
An Improved Approximation Algorithm for1

Scheduling under Arborescence Precedence2

Constraints3

Nguyễn Kim Thắng4

IBISC, Univ Evry, University Paris Saclay5

Evry, France6

kimthang.nguyen@univ-evry.fr7

Abstract8

We consider a scheduling problem on unrelated machines with precedence constraints. There are m9

unrelated machines and n jobs and every job has to be processed non-preemptively in some machine.10

Moreover, jobs have precedence constraints; specifically, a precedence constraint j ≺ j′ requires that11

job j′ can only be started whenever job j has been completed. The objective is to minimize the12

total completion time.13

The problem has been widely studied in more restricted machine environments such as identical14

or related machines. However, for unrelated machines, much less is known. In the paper, we15

study the problem where the precedence constraints form a forest of arborescences. We present16

a O
(
(log n)2/(log log n)3)-approximation algorithm — that improves the best-known guarantee of17

O
(
(log n)2/ log log n

)
due to Kumar et al. [12] a decade ago. The analysis relies on a dual-fitting18

method in analyzing the Lagrangian function of non-convex programs.19

2012 ACM Subject Classification Theory of Computation → Approximation Algorithms Analysis20

Keywords and phrases Scheduling, Precedence Constraints, Lagrangian Duality21

Digital Object Identifier 10.4230/LIPIcs.MFCS.2020.7322

Funding Research supported by the ANR project OATA no ANR-15-CE40-0015-01.23

1 Introduction24

In this paper, we consider a classic scheduling problem on unrelated machines with precedence25

constraints. There are m unrelated machines and n jobs. Each job j has a processing time26

pij if it is processed on machine i. A job must be executed non-preemptively in some machine27

i (i.e., in an interval of length pij in machine i). Jobs have precedence constraints which are28

represented by a partial order ≺. Specifically, a dependence constraint j ≺ j′ requires that29

job j′ can only be started whenever job j has been completed. Hence, we need to assign jobs30

to machines and process them in some order consistent with the precedence constraints. The31

objective is to minimize the total completion time, i.e.,
∑
j Cj where Cj is the completion32

time of job j. In the standard three field notion, the problem is denoted as R|prec|
∑
j Cj .33

The weighted version of this problem is a similar one where additionally jobs have34

weights and the objective is to minimize the total weighted completion time, denoted as35

R|prec|
∑
j wjCj . Little is known for both problems R|prec|

∑
j Cj and R|prec|

∑
j wjCj in36

the unrelated machine environments. However, the problem has been widely considered37

in more restricted machine environments such as identical parallel machines or related38

parallel machines. The problem P |prec|
∑
j wjCj corresponding to the setting of identical39

machines (pij = pj ∀i) has been extensively studied. Many algorithms and techniques have40

been designed for the latter over decades [13, 9, 4, 16, 6, 10, 5, 2, 19, 18]. The problem41

P |prec|
∑
j wjCj has been revived with significant progresses recently. Li [15] provided a42

(2 + 2 ln 2 + ε)-approximation by a subtle rounding based on a time-index LP. Later on, Garg43

et al. [8] gave a (2 + ε)-approximation algorithm when the number of machines is a constant.44

© Nguyễn Kim Thắng;
licensed under Creative Commons License CC-BY

45th International Symposium on Mathematical Foundations of Computer Science (MFCS 2020).
Editors: Javier Esparza and Daniel Král’; Article No. 73; pp. 73:1–73:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-6085-9453
mailto:kimthang.nguyen@univ-evry.fr
https://doi.org/10.4230/LIPIcs.MFCS.2020.73
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2 Improved Approximation Algorithm for Arborescence Precedence Scheduling

Their result relies on a lift and project approach developed by Levey and Rothvoss [14] and45

Garg [7]. This approximation ratio matches to the lower bound of 2 proved by Bansal and46

Khot [2] assuming a variant of the Unique Game Conjecture.47

In the more general setting of related machines (in which pij = pj/si where si is the speed48

of machine i), the corresponding problem Q|prec|
∑
j wjCj does not admit any constant49

approximation assuming a (stronger) variant of the Unique Game Conjecture [3]. On the50

positive side, Chudak and Shmoys [6] showed an O(logm)-approximation algorithm. This51

approximation ratio remained the best known upper bound until recently Li [15] gave an52

improved O(logm/ log logm)-approximation algorithm.53

Despite progress in more restricted machine environments, there is still a large gap in54

the understanding of the problems R|prec|
∑
j Cj and R|prec|

∑
j wjCj . When the preced-55

ence constraints are a collection of node-disjoint chains, the problems become the job shop56

scheduling problems [17, 11] — again a classic problem with a long history. A particular57

interesting case of the problem R|prec|
∑
j wjCj is the setting where the precedence con-58

straints form a forest (i.e., the underlying undirected graph of the constraints is a forest),59

denoted as R|forest|
∑
j wjCj . This problem is motivated by several applications such as60

evaluating large expression-trees and tree-shaped parallel processes. Kumar et al. [12] gave61

an O
(
log3 n/(log logn)2)-approximation algorithm for R|forest|

∑
j wjCj . When the forests62

are out-trees or in-trees, the approximation ratio can be improved to O
(
log2 n/ log logn

