
Competitive Algorithms for Demand Response
Management in Smart Grid

Vincent Chau1? and Shengzhong Feng1? and Nguyen Kim Thang2??

1 Shenzhen Institutes of Advanced Technology, Academy of Sciences, Shenzhen,
China

vincentchau@siat.ac.cn, sz.feng@siat.ac.cn
2 IBISC, Univ Évry, Université Paris-Saclay, 91025, Évry, France

thang@ibisc.fr

Abstract. We consider a scheduling problem which abstracts a model of
demand-response management in Smart Grid. In the problem, there is a
set of unrelated machines and each job j (representing a client demand) is
characterized by a release date, and a power request function representing
its request demand at specific times. Each machine has an energy power
function and the energy cost incurred at a time depends on the load of
the machine at that time. The goal is to find a non-migration schedule
that minimizes the total energy (over all times).
We give a competitive algorithm for the problem in the online setting
where the competitive ratio depends (only) on the power functions of
machines. In the setting with typical energy function P (z) = zν , the al-
gorithm is Θ(νν)-competitive, which is optimal up to a constant factor.
Our algorithm is robust in the sense that the guarantee holds for arbi-
trary request demands of clients. This enables flexibility on the choices
of clients in shaping their demands — a desired property in Smart Grid.
We also consider a special case in offline setting in which jobs have unit
processing time, constant power request and identical machines with en-
ergy function P (z) = zν . We present a 2ν-approximation algorithm for
this case.

1 Introduction

Electrical Smart Grid is one of the major challenges in the 21st century [20].
It is a network of electricity distribution that promotes the traffic information
between producers and consumers in order to adjust the electricity flow in real
time, i.e. it aims to improve the journey of the electricity through information
and communication technologies in contrast of the traditional power system. It
has been raised in [6] that in the US power grid, 10% of all generation assets
and 25% of distribution infrastructure are required for less than 400 hours per

? Research supported by NSFC (no 61433012, U1435215) and by Shenzhen basic re-
search grant JCYJ20160229195940462.

?? Research supported by the ANR project OATA no ANR-15-CE40-0015-01,
Hadamard PGMO and DIM RFSI.

year, which represents roughly 5% of the time [20]. A smart grid is a power grid
system that optimizes the efficiency of the power generation, distribution and
consumption, and eventually the storage, of the energy in order to coordinate the
electric network, from the production to the consumer. It can be noticed that the
power grid may not be efficient during the peak demand hour if the management
of the smart grid is not well handled. Indeed, the cost of the electricity production
can be high if there is a high demand, and the electricity suppliers may charge the
consumer according to the generation cost. Therefore, the cost of the electricity
can be different over time, intuitively we have a lower price during off-peak hours
and a higher price during peak hours. That is why demand response management
[10] has been studied in order to overcome this problem. The goal of each user
is to minimize his own cost by requesting the electricity during off-peak hours
and reduce the peak load while satisfying his demand. Thus, demand response
management is essentially beneficial to the consumers.

In fact, it can be seen as a scheduling problem. Each user is a job with
the same release date and deadline in which the job cannot be schedule before
the release date, nor after the deadline. Furthermore, a user is defined by an
electricity demand over time which can also be represented in the scheduling
problem. Finally, we have a cost that will be charged to users depending on the
load at each moment. The goal is to minimize the total cost while satisfying all
demands. A more formal definition is given in the next section.

In this paper, we consider a general online scheduling problem which mod-
els the demand response management and we design algorithms towards the
following main purposes of Smart Grid:

– Optimizing the energy consumption.
– Enabling customer choice and letting them react rationally.

1.1 Model Definition

We consider the following scheduling problem. We are given m unrelated ma-
chines and a set of n jobs. Here, machines represents different resources in a
smart grid or different electrical sub-networks. Each job represents the demand
of a client and the demand is customized by the client. Specifically, each job j
is characterized by its release date rj and an arbitrary power request function
hi,j,k : N → R+, meaning that if a job j starts at time k in machine i then
its request demand at time t is hi,j,k(t). We denote the execution of job j as
si,j,k if job j is processed in machine i with the starting time k. In the problem,
migration of jobs between machines is not allowed. (In other words, a job must
be executed in exactly one machine.) It is a desired property in various systems
since in case of migration, the communications and storage/reloading data of
jobs are costly.

