ∈J

w
α−1

α
j

∫ ∞

r j
si j (t )dt

+
∑
i ∈M

∫ ∞

r j

( ∑
j ∈J

si j (t )
)α

dt

∑
i ∈M

∫ ∞

r j

si j (t )

pi j
dt ≥ 1 ∀j ∈ J

si j (t ) ≥ 0 ∀i ∈ M, j ∈ J , t ≥ r j

The first and the second [2] terms of the objective correspond

to the weighted fractional flow time whereas the third term cor-

responds to the total energy consumed. In order to linearize the

convex energy term, we use the following property which holds

for any convex function f (x ): f (x ) ≥ f (y) + f ′(y) (x − y). Thus,
we can relax the objective function by replacing its last term by∑
i ∈M

∫ ∞

0

(1−α )
(
ui (t )

)α
dt +

∑
i ∈M

∫ ∞

0

α
(
ui (t )

)α−1

( ∑
j ∈J

si j (t )
)
dt

Note that the only variables in the above formulation are si j (t ).
The quantities ui (t ) are constants that will be defined later. In fact,

ui (t )’s will be treated as dual variables and they will be defined

during the primal-dual procedure. The dual of the above LP is the

following:

max

∑
j ∈J λj +

∑
i ∈M

∫ ∞
0

(1 − α )
(
ui (t )

)α
dt

λj
pi j ≤ δi j (t − r j + pi j ) + α

(
ui (t )

)α−1

+ α
γ (α−1)w

α−1

α
j

∀i ∈ M, j ∈ J , t ≥ r j

The Algorithm and Definition of Dual Variables. In this section,

we define the scheduling, the rejection and the dispatching policies

of our algorithm which is denoted by A. Let 0 < ϵ < 1 be some

arbitrarily small constant which corresponds to the fraction of

the rejected weights. Each job is immediately dispatched to some

machine i ∈ M upon its arrival. LetUi (t ) be the set of pending jobs
at time t dispatched to machine i ∈ M, that is the jobs dispatched

to i that have been released but not yet completed or rejected at

time t . Moreover, let qi j (t ) be the remaining volume at time t of
job j which is dispatched to machine i .

Let k be the job that is being executed on machine i at time t . We

consider the jobs inUi (t ) \ {k } sorted in non-increasing order with

respect to their densities; in case of ties, we consider the jobs in

earliest release time order. We say that a job j ∈ Ui (t ) \ {k } precedes
(resp. succeeds) a job ℓ ∈ Ui (t ) \ {k } if j appears before (resp. after)
ℓ in the above order, and we write j ≺ ℓ (resp. j ≻ ℓ). We use the

symbols ⪯ and ⪰ to express the fact that j may coincide with ℓ.

The scheduling policy of the algorithmA is the following: when-

ever a machine i ∈ M becomes idle at a time t , schedule on i the
job j ∈ Ui (t ) that precedes any other job inUi (t ). The speed of the

machine i at the start time j is defined as si j = γ
( ∑

ℓ∈Ui (t ) wℓ

)
1/α

.

Note that, the speed of i is defined at the beginning of the execution
of j and does not change until j is completed or rejected. Assuming

that no other jobs arrive in the future, we can compute the expected

speed of each remaining pending job ℓ ∈ Ui (t ) which is equal to

γ
( ∑

ℓ′⪰ℓ wℓ′

)
1/α

.