)
.63

It has remained the best-known result for a decade until now in both unweighted job and64

weighted job settings.65

1.1 Our contribution and approach66

We study the special setting of R|prec|
∑
j Cj where the precedence constraints form a forest67

of arborescences/out-trees. (An arborescence/out-tree is a directed acyclic graph where the68

in-degree of every vertex is at most 1.) We denote the problem by R|arborescences|
∑
j Cj .69

The main result of the paper is the following.70

71

Theorem. There exists an O
(
(logn)2/(log logn)3)-approximation algorithm for the problem72

R|arborescences|
∑
j Cj where n is the number of jobs.73

Approach. In our approach, instead of directly dealing with the problem74

R|arborescences|
∑
j Cj , we consider first a related problem in the speed-scaling model.75

In the latter, machines can execute jobs with different speeds and that consumes energy. The76

objective of the new problem is to minimize the total completion time plus energy (under77

the same precedence constraints). Intuitively, this problem can be considered as a smooth78

and relaxed version of the original problem where the energy plays the role of a regularizer.79

More specifically, in the original problem, at any time every machine either executes some80

job or do not execute any job; these cases correspond to the speed of 1 or 0, respectively. In81

the related problem, one is allowed to choose an arbitrary (non-negative) speed. Moreover,82

the role of the energy function is to prevent the speed from being chosen too high or too low83

— both situations would lead to a large approximation ratio when converting a solution of the84

related speed-scaling problem to that of the original one. (Low speed results in a large total85

completion time whereas high speed yields a large factor in order to convert that speed to 0-186

speed.) Finally, given a solution for the problem of minimizing the total completion time plus87

energy, we show that one can transform that solution to a feasible schedule of the problem88

R|arborescences|
∑
j Cj with some reasonable loss factor depending on the energy function.89

Nguyễn Kim Thắng 73:3

In the paper, we choose the energy function of the form zα where α = Θ(logn/ log logn) in90

order to minime the loss.91

Following the strategy described above, we focus on the design of an algorithm for the92

problem of minimizing the total completion time plus energy and analyze its performance by93

using tools in mathematical programming. In previous works on scheduling under precedence94

constraints, the most successful techniques are LP-based roundings [15, 12] or lift-and-95

project methods [7, 8]. In this paper, we take a different approach that relies non-convex96

mixed-integer formulations and weak duality presented in [20]. With this approach, we97

can construct a formulation that is convenient for the design and analysis of our algorithm98

since the formulation does not need to be either linear or convex. Moreover, one can work99

directly with integral variables without relaxing them, so avoiding serious integrality gap100

issue. Specifically, we consider a non-convex formulation for the problem of minimizing101

the total completion time plus energy and analyze the corresponding Lagrangian function,102

using the dual-fitting method, in order to bound the dual. The approach allows us to prove103

an approximation guarantee. That algorithm subsequently is used to derive the improved104

O
(
(logn)2/(log logn)3)-approximation algorithm for the problem R|arborescences|

∑
j Cj .105

2 Preliminaries106

Given a set of n jobs, the precedence contraints ≺ can be represented succinctly by a directed107

dependence graph. In this graph, there are n vertices, each represents a job, and there108

is an arc (j, j′) if j ≺ j′. Note that if in the graph there is a directed path j1, j2, . . . , jk109

and an arc (j1, jk) then one can simply remove the arc (j1, jk) in the graph while always110

maintaining the job dependences. In the paper, we consider dependence graph as a collection111

of arborescences. An arborescence is a directed acyclic graph where the in-degree of every112

vertex is at most 1. The problem, as defined earlier, is to schedule jobs on unrelated machines113

in order to minimize the total completion time under the arborescence constraints, i.e.,114

R|arborescences|
∑
j Cj .115

Total Completion Time plus Energy. In order to design algorithm for the problem116

R|arborescences|
∑
j Cj , we study the following related problem in the speed-scaling model.117

