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Abstract7

We consider the virtual circuit routing problem in the stochastic model with uniformly random8

arrival requests. In the problem, a graph is given and requests arrive in a uniform random order.9

Each request is specified by its connectivity demand and the load of a request on an edge is a random10

variable with known distribution. The objective is to satisfy the connectivity request demands while11

maintaining the expected congestion (the maximum edge load) of the underlying network as small12

as possible.13

Despite a large literature on congestion minimization in the deterministic model, not much14

is known in the stochastic model even in the offline setting. In this paper, we present an15

O(log n/ log log n)-competitive algorithm when optimal routing is sufficiently congested. This ratio16

matches to the lower bound Ω(log n/ log log n) (assuming some reasonable complexity assumption)17

in the offline setting. Additionally, we show that, restricting on the offline setting with deterministic18

loads, our algorithm yields the tight approximation ratio of Θ(log n/ log log n). The algorithm is19

essentially greedy (without solving LP/rounding) and the simplicity makes it practically appealing.20
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1 Introduction25

Congestion minimization is a fundamental problem for network operations/communication.26

In the former, there are connectivity requests and serving requests induces loads on network27

links. The load vector of each request is deterministically given. The objective is to satisfy the28

connectivity demands while maintaining the congestion of the underlying network as small29

as possible. The problem has been widely studied and several algorithms with performance30

guarantee have been designed.31

In real-world scenarios, given the presence of uncertainty, request loads are rarely determ-32

inistic but vary as random variables. Uncertainty may come from different sources due to33

unexpected events, noise, etc. The uncertainty in the loads represents the main difficulty in34

designing performant algorithms in such scenarios. In this paper, we take one step closer to35

real-world situations by considering the congestion minimization in the stochastic model.36

Stochastic Virtual Circuit Routing Problem (SVCR). Given a directed graph G(V,E)37

where |V | = n, |E| = m and a set of k requests. A request i (for 1 ≤ i ≤ k) is specified by a38

origin/destination pair (oi, di) and a random variable Xi,e whose distribution is known that39

represents the load of request i on an edge e. Assume that Xi,e’s are bounded and without40

loss of generality, Xi,e’s take values in [0, 1]. For each request i, one needs to choose a routing41

path connecting oi to di. The expected congestion of a routing (connecting all requests’ pairs)42
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42:2 A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing

is E
[
maxe

∑
i∈Te Xi,e

]
where Te is the set of requests whose routing path passes through e.43

The objective is to minimize the expected congestion.44

In this paper, we consider the SVCR problem in the random-order setting. In the latter,45

requests are released over time in an uniformly random order and at the arrival of a request,46

one needs to make an irrevocable decision to satisfy the request. The random-order setting is47

similar to the online one; however, in the former the adversary can choose request parameters48

but has no influence on the request arrival order (which is uniformly random).49

The congestion objective belongs to the class of `p-norm functions on load vectors.50

Specifically, the former corresponds to the `∞-norm and it is well-known that the `∞-norm51

of a m-vector can be approximated up to a constant factor by the `p-norm where p = logm.52

In the SVCR problem, we also consider `p-norm objective functions on load vectors. Note53

that when we mention the SVCR problem without stating explicitly the objective, it means54

that the congestion objective is considered.55

Stochastic algorithmic problems are common in real-world situations and have been56

extensively studied in different domains, including approximation algorithms. There are57

two classes of algorithms for stochastic problems: non-adaptive and adaptive. In the former,58

the decisions have been made up-front and then the realization of the randomness will be59

revealed. In the latter, the randomness is revealed instantaneously after each decision (so an60

algorithm can adapt its strategy due to the outcome of random variables observed so far).61

In virtual circuit routing, non-adaptive solutions are preferable and more suitable than the62

adaptive ones since the former is usually simpler and easier to implement. In this paper, we63

are interested in designing non-adaptive solutions for the SVCR problem.64

The virtual circuit routing problem has been well understood in the deterministic model.65