Given a schedule (executions of all jobs), the total load at time t in machine
i is

∑
j,k hi,j,k(t) where the sum is taken over all job executions in machine i.

The total energy is defined as
∑
i

∑
t Pi
(∑

j,k hi,j,k(t)
)

where Pi is an energy
power function of machine i. Typically, Pi(z) = zνi for some constant parameter

2

νi ≥ 1. In the problem, we consider Pi as arbitrary non-decreasing functions,
and possibly non-convex. The goal is find a feasible schedule that minimize the
total energy consumption over all times.

In the paper, we consider both offline and online settings. In the offline set-
ting, the scheduler has the full knowledge on all parameters while in the online
setting, jobs arrive over time and the scheduler is aware of jobs (and their pa-
rameters) only at their arrival time. The online setting is appropriate to the
dynamic nature of the demand response management.

The presented model encompasses the previous ones [11] in literature. In the
latter, jobs have release date rj , deadline dj , processing time pi,j and jobs have
to be processed non-preemptively. The power request of a job j is some constant
hj during its non-preemptive execution. It is captured by the model by defining

hi,j,k(t) =


hj if rj ≤ k ≤ dj − pij and t ∈ [k, k + pij],

0 if rj ≤ k ≤ dj − pij and t /∈ [k, k + pij],

∞ otherwise.

(1)

Geometrically, in the model as shown in Equation (1), each job corresponds to a
rectangle and the problem essentially consists of packing rectangles to minimize
the total energy. In this case, the power request is constant from the beginning
to the end of the request. For short, we call the model defined by Equation (1)
rectangle scheduling. In our model, there is no condition on the demand (i.e., en-
ergy request) of jobs and the demands can be specifically customized by clients.
Geometrically, each job in our model has an arbitrary (not necessarily contin-
uous) form which represents varying power requests during its execution (See
Figure 1). Hence, the model offers flexible choices to clients along the line of
Smart Grid’s purposes.

time

power request

Fig. 1. Example of a schedule with arbitrary power requests during execution of jobs.

1.2 Related Works.

In this section, we summarize related works in the model of rectangle scheduling
which, to the best of our knowledge, is the only one that has been studied so
far.

3

Koutsopoulos and Tassiulas [11] formulated the rectangle scheduling model
where the cost function is piecewise linear. They show that the problem is NP-
hard, and it can further be adapted to show the NP-hardness of the general
problem where the cost function is convex [5]. In the offline setting, Burcea et
al. [5] gave a polynomial time algorithms for the case of unit height (i.e., unit
power request) and unit width (i.e., duration of request). Furthermore, in the
full version of [13] (see [14]), Liu et al. showed that the offline case, where jobs
have unit processing time but with arbitrary power request, admits a 2ν+1-
approximation algorithm which is based on the results of the the dynamic speed
scaling problem [1], [4], [21].

In the online setting, [9] proposed a simple greedy algorithm which is 2-
competitive for the unit case and the power function is z2. However, [13] showed
that the greedy algorithm is in fact at least 3-competitive by providing a counter
example. In the same paper, Liu et al. [13] considered the single machine setting

in which they presented an online Θ
(

logν
(
pmax

pmin

))
-competitive algorithm where

pmin = minj{pj : pj > 0} and pmax = maxj pj . This is the best known algorithm
(even in offline setting) where jobs have arbitrary width, arbitrary height and
the power energy function is zν . Futhermore, for special cases of jobs with unit
processing time, Liu et al. [13] also gave competitive algorithms. A summary of
the results can be found in Table 1.

Processing
Power request hj Prior best-known results Our result

time pj

unit
uniform (i.e., hj = hj′) min{(4ν)ν/2 + 1, 2ν(8eν + 1)} [13]

arbitrary 2ν(8eν + 1) [13]

arbitrary arbitrary
O
(

logν
(
pmax
pmin

))
[13]

Θ(νν)
Ω (νν) [13]

Table 1. Summary of competitive ratios in the rectangle scheduling model with power
function zν for a single machine. Our result holds for unrelated machines.