In the problem, there are m unrelated machines and n jobs. An algorithm can choose speeds118

si(t) for every machine i at every time t in order to execute jobs. That incurs the total119

energy of
∫∞

0 si(t)αdt where α ≥ 2 is a fixed parameter. Each job j has a volume pij if it120

is executed on machine i. A job can be processed preemptively in a machine but without121

migration, i.e., every job must be assigned to some single machine. A job j assigned to some122

machine i is completed at time Cj if the total volume executed by machine i on this job up to123

time Cj is equal to pij . Moreover, jobs have precedence constraints ≺ which are represented124

by a collections of arborescences. A job j cannot be executed before the completion of125

every job j′ where j′ ≺ j. In this problem, an algorithm needs to assign jobs to machines,126

decide the running speeds and execute jobs in some order consistent with the precedence127

constraints. The objective is to minimize the total completion time plus energy, which is128 ∑
j Cj +

∑
i

∫∞
0 si(t)αdt. In the paper, we first design an algorithm for this problem and129

subsequently derive an algorithm for the problem R|arborescences|
∑
j Cj .130

Weak Duality. A property of mathematical programming, which holds for non-convex131

optimization and is crucial in our analysis, is the weak duality, stated as follows. For132

completeness, we incorporate also its (short) proof.133

MFCS 2020

73:4 Improved Approximation Algorithm for Arborescence Precedence Scheduling

I Lemma 1 (Weak duality). Consider a possibly non-convex optimization problem p∗ :=134

minx f0(x) : fi(x) ≤ 0, i = 1, . . . ,m where fi : Rn → R for 0 ≤ i ≤ m. Let X135

be the feasible set of x. Let L : Rn × Rm → R be the Lagrangian function L(x, λ) =136

f0(x) +
∑m
i=1 λifi(x). Define d∗ = maxλ≥0 minx∈X L(x, λ) where λ ≥ 0 means λ ∈ Rm+ .137

Then p∗ ≥ d∗.138

Proof. We observe that, for every feasible x ∈ X , and every λ ≥ 0, f0(x) is bounded below
by L(x, λ):

∀x ∈ X , ∀λ ≥ 0 : f0(x) ≥ L(x, λ)

Define a function g : Rm → R such that

g(λ) := min
z
L(z, λ) = min

z
f0(z) +

m∑
i=1

λifi(z)

As g is defined as a point-wise minimum, it is a concave function.139

We have, for any x and λ, L(x, λ) ≥ g(λ). Combining with the previous inequality, we
get

∀x ∈ X : f0(x) ≥ g(λ)

Taking the minimum over x, we obtain ∀λ ≥ 0 : p∗ ≥ g(λ). Therefore,

p∗ ≥ max
λ≥0

g(λ) = d∗.

J140

Notations. Given a collection of arborescences G, for every job j, define prev(j) to be the141

job j′ if there exists an arc (j′, j) in the graph G; and prev(j) = ∅ if the in-degree of j is142

0. Note that as in G the in-degree of every vertex is at most one, prev(j) is well-defined.143

Intuitively, prev(j) is the last job on which j depends. Let Cj be the completion time of144

job j. Moreover, define the available time Aj of job j as Cprev(j) if prev(j) 6= ∅; and Aj = 0145

otherwise. Informally, Aj is the earliest time where j can be executed. The pending-time of146

job j is defined as Cj −Aj , that represents the duration from the moment j is available to147

be executed until its completion. Note that this definition is different (but has some flavour)148

to the notion of flow-time in scheduling. Additional, a job j is pending if it is available but149

has not been completed.150

3 Approximation Algorithm for Completion Time plus Energy151

Minimization152

In this section, we consider the problem of minimizing the total completion time plus energy153

defined in the previous section. Let G be a collection of arborescences representing job154

dependencies. For every job j, define the weight of job j as wj =
∑
j′:j�j′ 1. In other words,155

wj is the number of jobs which depends on job j (including j itself); equivalently, wj is the156

number of nodes in the sub-arborescences rooted at j.157

We first make the following observation.158 ∑
j

wj
(
Cj −Aj

)
=
∑
j

(∑
j′:j�j′

1
)(
Cj −Aj

)
=
∑
j

∑
j′�j

(Cj′ −Aj′) =
∑
j

Cj .159

160

The last equality holds due to the structure of arborescences: the set {j′ : j′ � j} forms161

a path (j1, j2, . . . , jk) where jk = j and j1 is the root of the arborescence containing j; so162