Specifically, in offline setting Raghavan and Thompson [23] gave an O(logn/ log logn)-66

approximation algorithm and in online setting Aspnes et al. [3] provided an O(logn)-67

competitive algorithm. The bounds are optimal up to a constant factor. However, not68

much in term of approximation is known in the stochastic model. A closely related problem69

to SVCR, the stochastic load balancing problem, has been studied in the offline setting. In70

the problem, given a set of jobs and machines, one needs to assign jobs to machines such71

that the (expected) maximum load of the assignment is minimized. Kleinberg et al. [17] first72

considered this problem and gave a constant approximation for identical machines, i.e., for73

each job j, the random loads of a job on all machines are identical. Goel and Indyk [11]74

provided better approximations when the job loads follow some specific distributions, for75

example Poisson distributions, Exponential distributions. Very recently, Gupta et al. [13]76

gave a constant approximation for unrelated machines. They also considered the objective of77

minimizing the `p-norm of machine loads and showed an O(p/ log p)-approximation algorithm.78

Their technique is based on a linear program which guarantees a strong lower bound for the79

stochastic load balancing problem. In their paper, Gupta et al. [13] raised an open question80

of designing algorithms for the SVCR problem. The main difficulty, which resists to current81

approaches, is to deal with the correlation of edges loads where different paths may share82

common edges.83

1.1 Our Contribution and Approach84

We give a competitive algorithm for the SVCR problem in the random-order setting. Specific-85

ally, our algorithm is O(logn/ log logn)-competitive if the congestion of the optimal solution86

is at least 1, i.e., informally, optimal routing is sufficiently congested. Note that even in the87

offline setting with deterministic loads, the problem is known to be hard to approximate88

within factor Ω(logn/ log logn) unless all problems in NP have randomized algorithms with89
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running time npoly logn [2, 8]. The result shows that in terms of approximation, one can90

guarantee the quality of the algorithmic solutions for the virtual circuit routing problem91

even with uncertainty in the request loads. Moreover, our algorithm is essentially greedy92

which makes it practically appealing and is easy to implement.93

In order to design algorithms for the SVCR problem, we study the more general objective94

of minimizing the `p-norm of edge loads. We consider the primal-dual technique with95

configuration LPs [25]. This approach provides a clean way to deal with non-linear objective96

functions and intuitive constructions of dual variables. Our algorithm is a generalized version97

of Greedy Restart algorithms introduced by Molinaro [22] in the context of machine load98

balancing (which can be seen as a special case of the SVCR problem where the network99

consists of two nodes and parallel edges connecting these two nodes). Informally, for every100

request the algorithm selects a routing path greedily with respect to some function ψκ,p101

(defined later) which depends on the current load vector. However, when half of the requests102

have been considered, the algorithm restarts the procedure: it still chooses a routing path103

greedily with respect to the function ψκ,p but now the function ψκ,p depends on the load vector104

induced only by the second half of the requests. Building on the primal-dual technique with105

configuration LPs [25] and useful probability inequalities together with insightful observations106

by Molinaro [22], we prove the competitiveness of the algorithm in the online random-order107

setting.108

Besides, we revisit the classic virtual circuit routing problem in offline setting with109

deterministic loads (where Xi,e’s are deterministic values wi for every e). We show that our110

algorithm achieves the tight approximation ratio of Θ(logn/ log logn). Remark that our111

greedy algorithm is simpler than the algorithms by Raghavan and Thompson [23], Srinivasan112

[24] which are based on LP-rounding techniques or the recent algorithm by Chekuri and113

Idleman [6] which relies on the notion of multiroute flows [16].114

1.2 Further Related Works115

In the offline setting, the virtual circuit routing problem is also known under the name of116

the congestion minimization problem. The latter is a relaxation of the classsic edge-disjoint117

paths problem: given a graph and a collection of source-sink pairs, can the pairs be connected118

via edge-disjoint paths. For the variant of the congestion minimization problem where119

di = 1 and wi ≡ 1 for every 1 ≤ i ≤ k, Raghavan and Thompson gave an O(logn/ log logn)-120

approximation algorithm via their influential randomized rounding technique [23]. This ratio121

is subsequently proved by Chuzhoy et al. [8] to be tight assuming some complexity hypothesis.122

Srinivasan [24] considered the multipath congestion minimization problem corresponding123

to the setting where di ≥ 1 and wi ≡ 1 for every 1 ≤ i ≤ k. Srinivasan presented an124