Besides, Salinas et al. [18] considered a multi-objective problem to minimize
energy consumption cost and maximize some utility that can be the profit for
the operator as well as for the clients. On the other hand, a related problem is to
manage the load by considering different price of electricity over time [8], [16].
Recent surveys of the area can be found in [10], [15], [2].

1.3 Our contribution and Approaches

In this paper, we investigate the online and offline aspects of the problem.

Online Setting. The main result of the paper is a competitive algorithm for the
problem in online setting where the competitive ratio is characterized by a notion
called smoothness [17], [19] of the machine energy power functions. Informally,

4

the algorithm assigns and executes each job that arrives on a machine in such a
way that minimizes the marginal increase of the total cost.

In designing a competitive algorithm for the problem, we consider a primal-
dual approach. The main difficulty in proving the performance of the algorithm
is that all known LPs has unbounded integrality gap, even for the special case
of rectangle scheduling. Intuitively, the drawback of all known LPs is that in
the optimal fractional solution, jobs are fractionally assigned to machines while
in the optimal integer solution, migration of jobs is not allowed. To bypass this
obstacle, we consider the primal-dual framework based on configuration linear
programs in [19]. The framework is presented in order to reduce the integrality
gap and also to study problems with non-linear, non-convex objective functions.
The approach is particularly useful since the energy power functions are non-
linear. Employing the techniques from [19], we derive a greedy algorithm with
competitive ratio characterized by the notion of smoothness, which is defined as
follows.

Definition 1. A function f : R+ → R+ is (λ, µ)-smooth if for any sets of
non-negative numbers A = {a1, . . . , an} and B = {b1, . . . , bn}, the following
inequality holds:

n∑
i=1

f(ai +

i∑
j=1

bj

)
− f

(i∑
j=1

bj

) ≤ λ · f(n∑
i=1

ai

)
+ µ · f

(n∑
i=1

bi

)

A set of cost functions {fe : e ∈ E} is (λ, µ)-smooth if every function fe is
(λ, µ)-smooth.

Specifically, in the problem, assuming that all energy power functions are (λ, µ)-
smooth for some λ > 0 and 0 < µ < 1, our algorithm is λ/(1 − µ)-competitive.
For energy power functions of forms Pi(z) = zνi , they are

(
O(νν−1), ν−1ν

)
-

smooth where ν = maxi νi. That leads to the competitive ratio O(νν) which

improves upon the best-known Θ
(

logν
(
pmax

pmin

))
-competitive algorithm where

pmin = minj{pj : pj > 0} and pmax = maxj pj . Our competitive ratio is not only
independent on the jobs’ parameters but it is indeed optimal up to a constant
factor. The matching lower bound is given by [13, Theorem 9] for a single ma-
chine in the rectangle scheduling model. In particular, [13] gave a lower bound
which is 1

3

(
log pmax

pmin

)ν
where log pmax

pmin
= ν.

Our greedy algorithm has several interesting features toward the purposes of
Smart Grid. First, the algorithm is simple and easy to implement which makes
it practically appealing. Note that despite the simplicity of our algorithm, no
bounded competitive ratio has been known even for the rectangle scheduling
model. Second, the algorithm performance guarantee holds for jobs with arbi-
trary varying power requests (arbitrary forms). Apart of answering open ques-
tions raised in [13], it is particularly useful for the demand response management.
Once the algorithm is publicly given and clients are charged accordingly to the
marginal increase of the total energy cost, clients can arbitrarily customized their

5

demand in order to minimize their payment. This property is desirable since it
enables the clients to react rationally. In the side of the smart grid manage-
ment, no modification in the algorithm is needed while always maintaining the
competitiveness (optimality in case of typical energy functions).

