
Tropical paths in vertex-colored graphs

Johanne Cohen1, Giuseppe F. Italiano2, Yannis Manoussakis1, Nguyen Kim
Thang3, and Hong Phong Pham1

1 LRI, University Paris-Saclay, Orsay, France.
2 Department of Civil Engineering and Computer Science Engineering, University of

Rome “Tor Vergata”, Rome, Italy
3 IBISC, University Paris-Saclay, Evry, France. Supported by ANR project OATA.

Abstract. A subgraph of a vertex-colored graph is said to be tropical
whenever it contains each color of the initial graph. In this work we study
the problem of finding tropical paths in vertex-colored graphs. There
are two versions for this problem: the shortest tropical path problem
(STPP), i.e., finding a tropical path with the minimum total weight, and
the maximum tropical path problem (MTPP), i.e., finding a path with
the maximum number of colors possible. We show that both versions of
this problems are NP-hard for directed acyclic graphs, cactus graphs and
interval graphs. Moreover, we also provide a fixed parameter algorithm
for STPP in general graphs and several polynomial-time algorithms for
MTPP in specific graphs, including bipartite chain graphs, threshold
graphs, trees, block graphs, and proper interval graphs.

1 Introduction

In this paper we deal with vertex-colored graphs, which are useful in various
situations. For instance, the Web graph may be considered as a vertex-colored
graph where the color of a vertex represents the content of the corresponding
page (red for mathematics, yellow for physics, etc.) [4]. Applications can also be
found in bioinformatics (Multiple Sequence Alignment Pipeline or for multiple
protein-protein Interaction networks) [6], or in a number of scheduling problems
[13].

Given a vertex-colored graph, a tropical subgraph is a subgraph where each
color of the initial graph appears at least once. Potentially, many graph prop-
erties, such as the domination number, the vertex cover number, independent
sets, connected components, shortest paths etc. can be studied in their trop-
ical version. This notion is close to, but somewhat different from the colorful
concept used for paths in vertex-colored graphs [1,11,12] (recall that a colorful
path in a vertex-colored graph G is a path with χ(G) vertices whose colors are
different). It is also related to the concepts of color patterns or colorful used in
bio-informatics [7]. Note that in a tropical subgraph two adjacent vertices can
receive the same color. In this paper, we study tropical paths in vertex-colored
graphs.

Throughout the paper, we let G = (V,E) denote a simple undirected graph.
Given a set of colors C = {0, . . . , c − 1}, Gc = (V,E) denotes a vertex-colored

graph whose vertices are (not necessarily properly) colored by one of the colors
in C. Moreover, Gc = (V,E,w) is a vertex-colored graph in which each edge e is
associated to a real number w(e), referred to as the weight of e. For any subgraph
(or any set of vertices) H and a vertex v of Gc, we denote the number of vertices
of H by |H| and the set of colors of the vertices of H by C(H). Moreover, we
denote the color of the vertex v by c(v) and denote the number of vertices of H
whose colors is c by v(H, c). The set of neighbors of v is denoted by N(v). In
this paper, we only consider simple paths, i.e., no vertex is visited more than
once. Moreover, in accordance within the definitions above, a path P of Gc is
said to be tropical if and only if each color of C appears at least once among the
vertices of P . In this paper, we study the following two problems:

Shortest Tropical Path Problem (STPP). Given a weighted vertex-colored graph
Gc = (V,E,w) and two vertices s, t, find a tropical s − t path with minimum
total weight.

Maximum Tropical Path Problem (MTPP). Given a vertex-colored graph Gc =
(V,E), find a path with maximum number of colors.

Related work. In the special case where each vertex has a distinct color and
all edge weights are equal, STPP reduces to the longest path problem. Besides,
MTPP also reduces to the longest path problem whenever each vertex has a dis-
tinct color. The longest path problem has been widely studied in literature. It
has been shown that for any constant ε > 0, it is impossible to approximate the
longest path in a general graph up to a factor 2(logn)

1−ε
unless NP is contained

within quasi-polynomial deterministic time [10]. However, the longest path prob-
lem can be solved in polynomial time for several special classes of graphs, such
as directed acyclic graphs (DAGs), trees, block graphs, interval biconvex graphs,
etc. [15,16,9].

The tropical problems in vertex-colored graphs have been currently studying.
We refer the interested reader to references [5,2,8] for other tropical problems in
vertex-colored graphs, some ongoing works on dominating tropical sets, tropical
connected subgraphs, tropical homomorphisms, and tropical matchings.

Contributions. In this paper, we aim to give dichotomy overviews on the com-
plexity of STPP and MTPP. Specifically, on the hardness of STPP and MTPP,
we show that both problems are NP-hard for DAGs, cactus graphs and interval
graphs. This is in contrast to the longest path problem that is polynomial for
those graph classes.

We subsequently design algorithms for STPP and MTPP. For STPP, we
prove a property on the structure of optimal solution which is useful for the
design of a fixed parameterized algorithm. Specifically, given any set of colors
C, let P be a shortest path from vertex u to vertex v of Gc with its set of colors
C(P) = C and P ′ be a sub-path of P from vertex w to vertex t with its set
of colors C(P ′) ⊆ C(P). Then P ′ must be a shortest path from w to t of Gc

with the set of colors C(P ′). As a result, this yields a dynamic programming

algorithm with complexity O(2cn2), where c is the total number of colors in
the input graph. This fixed parameter algorithm may turn out to be useful in
practical applications of vertex-colored graphs where the number of colors is
small.