As soon as the machine i starts executing a job j , we introduce a
counter vj which is initialized to zero. Each time a job ℓ is released

during the execution of j and it is dispatched to machine i , we
increase vj by wℓ . Then, the rejection policy of the algorithm A

is the following: interrupt the execution of j and reject it the first

time when vj > w j/ϵ .
Assume that at the arrival of a new job j at time r j , the ma-

chine i is executing the job k . For each ℓ ∈ Ui (t ) \ {k }, letWℓ =∑
ℓ′∈Ui (t )\{k }:ℓ′⪰ℓ wℓ′ . We denote by ∆i j the marginal increase in

the total weighted flow time that will occur following the schedul-

ing and rejection policies of A, if we decide to dispatch the job j
to machine i . Then, ∆i j can be bounded as follows (we ignore the

increase of the speed and hence the decrease of the processing time
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for each job ℓ ≺ j)

∆i j ≤




w j
*.
,

qik (r j )

sk
+

∑
ℓ⪯j

piℓ

γW 1/α
ℓ

+/
-
+

( ∑
ℓ≻j

wℓ

) pi j

γW 1/α
j

if vk +w j ≤
wk
ϵ

w j
*.
,

∑
ℓ⪯j

piℓ

γW 1/α
ℓ

+/
-
+

( ∑
ℓ≻j

wℓ

) pi j

γW 1/α
j

−

(∑
ℓ,j

wℓ

) qik (r j )
sk

otherwise

where in both cases, the first positive term correspond to the

weighted flow time of the job j, while the second positive term

correspond to the marginal increase of the weighted flow time

of other jobs, that is the completion time of the jobs with den-

sity smaller than the density of j is delayed by pi j/γW
1/α
j . The

negative term in the second case corresponds to the decrease in

the weighted flow time of all jobs in Ui (t ) if the job k is rejected.

Then, we define a set of variables λi j , for all i ∈ M, as: λi j =

w j

(
pi j
ϵ +

∑
ℓ⪯j

piℓ
γW 1/α

ℓ

)
+

( ∑
ℓ≻j wℓ

)
pi j

γW 1/α
j

. The dispatching pol-

icy is the following: dispatch the job j to the machine i∗ such that

i∗ = argmini ∈M {λi j }.

We next define the dual variables λj as well as the quantitiesui (t ).
Based on the dispatching policy, we set λj =

ϵ
1+ϵ mini ∈M {λi j }. For

each job j , let D j be the set of the jobs rejected due to the rejection

policy between r j and the time when j is completed or rejected. Let

jk denote the job released at the time when our policy rejects the

job k . Then, we say that a job j is definitively finished at the time∑
k ∈D j

qik (r jk )
sk

after its completion or rejection. For every job ℓ,

define the fractional weight wℓ (t ) of ℓ at time t as wℓqiℓ (t )/piℓ .
LetQi (t ) be the set of jobs that are dispatched to machine i and are
already completed or rejected but no yet definitively finished at time

t . LetVi (t ) =
∑

ℓ∈Ui (t )∪Qi (t ) wℓ (t ) be the total fractional weight of
jobs that are not definitively finished on machine i at time t . We

define ui (t ) as follows: ui (t ) =
(

ϵ
γ (1+ϵ ) (α−1)

) 1

α−1

Vi (t )
1/α

. Note

that when a job is rejected, it is transferred from Ui (t ) to Qi (t )
where it remains until the time it is definitively finished.

Consider now two sets of jobs I1 and I2 assigned to machine i
such that they are identical except that there is only a job j ∈ I1 \ I2.
Moreover, assume that no job is released after time r j in either

of the instances. Then the algorithm A is said to be monotonic iff∑
ℓ∈I2

wℓ (t ) ≤
∑
ℓ∈I1

wℓ (t ),∀t where the jobs in I1 and I2 are scheduled

according to A. The following lemma shows the monotonicity of

Vi (t ).

Lemma 3.1. Vi (t ) is monotone for every machine i .

Proof. Letk be the job executing onmachine i at time t . Observe
that Vi (t ) changes due to the arrival of a new job. Assume that a

new job j arrives at t = r j . Then, it is sufficient to show that

Vi (t ) is non-decreasing during anytime t ′ ≥ t . Consider the jobs in
Ui (t ) \ {k }. Since all such jobs are scheduled in non-increasing order

of their densities, the total fractional weight of jobs inUi (t ) \ {k }
is monotonic with respect to the arrival of a new job (refer to

Lemma 6.1 in [2]).