O(logn/ log logn)-approximation algorithm by developing a dependent rounding technique125

for cardinality constraints [24] . The technique is extended in subsequent works for handling126

more general constraints [10, 9, 7]. Recently, Chekuri and Idleman [6] gave a simple algorithm127

for the multipath congestion minimization problem. They showed the O(logn/ log logn)128

approximation ratio via the notion of multiroute flows which were originally introduced129

by Kishimoto and Takeuchi [16]. That enables a simple solution without using dependent130

rounding and also allows them to improve the results in some particular cases.131

The congestion minimization problem has been also studied in online setting where132

requests arrive online. Aspnes et al. [3] gave an O(logn)-competitive algorithm and proved133

that this bound is optimal up to a constant factor. For the more general objective of134

`p-norm, Awerbuch et al. [4] considered the load balancing problem and proved that greedy135

algorithm achieved the bound of O(p), also optimal up to a constant factor. Caragiannis [5]136

ISAAC 2019



42:4 A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing

strengthened and significantly simplified the analysis of the greedy algorithm and showed137

the optimal bound of 1
21/p−1 .138

Stochastic combinatorial optimization problems such as shortest paths, minimum spanning139

trees, knapsack, bin-packing etc have been considered by Li and Deshpande [18] and Li and140

Yuan [19] and Kleinberg et al. [17]. In these problems, parameters (length, weights, etc)141

are given as random variables with known distributions and the objective is to optimize the142

expected value of some cost/utility functions. In this paper, we are interested in the class of143

non-adaptive algorithms. Several works [21, 20, 15, 14] have considered adaptive algorithms144

where the decisions of algorithms depend on the current state of the solutions.145

2 Preliminaries146

In this section, we give some definitions and technical lemmas which are useful in our analysis.147

This part is drawn significantly from Molinaro [22]. Recall that in the random-order model,148

the cost of a routing is the expected `p-norm of the load vector where the expectation is149

taken over the random order and the random vectors Xi,e’s.150

Given p > 1, its Hölder conjugate q is the number that satisfies 1
p + 1

q = 1. The dual of the
`p-norm is the `q-norm. Let `+

q be the set of non-negative vectors in Rm with `q-norm at most

1. Given a constant κ and p, define function ψκ,p : Rm → R as ψκ,p(u) = p
κ

(∥∥∥1 + κ
pu
∥∥∥
p
− 1
)
.

The function ψκ,p can be equivalently written as

ψκ,p(u) = f−1
κ,p

( m∑
h=1

fκ,p(uh)
)

where fκ,p(uh) =
(

1 + κ

p
uh

)p

Recall that ‖u‖p = g−1
(∑m

h=1 g(uh)
)

where g(uh) = (uh)p. Informally, ψκ,p(·) is a smooth151

approximation of ‖·‖p as shown later in Lemma 1. In the paper, we are interested in the152

congestion which is the `∞-norm of the load vectors. It is well-known that the `∞-norm153

of any vector can be approximated by `p-norm of that vector where m is the number of154

coordinates and p = logm. Molinaro [22] introduced the function ψκ,p as a smoother version155

of `p-norm and showed that using function ψκ,p, one can obtain tighter bound then using156

directly the `p-norm function for the scheduling problem of minimizing the `p-norm of the157

load vectors in the random-order model.158

First, observe that159

∇ψκ,p(u) = p

κ
· ∇
∥∥∥∥1 + κ

p
u

∥∥∥∥
p

∈ `+
q (1)160

161

where q = p/(p− 1) since162

p

κ
· ∂

∂uh

∥∥∥∥1 + κ

p
u

∥∥∥∥
p

=
(
1 + κ

puh
)p−1(∑m

h=1
(
1 + κ

puh
)p)1−1/p ∀1 ≤ h ≤ m163

⇒ ‖∇ψκ,p(u)‖q = 1.164
165

The following lemma shows useful properties of functions ψκ,p’s and relates them to the166

`p-norm function.167

I Lemma 1 ([22]). For arbitrary κ > 0, it holds that168
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For all u ∈ Rm+ ,169

‖u‖p ≤ ψκ,p(u) ≤ ‖u‖p + p(m1/p − 1)
κ

(2)170
171

For all u ∈ Rm+ and v ∈ [0, 1]m, for every coordinate 1 ≤ h ≤ m,172

e−κ (∇ψκ,p(u))h ≤ (∇ψκ,p(u + v))h ≤ e
κ (∇ψκ,p(u))h (3)173

174

The following key inequality is proved in [22, Lemma 3.1].175

I Lemma 2 ([22]). Consider a set of vector {v1, . . . ,vk} ∈ [0, 1]m and let V1, . . . , Vt be176

sample without replacement from this set for 1 ≤ t ≤ k. Let U be a random vector in `+
q that177

depends only on V1, . . . , Vt−1. Then, for all κ > 0,178

E
[〈
V t, U

〉]
≤ eκ ‖EVt‖p + 1

k − (t− 1) ·
p(m1/p − 1)