For MTPP, we show that it can be solved in polynomial time for several
classes of graphs such as trees, block graphs, proper interval graphs and in partic-
ular for bipartite chain graphs and threshold graphs, which are our main results
related to MTPP. Specifically, we give two polynomial algorithms, one for bipar-
tite chain graphs with running time O(c ·M(m,n)) and another for threshold
graphs with running time max(O(c·M(m,n)), O(n4)), where M(m,n) is the run-
ning time of finding a maximum matching in a general graph with m edges and
n vertices. (Currently, the best known running time M(m,n) = O(

√
nm) [14].)

The main idea behind those algorithms is to show that in bipartite chain graphs
as well as in threshold graphs, the number of colors of any maximum tropical
path is strongly related to the numbers of colors of any tropical matching. In
particular, it is either exactly equal to the numbers of colors of any tropical
matching, or it is one plus the numbers of colors of any tropical matching. This
crucial property allows us to identify the set of candidate vertices for maximum
tropical paths and to use efficient longest path algorithms [16,9] on these vertices
to compute the corresponding maximum tropical paths.

Organization. In Section 2 and Section 3, we consider the STPP and MTPP
problems respectively. Due to space constraints, in Section 2 we present only
the hardness of STPP for DAGs, cactus graphs and also the fixed parameterized
algorithm for this problem. In Section 3, we give the hardness result of MTPP
for DAGs, cactus graphs and the polynomial algorithm for bipartite chain graphs
as well as simple algorithms for trees, block graphs and proper interval graphs.
Due to space limit, we refer the reader to the full paper which can be found on
the authors’ websites.

2 Shortest Tropical Paths

2.1 Hardness results for STPP

Theorem 1. The shortest tropical path problem is NP-hard for DAGs, cactus
graphs and interval graphs.

Proof. The proof of this theorem follows Lemma 1 and Lemma 2. ut

Lemma 1. The shortest tropical path problem is NP-hard for DAGs and cactus
graphs.

Proof. We use a reduction from the Set Cover problem. Given an instance of
the Set Cover problem in which the universe U = {x1, x2, . . . , xn} and m sets
S = {S1, S2, . . . , Sm} s.t. Si = {xi1, xi2, . . . , xiαi} and xij ∈ U and the goal is to
cover all elements of U by using the minimum number of sets of S, we construct a

directed weighted vertex-colored graph Gc = (V,E,w) so that a shortest tropical
path in Gc will correspond to a minimum set cover for the original problem, as
follows. Firstly, we create a directed path (s = v1, v2, . . . , vm+1 = t) in which
the edge from vi → vi+1 has weight w(vi, vi+1) = L. Next for each 1 ≤ i ≤ m,
we create another path from vi → vi+1 as vi → xi1 → xi2 → . . .→ xiαi → vi+1.
Each edge (xij → xi(j+1)) is assigned a positive weight w(xij , xi(j+1)) so that∑αi−1
j=1 w(xij , xi(j+1)) = H. In addition, we assign w(vi, xi1) = w(xiαi , vi+1) =

H. Here we denote H and L as heavy and light weights, respectively, and we
assume that H ≫ L. Note that each vertex xij of the set Si is an element xk
of the set U . Now we use n + 1 colors including one color c0 and each color ci
for each element xi of U for 1 ≤ i ≤ n. All vertices vi are colored by the same
color c0, moreover in the case the vertex xij is xk of U then we give xij the color
ck. Note that the constructed graph is a directed acyclic graph since it does not
contain any directed cycle.

S1 Si Sm

s t

H H

L

H
H

L L

H H

xi1 xi2 xiαi
x11 x1α1 xm1 xmαm

v1 vi vm+1vi+1

H H H

Fig. 1. Reduction of Set Cover to STPP for DAG, cactus graphs.

Now from a set cover of size t, we obtain a tropical path as follows. For each
set Si selected into this set cover, we choose the sub-path vi → xi1 → xi2 →
. . .→ xiαi → vi+1 into our final path from s to t, otherwise the edge vi → vi+1

is selected. It is clear that this path is tropical and with length 3tH + (m− t)L.
Conversely, from a tropical path of length of 3tH+(m−t)L, we obtain a set cover
of size t as follows. In the case that this tropical path uses the edge vi → vi+1

then the set Si is not selected. Otherwise, Si is selected. It is clear that this set
is a set cover since all colors are included, i.e., all elements are covered. Sup-
pose that its size is t′, then the length of the path is 3t′H + (m − t′)L. Since
3t′H + (m − t′)L = 3tH + (m − t)L, we have (3H − L)(t − t′) = 0 and t′ = t
since H ≫ L.
Thus a set cover of size t corresponds to a tropical path of length of 3tH+(m−t)L
in Gc (and vice versa). This implies that the shortest tropical path problem is
NP-hard for DAGs.
Observe that if we consider the undirected version of Gc (by ignoring the di-
rection of edges), then our graph becomes a cactus graph, since any two simple
cycles have at most one vertex in common. Thus the lemma holds also for cactus
graphs. ut

Next we show that STPP is also NP-hard for interval graphs. The proof, is
deferred to the Appendix, is an adaption from Lemma 1, with the additional
idea of constructing an intersection model for our graph.

Lemma 2. The shortest tropical path problem is NP-hard for interval graphs.

2.2 A dynamic programming algorithm for STPP

Now we propose an algorithm for the following general problem: given a weighted
vertex-colored graph Gc = (V,E,w), and a fixed source s ∈ V , we wish to
compute, ∀v ∈ V and ∀{c1, c2, . . . , cm} ⊂ C, a shortest path p[v][2c1 +2c2 + . . .+
2cm] from s to v using exactly m colors {c1, c2, . . . , cm}.