In the case where k is not rejected then for t ′ < t +
qik (r j )

sj , the

speed of the machine i is a constant. Hence, Ui (t
′) is a constant.

Using Lemma 6.1 in [2], the lemma holds for this case. In the case

where k is rejected then Ui (t ) decreases due to the removal of k .

Since all jobs in Ui (t ) \ {j} remain for at least

qik (r j )
sj time in Qi (t )

after their completion or rejection fromUi (t ), the total fractional
weight of jobs in Ui (t ) ∪ Qi (t ) is monotonic with respect to the

rejection of job k . Using this property with Lemma 6.1 in [2], the

lemma holds. □

Analysis. The following lemma guarantees that the definition

of the dual variables lead always to a feasible solution for the dual

program.

Lemma 3.2. For every i ∈ M, j ∈ J and t ≥ r j , the dual constraint
is feasible.

Proof. Fix a machine i . By Lemma 3.1,ui (t )’s do never decrease
during the execution of the algorithm. Hence, it is sufficient to prove

the inequality for the job j at time r j . Let k be the job executed in

machine i at r j . Moreover, let C̄j be the completion time of the

job j estimated at time r j if it is assigned to machine i . Specifically,

if k is rejected then C̄j = r j +
∑

ℓ⪯j
piℓ

γW 1/α
ℓ

; otherwise we have

C̄j = r j +
qik (r j )
sk

+
∑

ℓ⪯j
piℓ

γW 1/α
ℓ

.

By the definitions of λj and λi j , we have:

λj

pi j
≤

ϵ

1 + ϵ

λi j

pi j
=

ϵ

1 + ϵ
*.
,

w j

pi j

*.
,

pi j

ϵ
+

∑
ℓ⪯j

piℓ

γW 1/α
ℓ

+/
-
+

( ∑
ℓ≻j

wℓ

)
1

γW 1/α
j

+/
-

Letwn denote the weight of the latest job according to the prece-

dence order defined above.

Case 1: t ≤ C̄j . Assume, first, that the job k is running at time t .
Hence, we have that

t − r j =
qik (r j ) − qik (t )

sk

and thus

λj

pi j
− δi j (t − r j + pi j )

≤
ϵ

1 + ϵ
*.
,

w j

pi j

*.
,

pi j

ϵ
+

∑
ℓ⪯j

piℓ

γW 1/α
ℓ

+/
-
+

( ∑
ℓ≻j

wℓ

)
1

γW 1/α
j

+/
-

−
w j

pi j

(
qik (r j ) − qik (t )

sk
+ pi j

)

≤
ϵ

1 + ϵ
*.
,

w j

pi j

∑
ℓ⪯j

piℓ

γW 1/α
ℓ

+

( ∑
ℓ≻j

wℓ

)
1

γW 1/α
j

+/
-

−
w j

pi j
·
qik (r j ) − qik (t )

sk

≤
ϵ

1 + ϵ
*.
,

w j

pi j

∑
ℓ⪯j

piℓ

γW 1/α
ℓ

+

( ∑
ℓ≻j

wℓ

)
1

γW 1/α
j

+/
-

(since t ≥ r j and hence qik (r j ) − qik (t ) ≥ 0)
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≤
ϵ

1 + ϵ
*.
,

∑
ℓ⪯j

wℓ

γW 1/α
ℓ

+

( ∑
ℓ≻j

wℓ

)
1

γW 1/α
j

+/
-

(since

wℓ

piℓ
≥

w j

pi j
for any ℓ ⪯ j )

≤
ϵ

1 + ϵ
*.
,

∑
ℓ⪯j

wℓ

γW 1/α
ℓ

+
∑
ℓ≻j

wℓ

γW 1/α
ℓ

+/
-

=
ϵ

1 + ϵ

∑
ℓ,k

wℓ

γW 1/α
ℓ

≤
ϵ

1 + ϵ

∫ Vi (t )+w j

wn

dz

γz1/α

=
ϵ

1 + ϵ
·

α

γ (α − 1)