κ
179

180

The following corollary is a direct consequence by replacing κ by κ · 1
4 log logn.181

I Corollary 3. Consider a set of vector {v1, . . . ,vk} ∈ [0, 1]m and let V1, . . . , Vt be sample182

without replacement from this set for 1 ≤ t ≤ k. Let U be a random vector in `+
q that depends183

only on V1, . . . , Vt−1. Then, for all κ > 0,184

E
[〈
V t, U

〉]
≤ eκ(log1/4 n) ‖EVt‖p + 1

k − (t− 1) ·
p(m1/p − 1)

κ

1
1
4 log logn

185

186

Remark. We emphasize that Lemma 2 and Corollary 3 hold with arbitrary κ > 0 (not187

necessarily 0 < κ < 1). Molinaro [22] proved Lemma 2 using the regret-minimization188

technique from online learning. It has been observed that there is an interesting connection189

between regret minimization and the random-order model: regret minimization techniques190

can be used to prove probability inequalities. This direction has been recently explored in191

[1, 12, 22]. In particular, employing Lemma 2 and other powerful inequalities, Molinaro [22]192

proved competitive algorithms for the load balancing problem in the random-order model.193

3 An O(log n/ log log n)-Competitive Algorithm in Random-Order194

Setting195

We consider the SVCR problem in the random-order setting with the objective of minimizing196

the `p-norm of edge loads. The algorithm for the congestion objective will be deduced by197

choosing appropriate parameters.198

Formulation We say that C is a configuration if C is a partial feasible solution of the199

problem. In other words, a configuration C is a set {(i, Pij) : 1 ≤ i ≤ k, Pij ∈ Pi} where the200

couple (i, Pij) represents request i and the selected oi − di path Pij in configuration C to201

satisfy request i. Given an arrival order (a permutation) π, denote π(t) the request which is202

released at step t in the order π. For any permutation π, let xππ(t),j be a variable indicating203

whether the selected path for request π(t) is Pπ(t),j . For a configuration C and a permutation204

π, let zπC be a variable such that zπC = 1 if and only if for every (π(t), Pπ(t),j) ∈ C, xππ(t),j = 1.205

In other words, zπC = 1 iff the selected solution is C when the request arrival order is π.206

Let `(i, Pij) ∈ Rm be the load random vector of path Pij , i.e., `(i, Pij)e = Xi,e for every207

e ∈ Pij and equals 0 otherwise (e /∈ Pij). Moreover, let `(C) be the load random vector of208
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42:6 A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing

configuration C, i.e., `(C) =
∑

(i,Pij)∈C `(i, Pij). The expected cost (`p-norm objective) of209

configuration C is EX
[
‖`(C)‖p

]
where the expectation is taken over the random vectors210

Xi,e’s. We consider the following formulation (left-hand side) and the dual of its relaxation.211

minEπ
[∑
C

EX
[
‖`(C)‖p

]
zπC

]
∑

j:Pπ(t),j∈Pπ(t)

xππ(t),j = 1 ∀π, t

∑
C:(π(t),Pπ(t),j)∈C

zπC = xππ(t),j ∀π, t, j

∑
C

zπC = 1 ∀π

xππ(t),j , z
π
C ∈ {0, 1} ∀π, t, j, C

max
∑
π

(∑
t

απt + γπ
)

απt ≤ βπt,j ∀π, t, j (4)

γπ+
∑

(π(t),Pπ(t),j)∈C

βπt,j ≤

≤ P[π] · EX
[
‖`(C)‖p

]
∀π,C

(5)

212

In the primal, the first constraint guarantees that for any arrival order π, request π(t) has213

to be satisfied by some path Pπ(t),j ∈ Pπ(t). The second constraint ensures that if request214

π(t) selects path Pπ(t),j then the couple (π(t), Pπ(t),j) must be in the solution. The third215

constraint says that one always has to output a solution for the problem.216

Algorithm. The algorithm is primarily a form of Greedy Restart introduced by Molinaro217