Input: A weighted vertex-colored graph Gc = (V,E,w), a fixed source s
Output: ∀v ∈ V and ∀{c1, c2, . . . , cm} ⊂ C: compute p[v][j] and d[v][j] as

a shortest path from s to v and its length with exactly m colors
{c1, c2, . . . , cm} s.t. j =

∑m
i=1 2ci , 0 ≤ c1 < c2 < . . . < cm ≤ c− 1

Initialization: ∀v ∈ V and ∀0 ≤ j ≤ 2c: d[v][j]← +∞; p[v][j]← ∅;
d[s][2c(s)]← 0;
for j = 0 to 2c do

let j = 2c1 + 2c2 + . . .+ 2cm s.t. 0 ≤ c1 < c2 < . . . < cm ≤ c− 1 ;
// Step 1: initialize some values d[v][j] ;
foreach v ∈ V s.t. c(v) ∈ {c1, c2, . . . , cm} do

j
′
v ← 2c1 + 2c2 + . . .+ 2cm − 2c(v) ;

foreach u ∈ N(v) s.t. d[u][j
′
v] < +∞ do

if d[v][j] > d[u][j
′
v] + w(u, v) then

d[v][j]← d[u][j
′
v] + w(u, v); p[v][j]← p[u][j

′
v] ∪ {v} ;

end

end

end
// Step 2: apply the core of Dijkstra’s algorithm for

values d[v][j];
B ← V \ {s} ;
repeat

u← argminx∈Bd[x][j] ;
B ← B \ {u};
foreach v ∈ N(u) do

if d[v][j] > d[u][j] + w(u, v) then
d[v][j]← d[u][j] + w(u, v); p[v][j]← p[u][j] ∪ {v} ;

end

end

until B = ∅;
end

Algorithm 1: Computing shortest paths for sets of colors

Algorithm Description. For each 0 ≤ j ≤ 2c, we let j = 2c1 + 2c2 + . . . +
2cm s.t. 0 ≤ c1 < c2 < . . . < cm ≤ c − 1: since we assume that colors are
integers in {0, . . . , c − 1}, we let d[v][j] denote d[v][2c1 + 2c2 + . . . + 2cm]. The
main idea behind our algorithm is to use a dynamic programming approach
to compute the values d[v][j]. At the beginning, values d[v][j] are initialized to
+∞. Next, suppose that the values d[u][j′] were correctly computed, ∀u ∈ V
and ∀0 ≤ j′ < j. Now we show how to compute values d[v][j] for ∀v ∈ V
based on values d[u][j′]. Observe that, if there is a path from s to v with exactly
m colors in {c1, c2, . . . , cm}, then the color of v (i.e., c(v)) must belong to the
set of colors {c1, c2, . . . , cm}. Moreover, there must exist at least one vertex
u ∈ N(v) such that there is another path from s to u with all colors either in
{c1, c2, . . . , cm} or in {c1, c2, . . . , cm} \ c(v). Our algorithm checks this in two
steps. In the first step, we need to initialize some values d[v][j] as follows. For
each v ∈ V , we continuously update the value d[v][j] according to paths such
that each of them consists of a sub-path from s to u (u ∈ N(v)) with colors
exactly in {c1, c2, . . . , cm} \ c(v) and the edge (u, v). In the second step, our
algorithm will consider paths from s to u (u ∈ N(v)) with colors exactly in
{c1, c2, . . . , cm} (note that those paths must contain the color c(v)). Thus, our
algorithms updates the values d[v][j] based on those two kinds of paths. This is
done by using a relaxation on d[v][j] for all assigned values d[v][j] in the previous
step, similarly to the core of Dijkstra’s algorithm. The formal description is
presented in Algorithm 1.

The following key lemma is useful show that Algorithm 1 correctly finds a
shortest tropical path in Gc = (V,E,w).

Lemma 3. Let v ∈ V be any vertex and let {c1, c2, . . . , cm} ⊂ C be any set of
colors s.t. 0 ≤ c1 < c2 < . . . < cm ≤ c − 1. Let j =

∑m
i=1 2ci . Then p[v][j] is a

shortest path from s to v with exactly m colors in {c1, c2, . . . , cm}, and d[v][j] is
the length of p[v][j].

Proof. We proceed by induction on j. We first consider the base of the induction,
i.e., j = 0. In this case, the set of colors {c1, c2, . . . , cm} is empty, and there is
no path from s to v with an empty set of colors. Thus, d[v][0] = +∞ and this
value is not changed throughout the execution of our algorithm, since there does
not exist any v ∈ V such that c(v) belongs to the empty set of color. Next
assume that the lemma holds for j′ ≤ j − 1: we show that it must also hold
for j. Assume by contradiction that there exists another path p 6= p[v][j] such
that w(p) < d[v][j] and C(p) = {c1, c2, . . . , cm} with j =

∑m
i=1 2ci . Let u be

the vertex adjacent to v on p and p′ = p \ {v}. We now distinguish two cases,
depending on whether c(v) /∈ C(p′) or c(v) ∈ C(p′). In the first case, c(v) /∈ C(p′)
and thus C(p′) ⊂ C(p). Let j

′
v = 2c1 + 2c2 + . . . + 2cm − 2c(v) < j (recall that

j =
∑m
i=1 2ci). By the induction hypothesis, d[u][j

′
v] is the length of a shortest

path from s to u with colors in {c1, c2, . . . , cm} \ c(v), and so d[u][j
′
v] ≤ w(p′).