(
Vi (t ) +w j

) α−1

α

≤
ϵ

1 + ϵ
·

α

γ (α − 1)

(
Vi (t )

α−1

α +w
α−1

α
j

)
=

ϵ

1 + ϵ
·

α

γ (α − 1)

(
γ (1 + ϵ ) (α − 1)

ϵ

(
ui (t )

)α−1

+w
α−1

α
j

)
= α

(
ui (t )

)α−1

+
ϵ

1 + ϵ
·

α

γ (α − 1)
w

α−1

α
j

≤ α
(
ui (t )

)α−1

+
α

γ (α − 1)
w

α−1

α
j

Assume now that a job h , k is executing at time t . Therefore,
the machine i has processed all the jobs which have density higher

than δih . Moreover, the job k is either completed or rejected. Hence,

we have that

t − r j ≥
∑
ℓ≺h

piℓ

γWℓ
1/α
+
pih − qih (t )

γWh
1/α

and thus

λj

pi j
− δi j (t − r j + pi j )

≤
ϵ

1 + ϵ
*.
,

w j

pi j

*.
,

pi j

ϵ
+

∑
ℓ⪯j

piℓ

γW 1/α
ℓ

+/
-
+

( ∑
ℓ≻j

wℓ

)
1

γW 1/α
j

+/
-

−
w j

pi j

*.
,

∑
ℓ≺h

piℓ

γWℓ
1/α
+
pih − qih (t )

γWh
1/α

+ pi j
+/
-

=
ϵ

1 + ϵ
*.
,

w j

pi j

∑
h⪯ℓ⪯j

piℓ

γW 1/α
ℓ

+

( ∑
ℓ≻j

wℓ

)
1

γW 1/α
j

+/
-

−
w j

pi j

*.
,

1

1 + ϵ
·
∑
ℓ≺h

piℓ

γW 1/α
ℓ

−
ϵ

1 + ϵ
pi j −

pih − qih (t )

γWh
1/α

+/
-

≤
ϵ

1 + ϵ
*.
,

∑
h⪯ℓ⪯j

wℓ

γW 1/α
ℓ

+
∑
ℓ≻j

wℓ

γW 1/α
ℓ

+/
-

=
ϵ

1 + ϵ

∑
ℓ⪰h

wℓ

γW 1/α
ℓ

≤
ϵ

1 + ϵ

∫ Vi (t )+w j

wn

dz

γz1/α

≤ α
(
ui (t )

)α−1

+
α

γ (α − 1)
w

α−1

α
j

Case 2: t > C̄j . Let h be the job executing at time t . Thus, the
machine i has processed all the jobs which have density higher

than δih . Hence, we have

t − r j ≥
∑
ℓ≺h

piℓ

γW 1/α
ℓ

+
pih − qih (t )

γW 1/α
h

Thus

λj

pi j
− δi j (t − r j + pi j )

≤
ϵ

1 + ϵ
*.
,

w j

pi j

*.
,

pi j

ϵ
+

∑
ℓ⪯j

piℓ

γW 1/α
ℓ

+/
-
+

( ∑
ℓ≻j

wℓ

)
1

γW 1/α
j

+/
-

−
w j

pi j

*.
,

∑
ℓ≺h

piℓ

γWℓ
1/α
+
pih − qih (t )

γWh
1/α

+ pi j
+/
-

=
ϵ

1 + ϵ
*.
,

w j

pi j

∑
ℓ⪯j

piℓ

γW 1/α
ℓ

+

( ∑
ℓ≻j

wℓ

)
1

γW 1/α
j

+/
-

−
w j

pi j

*.
,

1

1 + ϵ
·
∑
ℓ≺h

piℓ

γW 1/α
ℓ

−
ϵ

1 + ϵ
pi j −

pih − qih (t )