Offline Setting. In offline setting, we give an improved 2ν-approximation al-
gorithm when jobs have unit processing time. This result improves upon the
2ν+1-approximation algorithm given by Liu et al. [14] in two aspects. First, it
slightly improves the competitive ratio. Secondly, our result holds for multiple
(identical) machine environment. Our algorithm makes use of the approximation
algorithm for scheduling problems with convex norm objective functions given
by [3]. The latter is designed by solving a convex relaxation and round to an
integer solution using the Lenstra-Shmoys-Tardos scheme [12].

2 A Competitive Online Algorithms

Formulation. In the model, the execution of a job is specified by two parameters:
(1) a machine in which it is executed; and (2) a starting time. Note that these
parameters fully represent the demand of a job, including the power request at
any time t during its execution. Formally, we denote the execution of job j as
si,j,k if job j is processed in machine i with the starting time k. Recall that if
the execution of a job j is si,j,k then the request demand of the job at time t
is hi,j,k(t). Let Sj be a set of feasible executions of job j. For example, in the
rectangle scheduling model, Sj consists of si,j,k for all machines i and starting
time k such that rj ≤ k ≤ dj − pij . As the set of machines and times3 are finite,
so is the set Sj for every job j. Let xi,j,k be a variable indicating whether the
execution of job j is si,j,k ∈ Sj . We say that A is a scheduling configuration
(configuration in short) in machine i if A is a feasible schedule of a subset of
jobs. Specifically, A consists of tuples (i, j, k) meaning that the execution of job
j is si,j,k. For a scheduling configuration A and machine i, let zi,A be a variable
such that zi,A = 1 if and only if for every tuple (i, j, k) ∈ A, we have xi,j,k = 1.
In other words, zi,A = 1 if and only if the schedule in machine i follows exactly
the configuration A. Given a scheduling configuration A, let A(t) be the load
(height) of the corresponding schedule at time t. We denote the energy cost of a
configuration A of machine i as ci(A) :=

∑
t Pi(A(t)). We consider the following

formulation and the dual of its relaxation.

3 For convenience, we consider schedules up to a time T , which can be arbitrarily large
but finite

6

min
∑
i,A

ci(A)zi,A∑
i,k:si,j,k∈Sj

xi,j,k = 1 ∀j

∑
A:(i,j,k)∈A

zi,A = xi,j,k ∀i, j, k

∑
A

zi,A = 1 ∀i

xi,j,k, zi,A ∈ {0, 1} ∀i, j, k, A

max
∑
j

αj +
∑
i

γi

αj ≤ βi,j,k ∀i, j, k

γi +
∑

(i,j,k)∈A

βi,j,k ≤ ci(A) ∀i, A

In the primal, the first constraint guarantees that a job j has to be processed
by some feasible execution (in some machine). The second constraint ensures
that if job j follows the execution si,j,k then in the solution, the scheduling con-
figuration of machine i must contain the tuple (i, j, k) corresponding to execution
si,j,k. The third constraint says that in the solution, there is always a scheduling
configuration (possibly empty set) associated to machine i.

Algorithm. We first interpret intuitively the dual variables, dual constraints and
derive useful observations for a competitive algorithm. Variable αj represents the
increase of energy to the arrival of job j. Variable βi,j,k stands for the marginal
energy if job j follows execution si,j,k. By this interpretation, the first dual
constraint clearly indicates the greedy behavior of an algorithm. That is, if a
new job j is released, select an execution si,j,k ∈ Sj that minimizes the marginal
increase of the total energy.

Formally, let A∗i be the set of current schedule of machine i and initially,
A∗i ← ∅ for every machine i. At the arrival of job j, select an execution si∗,j,k∗ ∈
Sj such that

si∗,j,k∗ ∈ arg min
si,j,k∈Sj

[
ci(A

∗
i ∪ si,j,k)− ci(A∗i)

]
or equivalently,

si∗,j,k∗ ∈ arg min
si,j,k∈Sj

∑
t

[
Pi

(
A∗i (t) + hi,j,k(t)

)
− Pi

(
A∗i (t)

)]
where (A∗i ∪ si,j,k) is the current schedule with additional execution si,j,k of job
j. Note that in configuration (A∗i ∪ si,j,k), the load at time t in machine i is
Pi
(
A∗i (t) + hi,j,k(t)

)
. Then assign job j to machine i∗ and process it according

to the corresponding execution of si∗,j,k∗ .