According to Step 1 in our algorithm, then the final value d[v][j] will satisfy that
d[v][j] ≤ d[u][j

′
v] + w(u, v). This implies that d[v][j] ≤ w(p′) + w(u, v) = w(p),

which contradicts our assumption that w(p) < d[v][j]. In the second case, c(v) ∈

C(p′) and thus C(p′) = C(p). Let Nj(v) ⊆ N(v) be the set of neighbors of v
such that for each w ∈ Nj(v) there exists a path from s to w with all colors in
{c1, c2, . . . , cm} and v is not on this path. Note that Nj(v) 6= ∅ since u ∈ Nj(v).
Now after Step 2 of our algorithm, the value d[v][j] will be smaller than or equal
to the length of any path from s to v such that this path goes though a vertex
in Nj(v). Thus d[v][j] < w(p), a contradiction. ut

Theorem 2. Algorithm 1 computes the value d[v][
∑c−1
i=0 2i] as the length of a

shortest tropical path with all colors in C from s to v in O(2cn2) time in Gc.

Proof. The proof follows from Lemma 3: at the end of Algorithm 1, the value
d[v][

∑c−1
i=0 2i] is the length of a shortest tropical path from s to v in Gc with all

colors in C. It is easy to see that the complexity of this algorithm is dominated
by the iteration for j (2c times). Inside each iteration, we use the core of the
Dijkstra’s algorithm with complexity O(n2). Besides, the iteration foreach of
v also runs O(n2) times. Therefore, the total running time of Algorithm 1 is
O(2cn2). ut

3 Maximum Tropical Paths

3.1 Hardness results for MTPP

As discussed above, MTPP is harder than the longest path problem. Since the
longest path can not be approximated by any constant factor [10], we obtain
that no polynomial-time algorithm can find a constant factor approximation for
MTPP unless P=NP. We also show that MTPP is NP-hard for also in the special
cases of DAGs, cactus graphs and interval graphs by using suitable reductions
from MAX-SAT, as shown in the following theorem.

Theorem 3. MTPP is NP hard for DAGs, cactus graphs and interval graphs.

Proof. The proof follows from Lemma 4 and Lemma 5. ut

Lemma 4. The maximum tropical path problem is NP-hard for DAGs and cac-
tus graphs.

Proof. Consider a boolean expressionB in the CNF with variablesX = {x1, . . . , xs}
and clauses B = {b1, . . . , bt}. In addition, suppose that B constains exactly 3
literals per clause (actually, we may also consider clauses of arbitrary size).
We show how to construct a vertex-colored graph Gc associated with any such
formula B, such that, there exists a truth assignment to the variables of B sat-
isfying t′ clauses if and only if Gc contains a path with t′ + 1 distinct colors.
Suppose that ∀1 ≤ i ≤ s, the variable xi appears in clauses bi1, bi2, . . . , biαi
and xi appears in clauses b′i1, b

′
i2, . . . , b

′
iβi

in which bij ∈ B and b′ik ∈ B. Now
a vertex-colored graph Gc is constructed as follows. We create s + 1 vertices:
s = v1, v2, . . . , vs, vs+1 = t. For each vertex-pair (vi, vi+1), we create two di-
rected paths from vi to vi+1: (vi → bi1 → bi2 → . . . → biαi → vi+1) and

(vi → b′i1 → b′i2 → . . . → b′iβi → vi+1). These two paths correspond to two
variables xi and xi, respectively. Now we use t+ 1 colors for Gc: a color c0 and
each color ci for each clause bi, 1 ≤ i ≤ t. All vertices vi are colored with c0,
1 ≤ i ≤ s + 1. In the case bij is bl in B then the vertex bij is colored with the
color cl. We proceed analogously for b′ik. Note that our constructed graph is a
DAG graph. Figure 2 is an illustration for our construction.

x1

x1

xi xs

xi xs

s = v1 vs+1 = t

bi1 bi2 biαi

b′
i1

b′
i2

b′
iβi

vi vs

Fig. 2. Reduction of MAX-SAT problem to MTPP for DAG, cactus graphs.

Given a truth assignment for B, we obtain a path from s to t in Gc as follows.
For each variable xi which is true, we select the sub-path (vi → bi1 → bi2 →
. . . → biαi → vi+1) into the final path. Otherwise, for each variable xi which is
false, we select (vi → b′i1 → b′i2 → . . .→ b′iβi → vi+1).
Conversely, from a path from s to t in Gc, we obtain a truth assignment for B as
follows. In the case our path goes though (vi → bi1 → bi2 → . . .→ biαi → vi+1),
then we assign xi as true; otherwise, xi is assigned as false. Observe that if a
clause bl is satisfied then the corresponding color cl appears in our final path, and
vice versa. Thus there exists a truth assignment to the variables of B satisfying t′

clauses if and only if Gc contains a path with t′+1 distinct colors. In other words,
opt(G) = opt(B) + 1 in which Opt(G) is the number of colors of a maximum
tropical path and Opt(B) is the maximum number of satisfied clauses. As a
consequence, MTPP is NP-hard for DAGs. Note that if we do not consider the
directions of edges of Gc ,then we obtain a cactus graph. Thus, the lemma also
holds for cactus graphs. ut

We next show that MTPP is also NP-hard for interval graphs where the
proof is deferred to the Appendix.

Lemma 5. The maximum tropical path problem is NP-hard for interval graphs.