γWh
1/α

+/
-

≤
ϵ

1 + ϵ
*.
,

∑
ℓ≻h

wℓ

γW 1/α
ℓ

+/
-

=
ϵ

1 + ϵ

∑
ℓ⪰h

wℓ

γW 1/α
ℓ

≤
ϵ

1 + ϵ

∫ Vi (t )+w j

wn

dz

γz1/α

≤ α
(
ui (t )

)α−1

+
α

γ (α − 1)
w

α−1

α
j

□

Based on this lemma we can prove Theorem 1.3.

Proof of Theorem 1.3. By Lemma 3.2, the proposed dual vari-

ables constitute a feasible solution for the dual program. Since each

job j ∈ J is charged to at most one other job while a job k is

rejected the first time where vk >
wk
ϵ , the algorithm A rejects

jobs of total weight at most ϵ
∑
j ∈J w j . Hence, it remains to give

a lower bound for the dual objective based on the proposed dual

variables.

Let R be the set of rejected jobs. We denote by FAj the flow-

time of a job j ∈ J \ R in the schedule of A. By slightly abusing

the notation, for a job k ∈ R, we will also use FAk to denote the

total time passed after rk until deciding to reject a job k , that is,

if k is rejected at the release of the job j ∈ J then FAk = r j − rk .
Denote by jk the job released at the moment we decided to reject

k , i.e., for the counter vk before the arrival of job jk we have that

wk/ϵ −w jk < vk < wk/ϵ .
Let ∆j be the total increase in the flow-time caused by the arrival

of the job j ∈ J , i.e., ∆j = ∆i j , where i ∈ M is the machine to

which j is dispatched by A. For the objective function of the dual
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program we have∑
j ∈J

λj +
∑
i ∈M

∫ ∞

0

(1 − α )
(
ui (t )

)α
dt

≥
ϵ

1 + ϵ
*.
,

∑
j ∈J

∆j +
∑
k ∈R

*.
,

qik (r jk )

sk

∑
ℓ,jk

wℓ
+/
-

+/
-

− (α − 1)

(
ϵ

γ (1 + ϵ ) (α − 1)

) α
α−1

Vi (t )

≥ *
,

ϵ

1 + ϵ
− (α − 1)

(
ϵ

γ (1 + ϵ ) (α − 1)

) α
α−1 +

-
F ∗

The total weighted flow time plus energy is

2F ∗+

(
α

γ (α − 1)

)
F ∗+

∑
i

∫ ∞

0

(si (t ))
αdt ≤

(
2 +

(
α

γ (α − 1)

)
+ γα

)
F ∗

.

Hence the competitive ratio is:(
2 +

(
α

γ (α−1)

)
+ γα

)
(

ϵ
1+ϵ

)
−

(
ϵ

γ (1+ϵ )

) α
α−1

(α − 1)
−1

α−1

We choose γ =
(

ϵ
1+ϵ

) 1

α−1 1

α−1
(α − 1 + ln(α − 1))

α−1

α . Observe

that denominator becomes
ϵ

1+ϵ (
ln(α−1)

α−1+ln(α−1) ) and the numerator

becomes 2 + 2

(
1+ϵ
ϵ

) 1

α−1 +
(

ϵ
1+ϵ

)
2

. Hence the competitive ratio is

at most O

((
1 + 1

ϵ

) α
α−1

)
. □

4 MINIMIZE TOTAL ENERGY CONSUMPTION
Formulation. In the problem, we consider the sets of discretized

speedsV and times. We can do that and loose only a factor (1 + ϵ )
for ϵ arbitrarily small. In the non-preemptive model, the execution

of a job is specified by three parameters: (1) a machine in which it

is executed; (2) a starting time; and (3) a speed which is constant

during its execution. Note that the parameters imply the completion

time of job. A valid execution of a job j must have the starting time

and completion time in [r j ,dj ]. We say that a strategy of a job is

a specification of a valid execution of the job. Formally, a strategy

si, j,k of a job j in machine i indicates the starting time of the job and

its speed during the execution. Let Sj be a set of strategies of job j.
As the sets of speeds and times are finite, so is the set of strategies