Dual variables. Assume that all energy power functions Pi are (λ, µ)-smooth for
some fixed parameters λ > 0 and µ < 1, then we construct a dual feasible solution
in the following way. Let A∗i,≺j be the scheduling configuration of machine i (due
to the algorithm) prior to the arrival of job j. Define αj as 1/λ times the the

7

increase of the total cost due to the arrival of job j. In other words, if the
algorithm selects the execution si∗,j,k∗ for job j then

αj =
1

λ

[
ci∗(A

∗
i∗,≺j ∪ si∗,j,k∗)− ci∗(A∗i∗,≺j)

]
=

1

λ

∑
t

[
Pi∗

(
A∗i∗,≺j(t) + hi∗,j,k∗(t)

)
− Pi∗

(
A∗i∗,≺j(t)

)]
For each machine i and job j, we set

βi,j,k =
1

λ

[
ci(A

∗
i,≺j ∪ si,j,k)− ci(A∗i,≺j)

]
=

1

λ

∑
t

[
Pi

(
A∗i,≺j(t) + hi,j,k(t)

)
− Pi

(
A∗i,≺j(t)

)]
.

Finally, for every machine i, we define the dual variable

γi = −µ
λ
ci(A

∗
i)

where A∗i is the schedule on machine i (at the end of the instance).

Lemma 1. The dual variables defined as above are feasible.

Proof. By the definition of dual variables, the first constraint reads

1

λ

[
ci∗(A

∗
i∗,≺j ∪ si∗,j,k∗)− ci∗(A∗i∗,≺j)

]
≤ 1

λ

[
ci(A

∗
i,≺j ∪ si,j,k)− ci(A∗i,≺j)

]
This inequality follows immediately the the choice of the algorithm.

We now show that the second constraint holds. Fix a machine i and an
arbitrary configuration A on machine i. The corresponding constraint reads

− µ

λ
ci(A

∗
i) +

1

λ

∑
(i,j,k)∈A

[
ci(A

∗
i,≺j ∪ si,j,k)− ci(A∗i,≺j)

]
≤ ci(A)

⇔
∑

(i,j,k)∈A

[
ci(A

∗
i,≺j ∪ si,j,k)− ci(A∗i,≺j)

]
≤ λci(A) + µci(A

∗
i)

⇔
∑

(i,j,k)∈A

∑
t

[
Pi(A

∗
i,≺j(t) + hi,j,k(t))− Pi(A∗i,≺j(t))

]
≤ λ

∑
t

Pi(A(t)) + µ
∑
t

Pi(A
∗
i (t)) (2)

where A∗i,≺j(t) is the load (height) of machine i (due to the algorithm) at time
t before the arrival of job j.

8

Observe that A∗i,≺j(t) is the sum of power requests (according to the algo-
rithm) at time t of jobs assigned to machine i prior to job j. As the power
function Pi is (λ, µ)-smooth, for any time t we have∑

(i,j,k)∈A

[
Pi
(
A∗i,≺j(t) + hi,j,k(t)

)
− Pi

(
A∗i,≺j(t)

)]

≤ λPi
(∑

(i,j,k)∈A

hi,j,k(t)

)
+ µPi

(
A∗i (t)

)
Summing over all times t, Inequality (2) holds. Therefore, the lemma follows.

We are now ready to prove the main theorem.

Theorem 1. If all energy power functions are (λ, µ)-smooth, then the algorithm
is λ/(1−µ)-competitive. In particular, if Pi(z) = zνi for νi ≥ 1 then the algorithm
is O(νν)-competitive where ν = maxi νi.