[22] in the context of machine load balancing. We consider a generalized version for the218

SVCR problem in the angle of a primal-dual method with configuration LPs. Informally, for219

every request the algorithm selects a routing path greedily with respect to the function ψκ,p220

which depends on the current load vector. However, when half of the requests have been221

considered, the algorithm restarts the procedure: it still chooses a routing path greedily with222

respect to a function ψκ,p but now the function ψκ,p depends on the load vector induced223

only by the second half of the requests. The intuition is the following. In the worst-case224

lower bound construction [3, 4, 5], at every time given the current routing the adversary225

traps every algorithm to accumulate the loads on links which become congested later. The226

restart step in the algorithm avoids accumulating the loads on potentially-congested links.227

The formal description of the algorithm is the following.228

Let κ > 0 be a fixed parameter to be determined later. Let At be the configuration229

(partial solution) of the algorithm before the arrival of the tth request. Initially, A0 = B0 = ∅.230

At the arrival of the tth request, denoted as i, select a path Pi,j∗ that is an optimal solution231

of232

min
Pij∈Pi

{
ψκ′,p

(
`(Bt) + `(i, Pij)

)
− ψκ′,p

(
`(Bt)

)}
233

234

where ` is the load function (defined in the formulation) and κ′ = κ · 1
4 log logn. Update235

At+1 = At ∪ (i, Pi,j∗) and Bt+1 = Bt ∪ (i, Pi,j∗). If t = k/2 + 1, reset Bt = ∅.236

In the above description of the algorithm, we need the knowledge of k — the number of237

requests — in order to reset Bt at t = k/2 + 1. In fact, one can implement the algorithm238

without the knowledge of k as the following. Initially, A0 = Bodd = Beven = ∅. At the arrival239

of the tth request, denoted as i, select a path Pi,j∗ that is an optimal solution of240 {
minPij∈Pi

{
ψκ′,p

(
`(Bodd) + `(i, Pij)

)
− ψκ′,p

(
`(Bodd)

)}
if t is odd

minPij∈Pi
{
ψκ′,p

(
`(Beven) + `(i, Pij)

)
− ψκ′,p

(
`(Beven)

)}
if t is even

241

242
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where ` is the load function (defined in the formulation) and κ′ = κ · 1
4 log logn. Update243

At+1 = At ∪ (i, Pi,j∗) and update Bodd or Beven depending on whether t is odd or even.244

Analysis245

For the sake of simplicity, we will analyze the algorithm using its first description. In the246

sequel, we will define the dual variables, prove the feasibility and show the competitive ratio.247

As κ (so κ′) and p are fixed, for simplicity, we drop the indices κ′ and p in ψκ′,p.248

Dual variables. For any permutation σ, denote Aσt and Bσt as the configurations At and Bt249

(respectively) in the execution of algorithm (before the arrival of the tth) request assuming250

that the request arrival order is σ. Define the dual variables as follows.251

βπt,j := P[π]
e2κ(log1/4 n)

EXEσ
[
ψ
(
`(Bσt ) + `(σ(t), Pσ(t),j)

)
− ψ

(
`(Bσt )

)]
,252

απt := P[π]
e2κ(log1/4 n)

EXEσ
[
min
j

{
ψ
(
`(Bσt ) + `(σ(t), Pσ(t),j)

)
− ψ

(
`(Bσt )

)}]
253

= P[π]
e2κ(log1/4 n)

EXEσ
[
ψ
(
`(Bσt ) + `(σ(t), Pσ(t),j∗)

)
− ψ

(
`(Bσt )

)]
,254

γπ := − P[π]
2e2κ(log1/4 n)

EXEσ
[
‖`(Aσ)‖p

]
.255

256

Informally, βπt,j is proportional (up to a factor P[π] = 1/n!) to the expected marginal increase257

(over random order σ) of the objective at the arrival of request σ(t) assuming that the selected258

strategy to serve σ(t) is Pσ(t),j . Variable απt is also proportional (up to a factor P[π] = 1/n!)259

to the expected marginal increase of the objective at the arrival of request σ(t) due to the260

algorithm.261

I Lemma 4. For any permutation σ, denote Aσ as the final configuration of the al-262

gorithm in case that the request arrival order is σ. Suppose that the cost of the algorithm263