3.2 An algorithm for MTPP in bipartite chain graphs

Recall that the longest path problem can be solved in polynomial time for
bipartite permutation graphs, which can be defined as follows [16]. A bipar-
tite permutation graph consists of bipartite chain graphs and any bipartite
chain graph is a bipartite permutation graph. A bipartite graph G = (X,Y,E)

is said to be a chain graph if its vertices can be linearly ordered such that
N(x1) ⊇ N(x2) ⊇ . . . ⊇ N(x|X|). As a consequence, we also have a linear order
over Y such that N(y|Y |) ⊇ . . . ⊇ N(y1). It is known that these orderings over
X and Y can be computed in O(n) time. Here, we also use an important result
in [5]: namely, that a tropical matching in vertex-colored graphs can be found in
polynomial time and indeed a maximum tropical matching is also a maximum
matching (in term of cardinality of the matching). The following lemma is a
basic tool for our proofs.

Lemma 6. Let M be matching in a vertex-colored bipartite chain graph Gc =
(X,Y,E). Then there exists a path P (M) that contains all vertices of V (M).

Proof. Let M = {(xi1 , yj|M|), (xi2 , yj|M|−1
), . . . , (xi|M| , yj1)} in which xik ∈ X

and yjk ∈ Y , 1 ≤ k ≤ |M | and N(xi1) ⊇ N(xi2) ⊇ . . . ⊇ N(xi|M|). Now it is
obvious that Since Gc is a bipartite chain graph, the edges (xi1 , yj|M|−1

), . . . ,
(xik , yj|M|−k), . . . , (xi|M|−1

, yj1) are in E(Gc). Therefore, P (M) = (xi|M| , yj1 ,
xi|M|−1

, yj2 , . . . , xi2 , yj|M|−1
, xi1 , yj|M|) is a path containing all vertices of V (M).

ut

Now let Cm be the number of colors of any tropical matching and Cp be the
number of colors of any maximum tropical path in Gc. Recall that Cm can be
identified by an algorithm in [5]. The following is an important consequence of
Lemma 6.

Lemma 7. In a vertex-colored bipartite chain graph Gc, we have Cp = Cm or
Cp = Cm + 1.

Proof. It suffices to prove that Cm ≤ Cp ≤ Cm+1. Assume first by contradiction
that Cp < Cm and let M be a tropical matching with Cm colors. By Lemma 6,
there exists a path P consisting of all vertices of M : clearly, |C(P)| ≥ Cm. Thus,
|C(P)| > Cp, a contradiction.
Assume now that Cp > Cm + 1, and let P = (v1, v2, . . . , vi) be a maximum
tropical path with Cp colors. Let i = 2k if i is even, and otherwise let i = 2k+1.
Let M = {(v1, v2), (v3, v4), . . . , (v2k−1, v2k)} be a matching in P . It is clear that
C(M) ≥ Cp − 1. Thus C(M) > Cm, again a contradiction. This completes our
proof. ut

As a consequence of Lemmas 6 and 7, the set of vertices of any maximum
tropical path is either equal to the set of vertices of a tropical matching, or it
differs from the the set of vertices of a tropical matching by just one vertex (see
an illustration in Figure 3). In the case Cp = Cm, then it is possible to construct
a maximum tropical path from any tropical matching based on Lemma 6. Now
we consider the second case, i.e., Cp = Cm + 1.
Suppose that Cp = Cm + 1 and let P be a maximum tropical path in Gc. It is
clear that the number of vertices of P is odd, i.e., |P | = 2k + 1. Without loss of
generality, we can assume that P starts and ends with a vertex in Y , let P =
(yj0 , xik , yj1 , xik−1

, yj2 , . . . , xi2 , yjk−1
, xi1 , yjk) in which X ′ = {xi1 , . . . , xik} ⊆ X

and Y ′ = {yj0 , yj1 , . . . , yjk} ⊆ Y . The following lemma helps to find the set X ′.

xi1 xi2 xik

yjk yj1yj2

X ′ ⊆ X

Y ′ ⊆ Yyj0

Fig. 3. An illustration for a maximum tropical path in the case Cp = Cm + 1.

Lemma 8. Suppose that Cp = Cm + 1 and let P = (yj0 , xik , yj1 , xik−1
, yj2 , . . . ,

xi2 , yjk−1
, xi1 , yjk) be a maximum tropical path of Gc. Then we have:

(i) The set of vertices X ′ = {xi1 , xi2 , . . . , xik} are consecutive in the original
linear ordering of X. Moreover, xi1 must be x1.
(ii) ∀0 ≤ h ≤ k: v(P, c(yjh)) = 1 and |C(X ′)| = Cm − |X ′|.

Proof. (i): First we show that xi1 must be x1. Indeed, if xi1 6= x1 then since
N(x1) ⊇ N(xi1), we have thatM = {(x1, yjk), (xi1 , yjk−1

), . . . , (xik−1
, yj1), (xik , yj0)}

is a matching such that |C(M)| ≥ |C(P)| = Cp = Cm + 1, a contradiction.
Suppose next that the vertices xi1 , xi2 , . . . , xik are not consecutive in the original
linear ordering of X, i.e., there exists a vertex xl(1 ≤ l ≤ |X|) of X (xl /∈ X ′) and
two vertices xit , xit′ ∈ X ′(1 ≤ t′ 6= t ≤ k) such that N(xit′) ⊇ N(xl) ⊇ N(xit).
This implies that M = {(xi1 , yjk),(xi2 , yjk−1