Proof. By the definitions of dual variables, the dual objective is∑
j

αj +
∑
i

γi =
∑
i

1

λ
ci(A

∗
i)−

∑
i

µ

λ
ci(A

∗
i) =

1− µ
λ

∑
i

ci(A
∗
i)

Besides, the cost of the solution due to the algorithm is
∑
i ci(A

∗
i). Hence, the

competitive ratio is at most λ/(1− µ).
Particularly, energy power functions of forms Pi(z) = zνi for νi ≥ 1

are
(
O(νν−1), ν−1ν

)
-smooth for ν = maxi νi. In fact, the smoothness follows

(smooth) inequalities in [7], which states: for ν > 1 and for any sets of non-
negative numbers A = {a1, . . . , an} and B = {b1, . . . , bn}, it always holds that

n∑
i=1

(ai +

i∑
j=1

bj

)ν
−
(i∑
j=1

bj

)ν ≤ O(νν−1) ·
(n∑
i=1

ai

)ν
+
ν − 1

ν
·
(n∑
i=1

bi

)ν
That implies the competitive ratio νν of the algorithm for power functions
Pi(z) = zνi . ut

3 An Approximation Algorithm for Unit Processing
Time Jobs

In this section, we investigate the offline case in identical machine environment
where jobs have unit processing time but different power requests on different
machines. Note that this corresponds to the restricted model of rectangle schedul-
ing. We consider typical energy power function P (z) = zν for every machine and
we assume that jobs need to be assigned to time-slot. This problem is proved to
be NP-hard by a reduction to the 3-Partition problem even for the case where
jobs have common release time and common deadline [5].

9

Let Θ = ∪nj=1{rj + a | a = −n, . . . , n} ∪nj=1 {dj + a | a = −n, . . . , n} to be a
set of time-slots. We show that it is sufficient to consider only schedules in which
jobs are processed within these time-slots. In particular, this set contains O(n2)
time-slots and will help to design a polynomial time approximation algorithm.

Lemma 2. The schedules in which jobs start at a date in Θ are dominant. In
other words, any schedule can be transformed to one in which jobs start at a date
in Θ without increasing the cost.

Due to space constraint, the proof can be found in the appendix.
The main idea is to reduce the smart grid problem to the following Lν-norm

problem. In the latter, we are given a set J of n jobs and a setM of m unrelated
machine. Each job j ∈ J have a processing time pi,j if it is assigned to machine
i. We define the decision variable yi,j = 1 if the job j is assigned to machine i,
and yi,j = 0 otherwise. The goal is to minimize the following function:

ν

√√√√√∑
i∈M

 n∑
j=1

yi,jpi,j

ν

(3)

Lemma 3. The problem of smart grid with unit processing time jobs and identi-
cal machines can be polynomially reduced to the Lν-norm minimization problem
on unrelated machines.

Proof. By Lemma 2, there is a polynomial number of time-slots to which jobs
can be assigned. We create a corresponding machine (i, t) for each time-slot
t ∈ Θ and each machine i. Similarly, we create a new job j′ ∈ J (in Lν-norm
problem) which corresponds to job j ∈ J (in the smart grid problem) in the
following way:

p(i,t),j′ =

{
hj if t ∈ [rj , dj)

+∞ otherwise
(4)

Given a schedule for the Lν-norm problem with cost C, we show how to build
a feasible schedule for the smart grid problem with cost Cν .

For each job j ∈ J that is assigned to machine (i, t) ∈ M in the Lν-norm
problem, we schedule this job at the time-slot t on machine i in the initial
problem. By doing that, the load at any time-slot t on machine i in the initial
problem equals the load of the machine (i, t) in the Lν-norm problem. Therefore,
the constructed schedule for the initial problem has cost Cν where C is the cost
of the schedule in the Lν-norm problem. ut

By Lemma 3, solving the smart grid problem with unit processing time jobs
and identical machines is essentially solving the Lν-norm problem. Hence, in our
algorithm (Algorithm 1), we invoke the Azar-Epstein algorithm [3] in order to get
an approximation algorithm for the latter. Roughly speaking, the Azar-Epstein
algorithm consists of solving a relaxed convex program and rounding fractional
solutions to integral ones using the standard scheme of Lenstra, Shmoys and
Tardos [12]. Given a solution for the Lν-norm problem, we reconstruct a feasible
solution for the smart grid problem with approximation ratio of 2ν .