Nguyễn Kim Thắng 73:5

Aj` = Cj`−1 for 2 ≤ ` ≤ k and Aj1 = 0. Hence, the total job completion time is equal to163

the total weighted pending-time of jobs with respect to the weight wj ’s defined above. So164

in order to consider the total completion time, we will rather consider the total weighted165

pending-time.166

Before presenting the algorithm, we define some notions. At a time t, the remaining167

volume of a job j assigned to machine i is denoted as qij(t). The density of job j in machine168

i is δij = wj/pij . The residual density of a pending job j assigned to machine i at time t is169

δij(t) = wj/qij(t). (As j is pending, qij(t) > 0.)170

Our algorithm, named Algorithm 1, consists of scheduling and assignment policies171

described as follows.172

1. Scheduling policy. At any time t, every machine i sets its speed si(t) = βWi(t)1/α
173

where Wi(t) is the total weight of jobs assigned to machine i which are still pending at174

time t; and β > 0 is a constant to be chosen later. Moreover, at every time, every machine175

i processes the highest residual density job among the pending ones assigned to i.176

2. Assignment policy. Whenever any job j is available, i.e., all jobs j′ ≺ j have been177

completed, immediately assign job j to some machine. Note that different assignments of178

j (to different machines) give rise to different marginal increases of the total weighted179

pending-time (with respect to the scheduling policy). Here, among all machines, assign180

(immediately) job j to the one that minimizes the marginal increase of the total weighted181

pending-time.182

Formulation. Let sij(t) be the variable that represents the speed of job j on machine i at183

time t. Variables Aj and Cj denote the available time and the completion time of job j,184

respectively. Let xij be the variable indicating whether job j is assigned to machine i. The185

problem could be relaxed as the following formulation. We emphasize that in the formulation,186

we do not relax the integrality of variables xij ’s.187

minimize
∑
i

∫ ∞
0

(∑
j

sij(t)
)α

dt+
∑
i,j

(∫ Cj

Aj

sij(t)dt
)
δijxij(Cj −Aj)188

+ α

β(α− 1)
∑
i,j

(∫ Cj

Aj

sij(t)dt
)
xijw

α−1
α

j189

subject to
∑
i

xij = 1 ∀j190

xij

∫ Cj

Aj

sij(t)dt = pijxij ∀j191

Aj = Cprev(j) ∀j : prev(j) 6= ∅192

Aj = 0 ∀j : prev(j) = ∅193

xij ∈ {0, 1} ∀i, j194

sij(t) ≥ 0 ∀i, j, t195

Cj ≥ 0 ∀j196
197

The first constraint ensures that every job is assigned to some machine. The second
constraint guarantees that if a job j is assigned to some machine i then it will be fully
processed during the interval [Aj , Cj] in machine i. In the objective, the first term represents

MFCS 2020

73:6 Improved Approximation Algorithm for Arborescence Precedence Scheduling

the energy cost. The second term stands for the weighted pending-time of jobs, i.e.,(∫ Cj

Aj

sij(t)dt
)
δijxij(Cj −Aj) = pijxijδij(Cj −Aj) = xijwj(Cj −Aj)

by the second constraint. The last term in the objective, inspired by [1], is added in order to198

reduce the integrality gap. In this term, β is a parameter (depending on α) to be chosen199

later. Note that, in order to minimize the objective function under the above constraints,200

every algorithm will set sij(t) = 0 ∀i, j, ∀t /∈ [Aj , Cj].201

The following lemma shows that the objective value of any feasible schedule is within a202

constant factor of the cost of the schedule, which is the sum of the completion times and the203

energy consumed. The proof follows the scheme of a similar lemma in [1]. For completeness,204

we give the proof in the appendix.205

I Lemma 2. Consider a feasible schedule S for an instance I of the problem. Let xij and206

sij(t) be the corresponding solution to the mathematical program. Then the objective value of207

such solution for the mathematical program is at most (1 + α
β(α−1)) the cost of S.208

Proof. Let Cj be the completion time of job j in schedule S. In the objective of the209

formulation, the first term clearly captures the consumed energy. Due to the constraints, the210

second term is
∑
j wj

(
Cj −Aj

)
— the total weighted pending-time (which equals the total211

completion time).212

In the remaining, we show that the last term in the objective is bounded by α
β(α−1)213

the cost of S. The arguments follow the ones in [1]. In schedule S, assume that job j is214

executed during [Aj , Cj] in machine i. Then the average speed s̃ij of j during [Aj , Cj] is215

pij/(Cj −Aj). Thus, Cj −Aj ≥ pij/s̃ij . The total energy consumed to complete job j is at216