Sj for every job j . Let xi, j,k be a variable indicating whether job j is
executed by strategy si, j,k ∈ Sj . We say that A is a configuration in

machine i ifA is a feasible schedule of a subset of jobs. Specifically,A
consists of tuples (i, j,k ) meaning that job j is executed in machine

i following the strategy si, j,k . For configuration A and machine i ,
let zi,A be a variable such that zi,A = 1 if and only if for every triple

(i, j,k ) ∈ A, xi, j,k = 1. In other words, zi,A = 1 iff the schedule

in machine i is exactly A. The energy cost of a configuration A
of machine i is fi (A) =

∑
t Pi (A(t )) where A(t ) is the speed of

the corresponding schedule at time t . We consider the following

formulation and the dual of its relaxation.

min

∑
i,A

fi (A)zi,A∑
i,k :si, j,k ∈Sj

xi, j,k = 1 ∀j

∑
A:(i, j,k )∈A

zi,A = xi, j,k ∀i, j,k

∑
A

zi,A = 1 ∀i

xi, j,k , zi,A ∈ {0, 1} ∀i, j,k,A

max

∑
j
δj +

∑
i
γi

δj ≤ βi, j,k ∀i, j,k

γi +
∑

(i, j,k )∈A

βi, j,k ≤ fi (A) ∀i,A

In the primal, the first constraint guarantees that a job j has to be
processed by some valid execution (in some machine). The second

constraint ensures that if job j follows strategy si, j,k then in the

solution, the schedule (configuration) on machine i must contain

the execution corresponding to strategy si, j,k . The third constraint

says that in the solution, there is always a configuration (schedule)

associated to machine i .

Algorithm. We first interpret intuitively the dual variables, dual

constraints and derive useful observations for a competitive algo-

rithm. Variable δj represents the increase of energy to the arrival

of job j. Variable βi, j,k stands for the marginal energy if job j fol-
lows strategy si, j,k . By this interpretation, the first dual constraint

clearly indicates the greedy behavior of an algorithm. That is, if a

new job j is released, select a strategy si, j,k ∈ Sj that minimizes

the marginal increase of the total energy.

LetA∗i be the set of current schedule of machine i . Initially,A∗i ←
∅ for every i . At the arrival of job j , select a strategy si, j,k ∈ Sj that

minimizes

[
fi (A

∗
i ∪si, j,k )− fi (A

∗
i )
]
where (A∗i ∪si, j,k ) is the current

schedule plus the execution of job j which follows strategy si, j,k .
Let si∗, j,k∗ be an optimal strategy. Then assign job j to machine i∗

and process it according to the corresponding execution of si∗, j,k∗ .
In the algorithm, we never interrupt or modify the speed of a job.

We implement this algorithm as follows. Let uit be the speed
of machine i at time t . Initially, set uit ← 0 for every machine i
and time t . At the arrival of a job j, compute the minimum energy

increase if j is assigned to machine i and is executed with constant

speed. This corresponds to the optimization problem

min

i
min

τ ,v

τ+pi j /v∑
t=τ

[
fi

(
uit +v

)
− fi

(
uit

)]
s.t r j ≤ τ ≤ τ +

pi j

v
≤ dj , v ∈ V

Dual variables. Assume that all energy power functions fi are
(λ, µ )-smooth for some fixed parameters λ > 0 and µ < 1. We
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construct a dual feasible solution. Define δj as 1/λ times the the

increase of the total cost due to the arrival of job j . For each machine

i and job j , define βi, j,k := 1

λ

[
fi (A

∗
i,≺j ∪ si, j,k ) − fi (A

∗
i,≺j )

]
where

A∗i,≺j is the schedule of i (due to the algorithm) prior to the arrival

of j . Finally, for every machine i define dual variableγi := −
µ
λ fi (A

∗
i )

where A∗i is the schedule of machine i (at the end of the instance).