10

Algorithm 1 Approximation algorithm for the smart grid scheduling problem
with unit processing time jobs and identical machines

1: Θ = ∪nj=1{rj + a | a = −n, . . . , n} ∪nj=1 {dj + a | a = −n, . . . , n}
2: Let Π = ∅ be the set of machines and J = ∅ be the set of jobs
3: for each t ∈ Θ and each machine i do
4: Create a machine (i, t) and Π ← Π ∪ {(i, t)}
5: end for
6: for each job j do
7: Create a new job j′ with p(i,t),j′ = hj if t ∈ [rj , dj), otherwise we have p(i,t),j′ =

+∞
8: J ← J ∪ {j′}
9: end for

10: Apply the Azar-Epstein algorithm [3] on instance (Π,J).
11: Build the schedule for the smart grid problem as in Lemma 3.

Theorem 2. Algorithm 1 achieves an approximation ratio of 2ν .

Proof. By Lemma 3, we know that given an assignment of jobs for the Lν-
norm problem on unrelated machines of cost C, we can construct a schedule for
the smart grid problem with a cost of Cν in polynomial time. Thus we have
(OPTL)ν = OPTSG where OPTL is the optimal cost of the Lν-norm problem
and OPTSG is the optimal cost of the smart grid problem.

Besides, Azar-Epstein algorithm [3] is 2-approximation for the Lν-norm prob-
lem. Therefore, we have OPTL ≤ C ≤ 2OPTL. Finally, by raising each term of
the inequality by a power of ν, we have (OPTL)ν ≤ Cν ≤ 2ν(OPTL)ν , so
OPTSG ≤ Cν ≤ 2νOPTSG. The theorem follows. ut

4 Concluding Remarks

In the paper, we have considered a general model of demand-response manage-
ment in Smart Grid. We have given a competitive algorithm which is optimal
(up to a constant factor) in typical settings. Our algorithm is robust to arbitrary
demands and so enables the flexibility on the choices of clients in shaping their
demands. The paper gives rise to several directions for future investigations.
First, in the scheduling aspect, it would be interesting to consider problems in
the general model with additional requirements such as precedence constraints,
etc. Secondly, in the game theory aspect, designing pricing schemes that allow
clients to react rationally while maintaining the efficiency in the energy con-
sumption has received particular interests from both theoretical and practical
studies in Smart Grid. Through the primal-dual view point, dual variables can
be interpreted as the payments of clients. An interesting direction is to design a
pricing scheme based on primal-dual approaches.

Acknowledgement. We thank Prudence W. H. Wong for insightful discussions
and anonymous reviewers for useful comments that helps to improve the presen-
tation.

11

References

1. Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)
2. Alford, R., Dean, M., Hoontrakul, P., Smith, P.: Power systems of the future: The

case for energy sotrage, distributed generation, and microgrids. Zpryme Research
& Consulting, Tech. Rep (2012)

3. Azar, Y., Epstein, A.: Convex programming for scheduling unrelated parallel ma-
chines. In: Proc. 37th Annual ACM Symposium on Theory of Computing. pp.
331–337 (2005)

4. Bell, P.C., Wong, P.W.H.: Multiprocessor speed scaling for jobs with arbitrary sizes
and deadlines. J. Comb. Optim. 29(4), 739–749 (2015)

5. Burcea, M., Hon, W., Liu, H.H., Wong, P.W.H., Yau, D.K.Y.: Scheduling for elec-
tricity cost in a smart grid. J. Scheduling 19(6), 687–699 (2016)

6. Chen, C., Nagananda, K., Xiong, G., Kishore, S., Snyder, L.V.: A communication-
based appliance scheduling scheme for consumer-premise energy management sys-
tems. IEEE Transactions on smart Grid 4(1), 56–65 (2013)

7. Cohen, J., Dürr, C., Thang, N.K.: Smooth inequalities and equilibrium inefficiency
in scheduling games. In: International Workshop on Internet and Network Eco-
nomics. pp. 350–363 (2012)