), . . . , (xit−1 , yk−(t−2)), (xl, yjk+1−t),
(xit , yjk−t), (xit+1

, yjk−t−1
), . . . , (xik−1

, yj1), (xik , yj0)} is a matching such that
|C(M)| ≥ |C(P)| = Cp = Cm + 1, a contradiction. Thus the set of vertices X ′

must be consecutive in original linear ordering of X.
(ii): Now we prove that |C(X ′)| = Cm − |X ′|. We claim that ∀0 ≤ h ≤ k:
v(P, c(yjh)) = 1, i.e., the color of yjh appears only once in P . Indeed, suppose
that there exists yjh s.t. v(P, c(yjh)) ≥ 2. Then, M = {(xi1 , yjk), (xi2 , yjk−1

),
. . . , (xik−h , yjh+1

), (xik+1−h , yjh−1
), (xik+2−h , yjh−2

), . . . , (xik−1
, yj1), (xik , yj0)}

is a matching in which |C(M)| = |C(P)| = Cp = Cm + 1, which is a contra-
diction. Thus v(P, c(yjh)) = 1, ∀yjh ∈ Y ′. From this property, we obtain that
|C(X ′)| = |C(P)| − |C(Y ′)| = Cm + 1 − (k + 1) = Cm − |X ′|. So we have
|C(X ′)| = Cm − |X ′|. ut

From Lemma 8, we have that X ′ = {x1, x2, . . . , xk} and there is only one
integer 1 ≤ k ≤ |X| which satisfies |C(X ′)| = Cm−|X ′|. Thus, when Cp = Cm+1
and P = (yj0 , xik , yj1 , xik−1

, yj2 , . . . , xi2 , yjk−1
, xi1 , yjk) is a maximum tropical

path of Gc, then the set X ′ can be found as described above. Next, we look for
the set Y ′ = {yj0 , yj1 , . . . , yjk} ⊆ Y .

As proved in Lemma 8, we have that v(P, c(yjh)) = 1, ∀0 ≤ h ≤ k. Thus,
C(Y ′) ∩ C(X ′) = ∅. So to look for Y ′, we focus on the vertices of Y which
have colors different from the colors in C(X ′). Let CY ′ = C(Y)\C(X ′). Next we
denote the colors of CY ′ by c1, c2, . . . , c|C

Y
′ |. Moreover for each color ci ∈ CY ′ , let

max[ci] be the maximum index (1 ≤ max[ci] ≤ |Y |) such that c(ymax[ci]) = ci.

Moreover, without loss of generality, we can suppose that |Y | ≥ max[c|C
Y
′ |] ≥

. . . ≥ max[c2] ≥ max[c1] ≥ 1. With this notation, we can reduce the search
space for Y ′ with the help of the following lemma.

Lemma 9. Suppose that Cp = Cm + 1, let P = (yj0 , xik , yj1 , xik−1
, yj2 , . . . , xi2 ,

yjk−1
, xi1 , yjk) be a maximum tropical path of Gc, and let ct(1 ≤ t ≤ |CY ′ |) be the

color such that ct ∈ {c(yj0), . . . , c(yjk)} and max[ct] = max{max[c(yjh)] | 0 ≤
h ≤ k}. Then there exists another maximum tropical path P ′ consisting of all
vertices {xi1 , . . . , xik , ymax[ct], ymax[ct−1], . . . , ymax[ct−k]}.

Proof. Recall that N(y|Y |) ⊇ . . . ⊇ N(y1). Now observe that since the color of
yjh is c(yjh), we obtain thatmax[c(yjh)] ≥ jh, ∀0 ≤ h ≤ k. ThusN(ymax[c(yjh)]) ⊇
N(yjh). As proved that the colors c(yjh) are distinct, ∀0 ≤ h ≤ k. Also the colors
c(ymax[c(yjh)]) are distinct. Moreover, the colors c(yjh) and c(ymax[c(yjh)]) are in

CY ′ = C(Y)\C(X ′) and ∀0 ≤ h ≤ k: v(P, c(yjh)) = 1 and v(P, c(ymax[c(yjh)])) ≤
1. As a result, replacing each vertex yjh in the path P by vertex ymax[c(yjh)],

yields another tropical path P ′′, which is

(ymax[c(yj0)], xik , ymax[c(yj1)], xik−1
, ymax[c(yj2)], . . . , xi2 , ymax[c(yjk−1

)], xi1 , ymax[c(yjk)]).

Now since the color ct satisfies max[ct] = max{max[c(yjh)]|0 ≤ h ≤ k} and
|Y | ≥ max[c|C

Y
′ |] ≥ . . . ≥ max[c2] ≥ max[c1] ≥ 1, it can be deduced that

N(ymax[ct−h]) ⊇ N(ymax[c(yjh)]),∀0 ≤ h ≤ k. So in the path P ′′ we can replace

vertices {ymax[c(yj0)], ymax[c(yj1)], . . . , ymax[c(yjk)]} by vertices {ymax[ct], ymax[ct−1],

. . . , ymax[ct−k]} to obtain another tropical path P ′ consisting of all vertices
{xi1 , . . . , xik , ymax[ct], ymax[ct−1], . . . , ymax[ct−k]}. ut

From Lemma 9, it follows that in order to look for Y ′, we must focus on
k+ 1 consecutive vertices {ymax[ct], ymax[ct−1], . . . , ymax[ct−k]} in the set of |CY ′ |
(i.e., |C(Y)\C(X ′)|) vertices {ymax[c|C

Y
′ |]
, ymax[c|C

Y
′ |−1], . . . , ymax[c2], ymax[c1]}.

It is clear that the set of k + 1 such vertices can be easily listed. For each set
{ymax[ct], ymax[ct−1], . . . , ymax[ct−k]}, together with the set {x1, . . . , xk}, a path
going through 2k + 1 these vertices, if it exists, can be found by an algorithm
that computes a longest path in a bipartite chain graph [16].