least (Cj −Aj)s̃αi ≥ pij s̃α−1
i . Therefore,217

wj(Cj −Aj) + pij s̃
α−1
i ≥ wjpij/s̃i + pij s̃

α−1
i218

≥ pijw
α−1
α

j

(
(α− 1) 1

α + (α− 1)−
α−1
α

)
219

≥ pijw
α−1
α

j =
∑
i′

(∫ Cj

Aj

si′j(t)dt
)
xi′jw

α−1
α

j .220

221

The second inequality is due to the first order condition. In the last term, note that xi′j = 1222

if i′ = i and xi′j = 0 if i′ 6= i. As the energy function is convex, the total energy consumed223

of a schedule is larger than the sum of energy consumed on each individual job. Summing224

the above inequality for all jobs j, we deduce that the third term in the objective function is225

bounded by factor α
β(α−1) the cost of S. J226

Dual program and variable setting. The dual of that program is max minx,s,C L where L is227

the Lagrangian function associated to the above mathematical program and the maximum is228

taken over dual variables. Let λij be the dual variable corresponding to the second constraint.229

Set all dual variables except λij ’s equal to 0, the Lagrangian function becomes230

∑
i

∫ ∞
0

(∑
j

sij(t)
)α

dt+
∑
j

∫ Cj

Aj

δij(Cj −Aj)xijsij(t)dt231

+ α

β(α− 1)
∑
i,j

(∫ Cj

Aj

sij(t)dt
)
xijw

α−1
α

j +
∑
i,j

λijxij

(
pij −

∫ Cj

Aj

sij(t)dt
)

232

233

Nguyễn Kim Thắng 73:7

Hence, the dual program is234

min
x,s,C

{∑
i,j

λijpijxij235

−
∑
i,j

∫ Cj

Aj

xijsij(t)
(
λij − si(t)α−1 − α

β(α− 1)w
α−1
α

j − δij(Cj −Aj)
)
dt

}
236

≥ min
x

∑
i,j

λijpijxij237

−max
x,s,C

∑
i,j

∫ Cj

Aj

xijsij(t)
(
λij − si(t)α−1 − α

β(α− 1)w
α−1
α

j − δij(Cj −Aj)
)
dt238

239

Choose λij such that λijpij equals the increase of the total weighted pending-time of jobs240

(different to j) assigned to machine i plus the weighted pending-time of job j if the latter241

is assigned to i. In other words, λijpij equals the marginal increase in the total weighted242

pending time if job j is assigned to machine i. Recall that by the assignment policy of the243

algorithm, job j is assigned to machine i that minimizes λijpij .244

Analysis245

The strategy of the analysis is to show that, with the chosen dual variables, the dual has246

value at least some factor (smaller than 1) times the cost of the algorithm schedule. Then,247

by weak duality, we derive an approximation ratio for the algorithm.248

We first show that the algorithm admits some monotone property. Consider two sets of249

jobs I and I ′ assigned to machine i such that they are identical except that there is only a250

job j ∈ I \ I ′ (i.e., I = I ′ ∪ {j}). Moreover, assume that all jobs in I ′ have available times251

earlier than that of j. For every job k, define the fractional weight of k in machine i at252

time t as wkqik(t)/pik. Let Vi(t) be the total fractional weight of pending jobs assigned to253

machine i. The following lemma, which has been proved in [1], shows a property of Vi(t).254

I Lemma 3 ([1]). Let I be a set of jobs and I ′ = I \ {j} where j ∈ I is the job with255

maximum available time (among ones in I). Fix an arbitrary machine i. Let V Ii (t) and256

V I
′

i (t) be the total fractional weights of pending jobs at time t in machine i if the sets of jobs257

assigned to machine i are I and I ′, respectively. Then, V I′i (t) ≤ V Ii (t) for every time t.258

Informally, Lemma 3 shows that for every machine i, Vi(t) is monotone w.r.t the set of259

jobs assigned to machine i. In fact, Lemma 3 is proved by Anand et al. [1] in the online260

setting. The proof remains exactly the same by replacing the available times Aj ’s in our261

setting by the release times rj ’s of jobs in the online setting.262

We are now proving a crucial lemma relating the dual variables and the fractional pending263

weights.264

I Lemma 4. It holds that λij−δj(t−Aj)− α
β(α−1)w

α−1
α

j ≤ α
β(α−1)Vi(t)

α−1
α for every machine265

i and every time t ≥ Aj.266

Proof. By Lemma 3, it is sufficient to prove the inequality for a fixed machine i assuming
that no new job will be assigned to i after Aj . For simplicity of the notations, as machine i is
fixed, in the remaining of the proof, we drop the index of the machines in all the parameters
(e.g., δj(t) stands for δij(t), etc). Moreover, denote again qk = qk(Aj) and δk = δk(Aj) for
every pending job k. At Aj , rename jobs in non-increasing order of their residual densities,
i.e., q1/w1 ≤ . . . ≤ qn/wn (note that qk/wk is the inverse of job k’s residual density). Denote