8. Fang, K., Uhan, N.A., Zhao, F., Sutherland, J.W.: Scheduling on a single machine
under time-of-use electricity tariffs. Annals OR 238(1-2), 199–227 (2016)

9. Feng, X., Xu, Y., Zheng, F.: Online scheduling for electricity cost in smart grid.
In: COCOA. Lecture Notes in Computer Science, vol. 9486, pp. 783–793. Springer
(2015)

10. Hamilton, K., Gulhar, N.: Taking demand response to the next level. IEEE Power
and Energy Magazine 8(3), 60–65 (2010)

11. Koutsopoulos, I., Tassiulas, L.: Control and optimization meet the smart power
grid: scheduling of power demands for optimal energy management. In: e-Energy.
pp. 41–50. ACM (2011)

12. Lenstra, J.K., Shmoys, D.B., Tardos, É.: Approximation algorithms for scheduling
unrelated parallel machines. Mathematical programming 46(1), 259–271 (1990)

13. Liu, F., Liu, H.H., Wong, P.W.H.: Optimal nonpreemptive scheduling in a smart
grid model. In: Proc. 27th Symposium on Algorithms and Computation. vol. 64,
pp. 53:1–53:13 (2016)

14. Liu, F., Liu, H.H., Wong, P.W.H.: Optimal nonpreemptive scheduling in a smart
grid model. CoRR abs/1602.06659 (2016), http://arxiv.org/abs/1602.06659

15. Lui, T.J., Stirling, W., Marcy, H.O.: Get smart. IEEE Power and Energy Magazine
8(3), 66–78 (2010)

16. Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., Basar, T.: Dependable demand
response management in the smart grid: A stackelberg game approach. IEEE Trans.
Smart Grid 4(1), 120–132 (2013)

17. Roughgarden, T.: Intrinsic robustness of the price of anarchy. Journal of the ACM
62(5), 32 (2015)

18. Salinas, S., Li, M., Li, P.: Multi-objective optimal energy consumption scheduling
in smart grids. IEEE Trans. Smart Grid 4(1), 341–348 (2013)

19. Thang, N.K.: Online primal-dual algorithms with configuration linear programs.
CoRR abs/1708.04903 (2017)

20. US Department of Energy: The smart grid: An introduction. https://energy.

gov/oe/downloads/smart-grid-introduction-0 (2009)
21. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy.

In: FOCS. pp. 374–382. IEEE Computer Society (1995)

12

Appendix

A Missing proof from Section 3

Lemma 2. The schedules in which jobs start at a date in Θ are dominant. In
other words, any schedule can be transformed to one in which jobs start at a date
in Θ without increasing the cost.

Proof. It is sufficient to consider a machine and show how to transform the
schedule of the machine to the new one such that each job starts at a date in Θ
without increasing the cost.

Let t be the first moment where jobs that are assigned to this time-slot does
not belong to Θ. We consider the maximal continuous interval from time-slot t
in which every time-slot has at least one job that is assigned. If the considered
interval is [t, u), then the time-slot u+ 1 is idle.

First, we observe that the length of this interval is lower or equal to n. Indeed,
in the worst case, each job is assigned to different time-slot. We shift this interval,
as well as the jobs, by one unit time to the right, i.e. after the shift, the interval
will be [t+ 1, u+ 1).

Three cases may occur (see Figure 2):

– we reach another job. We then consider the new maximal continuous interval
and continue to shift it.

– we reach a deadline. The starting time of the interval must be in Θ since the
length of the interval is at most n.

– none of the above cases, we continue to shift the interval to the right.

time

power request

t u

time

power request

t u

u + 1

u + 1

t + 1

t + 1

Fig. 2. Illustration of a shift of an interval. After the shift, the former interval meet
another job. We then need to consider the continuous interval from time-slot t+ 1. It
corresponds to the first case in the proof of Lemma 2.

13

By this operation, we observe that the cost of the schedule remains the same
because the costs of time-slots are independent. By doing a such modification,
jobs are executed at the same way, with the same order and with the same cost,
the only difference is the time-slots in which the jobs are executed. ut

14