EXEσ
[
‖`(Aσ)‖p

]
≥ 4eκp(m1/p−1)

κ· 14 log logn . Then the variables defined above constitute a dual feasible264

solution.265

Proof. The first dual constraint (4) follows immediately the definitions of απt and βπt,j . In266

the remaining of the proof, we prove the second dual constraint (5). Fix a configuration C267

and a permutation π. Let Pi,c(i) be the path of request i in configuration C. In other words,268

configuration C consists of couples (i, Pi,c(i)) for all requests i.269

By the definition of dual variables, the second constraint reads: for any given permutation270

π and any given configuration C,271

−1
2P[π] · EXEσ

[
‖`(Aσ)‖p

]
+

k∑
t=1

P[π] · EXEσ
[
ψ
(
`(Bσt ) + `(σ(t), Pσ(t),j)

)
− ψ

(
`(Bσt )

)]
272

≤ e2κ(log1/4 n) · P[π] · EX
[
‖`(C)‖p

]
273
274

where for any permutation σ, the path Pσ(t),c(σ(t)) of request σ(t) is completely determined275

in configuration C, i.e., (σ(t), Pσ(t),c(σ(t))) ∈ C. This is equivalent to276

k∑
t=1

EXEσ
[
ψ
(
`(Bσt ) + `(σ(t), Pσ(t),j)

)
− ψ

(
`(Bσt )

)]
277

≤ e2κ(log1/4 n) · EX
[
‖`(C)‖p

]
+ 1

2 · EXEσ
[
‖`(Aσ)‖p

]
. (6)278

279
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42:8 A Competitive Algorithm for Random-Order Stochastic Virtual Circuit Routing

We prove Inequality (6). First we bound the sum in the left-hand side for all 1 ≤ t ≤ k/2.280

EX
k/2∑
t=1

Eσ
[
ψ
(
`
(
Bσt
)

+ `
(
σ(t), Pσ(t),c(σ(t))

))
− ψ (`(Bσt ))

]
281

≤ EX
k/2∑
t=1

Eσ
[〈
∇ψ

(
`
(
Bσt
)

+ `
(
σ(t), Pσ(t),c(σ(t))

))
, `
(
σ(t), Pσ(t),c(σ(t))

)〉]
282

≤ eκ
k/2∑
t=1

EXEσ
[〈
∇ψ

(
`
(
Bσt
))
, `
(
σ(t), Pσ(t),c(σ(t))

)〉]
283

≤ eκ ·
k/2∑
t=1

(
eκ(log1/4 n) · EX

∥∥∥∥Eσ [`(σ(t), Pσ(t),c(σ(t))

)]∥∥∥∥
p

+ 1
k − t+ 1 ·

p(m1/p − 1)
κ · 1

4 log logn

)
284

= e2κ(log1/4 n) · k2 · EX
∥∥∥∥`(C)

k

∥∥∥∥
p

+ eκ
k/2∑
t=1

1
k − t+ 1 ·

p(m1/p − 1)
κ · 1

4 log logn
285

≤ e2κ(log1/4 n)
2 EX

[
‖`(C)‖p

]
+ eκ · p(m

1/p − 1)
κ · 1

4 log logn
286

<
e2κ(log1/4 n)

2 EX
[
‖`(C)‖p

]
+ 1

4 · EXEσ
[
‖`(Aσ)‖p

]
. (7)287

288

Recall that `
(
σ(t), Pσ(t),c(σ(t))

)
∈ [0, 1]m. The first and second inequalities follow the289

convexity of ψ and Lemma 1 (Inequality (3)), respectively. The third inequality holds by290

Corollary 3 and note that ∇ψ
(
`
(
Bσt
))
∈ `+

q by observation (1). The next equality is due to291

the fact that σ is an uniform random order. The last inequality follows the assumption of292

the algorithm cost.293

Now we bound the sum of the left-hand side of Inequality (6) for k/2 < t ≤ k. That can294

be done similarly with a subtle observation. For completeness, we show all steps.295

EX
k∑

t=k/2+1

Eσ
[
ψ
(
`
(
Bσt
)

+ `
(
σ(t), Pσ(t),c(σ(t))

))
− ψ (`(Bσt ))

]
296

≤ EX
k∑

t=k/2+1

Eσ
[〈
∇ψ

(
`
(
Bσt
)