MFCS 2020

73:8 Improved Approximation Algorithm for Arborescence Precedence Scheduling

Wk = wk + . . .+wn for 1 ≤ k ≤ n. The marginal increase in the total weighted pending-time
due to the assignment of job j is

wj

(
q1

βW
1/α
1

+ . . .+ qj

βW
1/α
j

)
+Wj+1

qj

βW
1/α
j

where the first term is the weighted pending-time of job j and the second one is the increase267

of the weighted pending-time of other jobs (note that only jobs with density smaller than268

that of j has their completion times increased). Let C∗j be the completion time of job j if it269

is assigned to machine i. We consider different cases of time t.270

Case 1: t ≤ C∗j . Let k be the pending job at t with the smallest index. In other words,271

the machine has processed all jobs 1, . . . , k − 1 and a part of job k in interval [Aj , t]. By the272

definition of λj , we have that273

λj − δj(t−Aj) = δj

(
qk(t)
βW

1/α
k

+ qk+1

βW
1/α
k+1

+ . . .+ qj

βW
1/α
j

)
+ Wj+1

βW
1/α
j

274

= δj

(
wk(t)

δkβW
1/α
k

+ wk+1

δk+1βW
1/α
k+1

+ . . .+ wj

δjβW
1/α
j

)
+ Wj+1

βW
1/α
j

275

≤ 1
β

(
wk(t)
W

1/α
k

+ wk+1

W
1/α
k+1

+ . . .+ wj

W
1/α
j

+ wj+1

W
1/α
j+1

+ . . .+ wn

W
1/α
n

)
276

≤ 1
β

∫ V (t)+wj

wn

dz

z1/α ≤
α

β(α− 1)(V (t) + wj)
α−1
α277

≤ α

β(α− 1)

(
V (t)

α−1
α + w

α−1
α

j

)
.278

279

The second equality is due to the definition of the residual density. The first inequality holds280

since δj ≤ δk′ for every job k′ ≤ j and Wj ≥Wj+1 ≥ . . . ≥Wn. The second inequality holds281

since function z−1/α is decreasing. The last inequality holds because 0 < (α− 1)/α < 1.282

Case 2: t > C∗j . Let k be the pending job at t with the smallest index. We have283

λj − δj(t−Aj) = Wj+1

βW
1/α
j

− δj(t− C∗j) = 1
βW

1/α
j

(
wj+1 + . . .+ wn

)
−δj(t− C∗j)284

≤ δj+1
qj+1

βW
1/α
j+1

+ . . .+ δn
qn

βW
1/α
n

− δj(t− C∗j)285

≤ δk
qk(t)
βW

1/α
k

+ δk+1
qk+1

βW
1/α
k+1

+ . . .+ δn
qn

βW
1/α
n

286

= δk
wk(t)

δkβW
1/α
k

+ δk+1
wk+1

δk+1βW
1/α
k+1

+ . . .+ δn
wn

δnβW
1/α
n

287

≤ 1
β

∫ V (t)

wn

dz

z1/α ≤
α

β(α− 1)V (t)
α−1
α288

289

where the first inequality holds since Wj ≥Wj+1 ≥ . . . ≥Wn; the second inequality is due290

to δj ≥ δk′ for every job k′ > j.291

Combining both cases, the lemma follows. J292

I Theorem 5. Algorithm 1 is 8(1 + α
lnα)-approximation for β = 1

α−1 (α− 1 + ln(α− 1))α−1
α .293

Nguyễn Kim Thắng 73:9

Proof. Let P∗ be the total weighted pending-time due to the algorithm (that also equals294

the total completion time). By the choice of dual variables, we have295

min
x,s,C

L = min
x

∑
i,j

λijpijxij296

−max
x,s,C

∑
i,j

∫ Cj

Aj

xijsij(t)
(
λij − si(t)α−1 − 1

β
w
α−1
α

ij − δj(Cj −Aj)
)
dt297

≥ P∗ −max
x,s,C

∑
i,j

∫ Cj

Aj

xijsij(t)
(
λij − si(t)α−1 − 1

β
w
α−1
α

ij − δj(t−Aj)
)
dt298

≥ P∗ −max
x,s,C

∑
i,j

∫ Cj

Aj

xijsij(t)
(

α

β(α− 1)Vi(t)
α−1
α − si(t)α−1

)
dt299

= P∗ −max
x,s,C

∑
i

∫ ∞
0

(∑
j

xijsj(t)
)(

α

β(α− 1)Vi(t)
α−1
α − si(t)α−1

)
dt300

≥ P∗ −max
x,s,C

∑
i

∫ ∞
0

si(t)
(

α

β(α− 1)Vi(t)
α−1
α − si(t)α−1

)
dt301

302

where the first inequality follows by the assignment policy (assign job j to machine i that303

minimizes λijpij) and t ≤ Cj ; the second inequality is due to Lemma 4. By the first order304

condition, function z(α
β(α−1)V

α−1
α − zα−1) is maximized at z0 = V 1/α

((α−1)β)1/(α−1) . We have305

min
x,s,C

L ≥ P∗ − α− 1
((α− 1)β)