When Cp = Cm + 1 and a maximum tropical path P starts and ends with a
vertex in X, we use the notation min[c] for colors in C(X) (instead of max[c]
for colors in C(Y)) since the linear ordering on X is the reverse of the linear
ordering on Y (N(x1) ⊇ N(x2) ⊇ . . . ⊇ N(x|X|) while N(y|Y |) ⊇ . . . ⊇ N(y1)).
However, in this case all other arguments go through exactly as above.

Therefore, as we find out the sets X ′, Y ′ and construct a longest path from
their vertices, we check the conditions of colors to guarantee that the path has
(Cm + 1) colors. If it has, then it is a maximum tropical path. If we can not
find such paths as all possibilities for X ′, Y ′ are considered, we conclude that
a maximum tropical path must have (Cm) colors and it can be constructed
from a tropical matching by Lemma 6. The formal description is presented in
Algorithm 2.

Input: A vertex-colored bipartite chain graph Gc = (X,Y,E) in which
N(x1) ⊇ N(x2) ⊇ . . . ⊇ N(x|X|) and N(y|Y |) ⊇ . . . ⊇ N(y1)

Output: A maximum tropical path with the maximum number of colors
possible.

Initialization: Cm ← the number of colors of a tropical matching in Gc

(use the algorithm in [5]);
if ∃k1(1 ≤ k1 ≤ |X|) such that |C({x1, x2, . . . , xk1})| = Cm − k1 then

X ′ ← {x1, x2, . . . , xk1} ;
CY ′ ← C(Y)\C(X ′) ;
∀c ∈ CY ′ : max[c]← the maximum index (1 ≤ max[c] ≤ |Y |) s.t.
c(ymax[c]) = c ;
{c1, c2, . . . , c|C

Y
′ |} ← the set of colors of CY ′ in which

|Y | ≥ max[c|C
Y
′ |] ≥ . . . ≥ max[c2] ≥ max[c1] ≥ 1 ;

foreach t ∈ {k1 + 1, . . . , |CY ′ |} do
Y ′ ← {ymax[ct], ymax[ct−1], . . . , ymax[ct−k1]} ;

Hc ← the subgraph induced by vertices of V (X ′) and V (Y ′) ;
P ← the longest path of Hc (use the algorithm in [16]) ;
if C(P) = Cm + 1 then

return P as a maximum tropical path ;
end

end
else if ∃k2(1 ≤ k2 ≤ |Y |) such that |C({y|Y |, y|Y |−1, . . . , yk2})| = Cm − k2
then

Y ′ ← {y|Y |, y|Y |−1, . . . , yk2} ;
CX′ ← C(X)\C(Y ′) ;
∀c ∈ CX′ : min[c]← the minimum index (1 ≤ min[c] ≤ |X|) s.t.
c(xmin[c]) = c ;
{c1, c2, . . . , c|C

X
′ |} ← the set of colors of CX′ in which

1 ≤ min[c1] ≤ . . . ≤ min[c|C
X
′ |−1] ≤ min[c|C

X
′ |] ≤ |X| ;

foreach t ∈ {1, . . . , |CX′ | − k2} do
X ′ ← {ymin[ct], ymin[ct+1], . . . , ymin[ct+k2]} ;

Hc ← the subgraph induced by vertices of V (X ′) and V (Y ′) ;
P ← the longest path of Hc (use the algorithm in [16]) ;
if C(P) = Cm + 1 then

return P as a maximum tropical path ;
end

end

else
M ← a tropical matching in Gc ;
P ← a path containing M by Lemma 6 ;
return P as a maximum tropical path ;

end
Algorithm 2: Computing a maximum tropical path in a vertex-colored bi-
partite chain graph

The following theorem proves the correctness of our algorithm for computing
a maximum tropical path in a vertex-colored bipartite chain graph Gc.

Theorem 4. Algorithm 2 computes a maximum tropical path of Gc in O(c ·
M(m,n)) in which O(M(m,n)) is the best known complexity for finding a max-
imum matching in a general graph with m edges and n vertices.

Proof. The correctness of this algorithm follows from Lemma 7, Lemma 8 and
Lemma 9.
This algorithm uses another algorithm to compute a tropical matching in a
vertex-colored graphs [5], its complexity is O(c · M(m,n)) in which M(m,n)
is the time required to compute a maximum matching in general graphs. Next
the iterations foreach run in O(c) times and inside each these iteration we
use the algorithm for finding a longest path in a bipartite chain graph [16]
with complexity O(n). Therefore the overall complexity of Algorithm 2 is O(c ·
M(m,n)). ut

3.3 Algorithms for MTPP in threshold graphs

The main result for MTPP in threshold graphs is the following theorem where
the proof is deferred to the Appendix.

Theorem 5. A maximum tropical path on a threshold graph can be computed
in time max(O(c ·M(m,n)), O(n4)), where M(m,n) is the time for finding a
maximum matching in a general graph with m edges and n vertices.

3.4 Algorithms for MTPP in trees, block graphs and interval
graphs

In this section, we present some simple algorithms for tree, block graphs and
interval graphs.

An algorithm for MTPP in trees. Observe that in a vertex-colored tree T c,
there is only a path from each vertex u to another vertex v and there are O(n2)
such pairs of vertices. In this case, MTPP can be solved simply as follows:

Step 1 : Compute the numbers of color of paths of all pairs of vertices
(u, v) of T c.
Step 2 : Return a path with the maximum number of colors.