+ `
(
σ(t), Pσ(t),c(σ(t))

))
, `
(
σ(t), Pσ(t),c(σ(t))

)〉]
297

≤ eκ
k∑

t=k/2+1

EXEσ
[〈
∇ψ

(
`
(
Bσt
))
, `
(
σ(t), Pσ(t),c(σ(t))

)〉]
298

≤ eκ ·
k∑

t=k/2+1

(
eκ(log1/4 n) · EX

∥∥∥∥Eσ[` (σ(t), Pσ(t),c(σ(t))
)]∥∥∥∥

p

299

+ 1
k − (t− k/2− 1) ·

p(m1/p − 1)
κ · 1

4 log logn

)
300

= e2κ(log1/4 n) · k2 · EX
∥∥∥∥`(C)

k

∥∥∥∥
p

+ eκ
k∑

t=k/2+1

1
k − (t− k/2− 1) ·

p(m1/p − 1)
κ · 1

4 log logn
301

≤ e2κ(log1/4 n)
2 EX

[
‖`(C)‖p

]
+ eκ · p(m

1/p − 1)
κ · 1

4 log logn
302

303
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304

<
e2κ(log1/4 n)

2 EX
[
‖`(C)‖p

]
+ 1

4 · EXEσ
[
‖`(Aσ)‖p

]
. (8)305

306

All the above equalities and inequalities follow by the same arguments as before except the307

third inequality. In the latter, we apply Corollary 3 with the observation that ∇ψ
(
`
(
Bσt
))

308

depends only on (t − k/2 − 1) random load variables due to the fact that the algorithm309

restarts at t = k/2. This interesting idea has been observed by Molinaro [22]. Note that this310

is the only place we use the restart property of the algorithm.311

Hence, summing Inequalities (7) and (8), Inequality (6) follows. J312

I Theorem 5. For any arbitrary κ > 0, the algorithm has expected cost at most 2e2κ(log1/4 n)313

times the optimal value plus an additive constant 4eκp(m1/p−1)
κ· 14 log logn for the SVCR problem with314

`p-norm objective in the random-order setting.315

Proof. Consider first the case where the (expected) cost of the algorithm EXEσ
[
‖`(Aσ)‖p

]
≥316

4eκp(m1/p−1)
κ· 14 log logn . Then, by the algorithm and the definition of dual variables, the dual objective317

equals318 ∑
π

(∑
t

απt + γπ
)

319

= P[π]
e2κ(log1/4 n)

∑
π,t

EXEσ
[
ψ
(
`(Bσt ) + `(σ(t), Pσ(t),j∗)

)
− ψ

(
`(Bσt )

)]
320

− P[π]
2e2κ(log1/4 n)

∑
π

EXEσ
[
‖`(Aσ)‖p

]
321

= 1
e2κ(log1/4 n)

EXEσ
[
ψ
(
`(Bσn/2)

)
+ ψ

(
`(Bσn)

)]
− 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
322

≥ 1
e2κ(log1/4 n)

EXEσ
[∥∥∥`(Bσn/2)

∥∥∥
p

+ ‖`(Bσn)‖p
]
− 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
323

≥ 1
e2κ(log1/4 n)

EXEσ
[∥∥∥`(Bσn/2) + `(Bσn)

∥∥∥
p

]
− 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
324

= 1
e2κ(log1/4 n)

EXEσ
[
‖`(Aσ)‖p

]
− 1

2e2κ(log1/4 n)
· EXEσ

[
‖`(Aσ)‖p

]
325

= 1
2e2κ(log1/4 n)

· EXEσ
[
‖`(Aσ)‖p

]
.326

327

The first inequality follows the properties of ψ (Lemma 1, Inequality (2)). The second328

inequality is due to the norm inequality ‖a‖p + ‖b‖p ≥ ‖a + b‖p. The subsequent equality329

holds since Bσn/2 ]B
σ
n = Aσ (note that Bσn/2+1 was re-initialized as an empty set).330

Besides, the primal is EXEσ
[
‖`(Aσ)‖p

]
. Therefore, by weak duality, EXEσ

[
‖`(Aσ)‖p

]
≤331

2e2κ(log1/4 n)OPT where OPT is the value of an optimal solution.332

Now consider the case that the expected cost of the algorithm EXEσ
[
‖`(Aσ)‖p

]
is at most

4eκp(m1/p−1)
κ· 14 log logn . Obviously, EXEσ

[
‖`(Aσ)‖p

]
< OPT + 4eκp(m1/p−1)

κ· 14 log logn . Therefore, combining the
cases we deduce that

EXEσ
[
‖`(Aσ)‖p

]
≤ 2e2κ(log1/4 n)OPT + 4eκp(m1/p − 1)

κ · 1
4 log logn

.