α
α−1

∑
i

∫ ∞
0

Vi(t)dt306

≥ P∗ − α− 1
((α− 1)β)

α
α−1

∑
i

∫ ∞
0

Wi(t)dt =
(

1− α− 1
((α− 1)β)

α
α−1

)
P∗307

308

where the second inequality holds since Vi(t) ≤Wi(t) for every i and t.309

Besides, the total weighted pending-time plus energy is

P∗ +
∫ ∞

0
sα(t)dt = P∗ +

∑
i

∫ ∞
0

βαWi(t)dt = (1 + βα)P∗.

Therefore the primal objective is bounded by
(
(1 + βα) + α

β(α−1) (1 + βα)
)
P∗ (Lemma 2).310

Thus, the approximation ratio is at most311

(1 + βα) + α
β(α−1) (1 + βα)

1− α−1
((α−1)β)

α
α−1

(1)312

Choose β = 1
α−1 (α− 1 + ln(α− 1))α−1

α . Observe that313 (
1 + ln(α− 1)

α− 1

)α−1
< eln(α−1) = α− 1314

⇒ (α− 1 + ln(α− 1))α−1 < (α− 1)α ⇒ β < 1315
316

Moreover, β > (α− 1)−1/α. With the chosen β, the denominator of (1) becomes ln(α−1)
α−1+ln(α−1)317

and the nominator is bounded by 8 (since α−1/α < β < 1 and α ≥ 2). Hence, the318

approximation ratio is at most 8(1 + α/ lnα). J319

MFCS 2020

73:10 Improved Approximation Algorithm for Arborescence Precedence Scheduling

4 Approximation Algorithm for R|arborescences|∑j Cj320

We are now considering the problem R|arborescences|
∑
j Cj . Fix the parameter α such321

that αα = n, so α = Θ
(logn

log logn
)
. Notice that given an instance of R|arborescences|

∑
j Cj ,322

there is a corresponding instance of the problem of minimizing the total completion time323

plus energy in which the energy function of every machine is
∫∞

0 si(t)αdt. Our algorithm324

Algorithm 2 for the R|arborescences|
∑
j Cj problem is the following.325

1. Given an instance of R|arborescences|
∑
j Cj , consider the corresponding instance of the326

problem of minimizing the total completion time plus energy (defined in Section 2) with327

parameter α such that αα = n. Solve the latter by Algorithm 1 and obtain a schedule S1328

(with machine speeds).329

2. Transform the schedule S1 to a schedule S2 such that at any time t where si(t) > α for330

some machine i, reduce the speed si(t) to α. Note that this transformation might delay331

job completion times.332

3. Given the schedule S2, transform to a unit-speed schedule S3 as follows. In the schedule333

S3, preserve the job-to-machine assignments as in schedule S2. In every machine, execute334

jobs non-preemptively (by unit-speed) in the non-decreasing order of their completion335

times in schedule S2. Return the non-preemptive schedule S3.336

We first show some properties of schedules S2 and S3.337

I Lemma 6. 1. The cost (i.e., total completion time plus energy) of the schedule S2 is at338

most that of schedule S1.339

2. The total completion time of S3 is at most α times that of S2.340

Proof. 1. Assume that the speed of some machine i at some time t is si(t) > α. The
increasing rate of energy cost in machine i at time t is

d(si(t))α

dt
= αsα−1

i (t) > αα = n.