Algorithm 3: Look for a maximum tropical path in a vertex-colored tree T c

An algorithm for MTPP in block graphs. As proved above, the maximum
tropical path problem is NP-hard for cactus graphs (Lemma 4). However, this
does not hold for other tree-like graphs, such as block graphs. We propose a
polynomial algorithm for MTPP in a vertex-colored block graph Gc. Recall that

a block graph is an undirected graph in which each block is a clique, it is also a
clique tree. Now let u, v be two distinct vertices of V (Gc), then it is clear that
there exists only one series of cliques K(u, v) = {K1,K2, . . . ,Kt} from u to v
such that u ∈ K1, v ∈ Kt and Ki is adjacent to Ki+1, 1 ≤ i ≤ t − 1, moreover
K1 ∩K2 6= u and Kt−1 ∩Kt 6= v. Observe that it is possible to go through all
vertices of all these cliques from u and v and it is clear that this is a longest
path and also a path with maximum number of colors possible from u to v. This
suggests the following simple algorithm:

Step 1 : Find the longest paths between all pairs of vertices:
foreach pair of vertices u and v in Gc do

Compute the unique series of cliques K(u, v) = {K1,K2, . . . ,Kt} from
u to v ;
Find the longest path from u to v going through all vertices of
K(u, v), denote it by p(u, v);

end
Step 2 : Return a pair of vertices with the maximum number of colors of
p(u, v) and the corresponding path;

Algorithm 4: Computing a maximum tropical path in a vertex-colored block
graph Gc

An linear algorithm for MTPP in proper interval graphs. As proved
above, MTPP is NP-hard for vertex-colored interval graphs (Lemma 5). How-
ever, this problem becomes easy if we consider a vertex-colored proper interval
graph Gc. Recall that proper interval graphs are interval graphs that have an
interval representation in which no interval properly contains any other interval.
Note that the problem of finding a longest path on proper interval graphs is easy,
since all connected proper interval graphs have a Hamiltonian path which can be
computed in linear time [3]. This suggests that we may compare the number of
colors of Hamiltonian paths of all connected components (i.e., connected proper
interval graphs) in order to select a maximum tropical path in Gc. Therefore the
algorithm is simply presented as follows.

Step 1 : Compute the connected components and the numbers of colors of
Hamiltonian paths of all these connected components in Gc.
Step 2 : Return a Hamiltonian path with the maximum number of colors.

Algorithm 5: Look for a maximum tropical path in a vertex-colored proper
interval graph Gc

References

1. Akbari, S., Liaghat, V., Nikzad, A.: Colorful paths in vertex coloring of graphs.
the electronic journal of combinatorics 18(1), P17 (2011)

2. Angles d’Auriac, J.A., Bujtás, C., El Maftouhi, H., Narayanan, N., Rosaz, L.,
Thapper, J., Tuza, Z.: Tropical dominating sets in vertex-coloured graphs. In:

Proc. 10th Workshop on Algorithms and Computation (WALCOM). vol. 9627,
p. 17 (2016)

3. Bertossi, A.A.: Finding hamiltonian circuits in proper interval graphs. Information
Processing Letters 17(2), 97–101 (1983)

4. Bruckner, S., Hüffner, F., Komusiewicz, C., Niedermeier, R.: Evaluation of ilp-
based approaches for partitioning into colorful components. In: International Sym-
posium on Experimental Algorithms. pp. 176–187 (2013)

5. Cohen, J., Manoussakis, Y., Pham, H., Tuza, Z.: Tropical matchings in vertex-
colored graphs. In: Latin and American Algorithms, Graphs and Optimization
Symposium (2017 (to appear))

6. Corel, E., Pitschi, F., Morgenstern, B.: A min-cut algorithm for the consistency
problem in multiple sequence alignment. Bioinformatics 26(8), 1015–1021 (2010)

7. Fellows, M.R., Fertin, G., Hermelin, D., Vialette, S.: Upper and lower bounds
for finding connected motifs in vertex-colored graphs. Journal of Computer and
System Sciences 77(4), 799–811 (2011)

8. Foucaud, F., Harutyunyan, A., Hell, P., Legay, S., Manoussakis, Y., Naserasr, R.:
Tropical homomorphisms in vertex-coloured graphs. Discrete Applied Mathematics
((to appear))

9. Ioannidou, K., Mertzios, G.B., Nikolopoulos, S.D.: The longest path problem is
polynomial on interval graphs. In: Symposium on Symposium on Mathematical
Foundations of Computer Science (MFCS). vol. 5734, pp. 403–414 (2009)

10. Karger, D., Motwani, R., Ramkumar, G.: On approximating the longest path in a
graph. Algorithmica 18(1), 82–98 (1997)

11. Li, H.: A generalization of the gallai–roy theorem. Graphs and Combinatorics 17(4),
681–685 (2001)

12. Lin, C.: Simple proofs of results on paths representing all colors in proper vertex-
colorings. Graphs and Combinatorics 23(2), 201–203 (2007)

13. Marx, D.: Graph colouring problems and their applications in scheduling. Periodica
Polytechnica Electrical Engineering 48(1-2), 11–16 (2004)

14. Micali, S., Vazirani, V.V.: An O(
√

|V ||E|) algorithm for finding maximum match-
ing in general graphs. In: Proc. 21st Symposium on Foundations of Computer
Science. pp. 17–27 (1980)

15. Uehara, R., Uno, Y.: Efficient algorithms for the longest path problem. In: Inter-
national Symposium on Algorithms and Computation. pp. 871–883 (2004)

16. Uehara, R., Valiente, G.: Linear structure of bipartite permutation graphs and the
longest path problem. Information Processing Letters 103(2), 71–77 (2007)