J333
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I Corollary 6. Assume that the optimum solution is at least 1 (i.e., the optimal routing334

is sufficiently congested). Then the algorithm with parameters p = O(logn) and κ = 1 is335

O(logn/ log logn)-approximation for the SVCR problem.336

Proof. Recall that the congestion (`∞-norms over edge loads) can be approximated up to337

a constant factor by the `p-norm function for p = logm = O(logn). Applying Theorem 5338

for p = O(logn) and κ = 1, we have the following upper-bound on the congestion of the339

algorithm:340

O
(
e2κ(log1/4 n)

)
OPT + 4eκp(m1/p − 1)

κ · 1
4 log logn

≤ O
(
e2κ(log1/4 n) + eκ logn

κ · 1
4 log logn

)
OPT341

= O

(
log1/4 n+ logn

log logn

)
OPT = O

(
logn

log logn

)
OPT (9)342

343

where OPT is the value of an optimal solution. As the optimum solution is at least 1, the344

corollary follows. J345

4 A Simple Θ(log n/ log log n)-Approximation Algorithm for Virtual346

Circuit Routing347

In this section, we revisit the classic virtual circuit routing problem and provide a simple348

algorithm with tight approximation guarantee (assuming some complexity hypothesis).349

Virtual Circuit Routing In the problem, there is a directed graph G(V,E) where |V | = n350

and a collection of k requests. A request i for 1 ≤ i ≤ k is specified by a origin-destination351

pairs oi, di ∈ V , and a positive weight wi representing the (deterministic) load of request352

i on an edge e if it is used by request i. The goal is to choose for each request i a routing353

path connecting oi and di so that the congestion induced by the collection of all paths is354

minimized. The load of an edge e is equal to the total weight of requests routing through355

e, i.e.,
∑
i wi where the sum is taken over all requests i whose some path contains e. The356

congestion of a collection of paths is the maximum load over all edges.357

Approximation algorithm358

1. Normalize all request weights by dividing every weight by maxi′ wi′ . The new normalized359

weights w̃i = wi
maxi′ wi′

satisfy w̃i ∈ [0, 1].360

2. Define the parameters p = O(logn), κ = 1 and κ′ = 1
4 log logn.361

3. Sample an uniform random order of the requests and consider requests in this order.362

4. Let At be the configuration (partial solution) of the algorithm before the arrival of the363

tth request. Initially, A0 = B0 = ∅. At the arrival of the tth request, denoted as i, select364

a path Pi,j∗ that is an optimal solution of365

min
Pij∈Pi

ψκ′,p
( ˜̀(Bt) + ˜̀(i, Pij)

)
− ψκ′,p

( ˜̀(Bt)
)

366

367

where ˜̀ is the load function with respect to the normalized weights. Update At+1 =368

At ∪ (i, Pi,j∗) and Bt+1 = Bt ∪ (i, Pi,j∗). If t = k/2 + 1, reset Bt = ∅.369

I Theorem 7 ( [23, 24, 6]). The algorithm has approximation ratio O(logn/ log logn).370
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Proof. By Corollary 6, specifically Inequality (9), we have the bound on the congestion of
the algorithm (after normalizing the weights):

E[ÃLG] ≤ O
(

logn
log logn

)
ÕPT

where ÃLG and ÕPT are the congestions of the algorithm and the optimal solution with371

normalized weights, respectively. Multiplying both sides by the normalizing factor, the372

theorem follows. J373

5 Conclusion374

In the paper, we have provided a competitive algorithm for the SCVR problem and prove375

that the quality of approximation solutions to the problem can be preserved even with the376

presence of uncertainty. Through the paper, we also show that primal-dual approaches are377

robust in the stochastic model and the random-order model can be used to design/simplify378

randomized approximation algorithms. A direction is to design randomized algorithms379

for other (stochastic) problems using primal-dual techniques and random-order request380

sequences.381
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