Lemma 4.1. The defined variables form a dual feasible solution.

Proof. The first dual constraint follows immediately the defini-

tions of δj , βi, j,k and the decision of the algorithm. Specifically, the

right-hand side of the constraint represents 1/λ times the increase

of energy if a job j follows a strategy si, j,k . This is larger than 1/λ
times the minimum increase of energy optimized over all strategies

in Sj , which is δj .
For the second constraint, fix a machine i and an arbitrary con-

figuration A on machine i . Then,

−
µ

λ
fi (A

∗
i ) +

1

λ

∑
(i, j,k )∈A

[
fi (A

∗
i,≺j ∪ si, j,k ) − fi (A

∗
i,≺j )

]
≤ fi (A) ⇔

∑
(i, j,k )∈A

[
fi (A

∗
i,≺j ∪ si, j,k ) − fi (A

∗
i,≺j )

]
≤ λ fi (A) + µ fi (A

∗
i ) (1)

We argue that this inequality follows the (λ, µ )-smoothness of

energy power functions. We slightly abuse notation by defining

A∗i,≺j (t ) as the speed of machine i (due to the algorithm) at time

t before the arrival of job j and si, j,k (t ) be the speed at time t of
job j if it follows the strategy si, j,k . Observe that A

∗
i,≺j (t ) is the

sum of speeds (according to the algorithm) at time t of jobs as-
signed to machine i prior to job j. For any time t , as the power Pi
is (λ, µ )-smooth, we have∑

(i, j,k )∈A

[
Pi

(
A∗i,≺j (t ) + si, j,k (t )

)
− Pi

(
A∗i,≺j (t )

)]

≤ λPi

( ∑
(i, j,k )∈A

si, j,k (t )

)
+ µPi

(
A∗i (t )

)
Summing over all t , Inequality (1) holds and the lemma follows. □

We are now ready to prove the Theorem 1.5.

Proof of Theorem 1.5. By the definition of the dual variables,

the dual objective is∑
j
δj +

∑
i
γi =

∑
i

1

λ
fi (A

∗
i ) −

∑
i

µ

λ
fi (A

∗
i ) =

1 − µ

λ

∑
i

fi (A
∗
i )

Besides, the cost of the solution due to the algorithm is

∑
i fi (A

∗
i ).

Hence, the competitive ratio is at most λ/(1 − µ ).
In particular, the power functions of the form Pi (s ) = s

αi
, αi >

1, are O
(
αα−1, α−1

α

)
-smooth where α = maxi αi . By the smooth

inequalities in [9], for any sequences of non-negative real numbers

{a1,a2, . . . ,an } and {b1,b2, . . . ,bn } and for any α ≥ 1, it holds that

n∑
i=1



(
bi +

i∑
j=1

aj

)α
−

( i∑
j=1

aj

)α  ≤ λ(α ) ·

( n∑
i=1

bi

)α
+ µ (α ) ·

( n∑
i=1

ai

)α
where µ (α ) = α−1

α and λ(α ) = Θ
(
αα−1

)
. That implies the compet-

itive ratio O
(
αα

)
. □

5 CONCLUSIONS
This paper considered designing online non-preemptive schedulers

— a domain which has long resisted algorithms with strong worst

case guarantees . The paper gave provably competitive algorithms

in the rejection model. This shows how relaxed models can give

rise to good algorithms for the non-preemptive setting. It is of

significant interest to develop other realistic relaxations of worst

case models (like rejection or resource augmentation) that give rise

to strong algorithms for non-preemptive settings.
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