However, the increasing rate of the total completion time is at most n. Therefore, one can341

reduce the speed si(t) to get a smaller cost. Hence, by operations of Step 2 in Algorithm342

2, the total completion time plus energy of the schedule S2 is at most that of schedule S1.343

2. If the speed of a machine is reduced by a factor α then the completion time of each job344

will be increased by at most a factor α. Therefore, the total completion time is increased345

by at most a factor α.346

J347

I Theorem 7. Algorithm 2 is O
(log2 n

(log logn)3

)
-approximation for the problem348

R|arborescences|
∑
j Cj.349

Proof. Let C(S) and E(S) be the total completion time and the energy of the schedule S,350

respectively. Let S∗ be an optimal schedule for the problem of minimizing the total completion351

time plus energy. Let OPT be an optimal schedule for the problem R|arborescences|
∑
j Cj .352

Note that OPT is a feasible solution to the problem of minimizing the total completion time353

plus energy where at any time the machine speeds are unit (whenever there is still a pending354

REFERENCES 73:11

job). We have355

C(S3) ≤ α · C(S2) ≤ α · (C(S2) + E(S2)) ≤ α · (C(S1) + E(S1))356

≤ 8α
(

1 + α

logα

)
(C(S∗) + E(S∗)) ≤ 8α

(
1 + α

logα

)
(C(OPT) + E(OPT))357

≤ 16α
(

1 + α

logα

)
· C(OPT)358

359

The first and third inequalities follow from Lemma 6. The fourth inequality is due to360

Theorem 5. The last inequality holds since in OPT , at every time every machine runs with361

speed either 1 or 0, so the total energy incurred in a machine is bounded by the maximum362

completion time of a job in that machine. The theorem follows since α = Θ
(logn

log logn
)
. J363

Remark. The weighted version R|arborescences|
∑
j wjCj can be solved by a similar al-364

gorithm and the approximation ratio will be O
(
ρ · log2 n

(log logn)3

)
where ρ = maxj,j′:wj′>0

wj
wj′

.365

5 Conclusion366

In this paper, we present a new approach for the problem R|arborescences|
∑
j Cj using367

non-convex formulations and a dual-fitting method. In high level, the consideration of a368

smooth variant of the problem helps to bypass a hard constraint of the problem (that every369

job has to be processed by unit speed). Moreover, the formulation of a non-convex program370

with mixed integer variables (assignment variables) and continuous variables (speed variables)371

allows us to get rid of the integrality gap issue while still benefit from several continuous372

aspects. Finally, the analysis holds by the simple yet powerful weak duality which holds even373

for non-convex programs. The approach enables an improvement, albeit rather small, over a374

long standing approximation. We hope that the approach would provide additional tools375

and a different point of view towards the design of algorithms with improved performance376

guarantees for the general problems R|prec|
∑
j Cj and R|prec|

∑
j wjCj .377

References378

1 S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time379

explained by dual fitting. In Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms,380

pages 1228–1241, 2012.381

2 Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In Proc. 50th382

Symposium on Foundations of Computer Science, pages 453–462, 2009.383

3 Abbas Bazzi and Ashkan Norouzi-Fard. Towards tight lower bounds for scheduling384

problems. In Proc. 23rd European Symposium on Algorithms, pages 118–129, 2015.385

4 Soumen Chakrabarti, Cynthia A Phillips, Andreas S Schulz, David B Shmoys, Cliff Stein,386

and Joel Wein. Improved scheduling algorithms for minsum criteria. In Proc. Colloquium387

on Automata, Languages, and Programming, pages 646–657, 1996.388

5 Chandra Chekuri and Sanjeev Khanna. Approximation algorithms for minimizing average389

weighted completion time. In Handbook of Scheduling, pages 220–249. Chapman and390

Hall/CRC, 2004.391

6 Fabián A Chudak and David B Shmoys. Approximation algorithms for precedence-392

constrained scheduling problems on parallel machines that run at different speeds. Journal393

of Algorithms, 30(2):323–343, 1999.394

MFCS 2020

73:12 REFERENCES

7 Shashwat Garg. Quasi-ptas for scheduling with precedences using lp hierarchies. In Proc.395

45th Colloquium on Automata, Languages, and Programming, 2018.396

8 Shashwat Garg, Janardhan Kulkarni, and Shi Li. Lift and project algorithms for preced-397

ence constrained scheduling to minimize completion time. In Proc. 30th Symposium on398

Discrete Algorithms, pages 1570–1584, 2019.399

9 Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rinnooy Kan.400

Optimization and approximation in deterministic sequencing and scheduling: a survey.401

Annals of Discrete Mathematics, 5:287–326, 1979.402

10 Han Hoogeveen, Petra Schuurman, and Gerhard J Woeginger. Non-approximability403

results for scheduling problems with minsum criteria. INFORMS Journal on Computing,404

13(2):157–168, 2001.405

11 Klaus Jansen, Roberto Solis-Oba, and Maxim Sviridenko. Makespan minimization in406

job shops: a polynomial time approximation scheme. In Proc. Symposium on Theory of407

Computing, volume 99, pages 394–399, 1999.408

12 Anil Kumar, Madhav Marathe, Srinivasan Parthasarathy, and Aravind Srinivasan.409

Scheduling on unrelated machines under tree-like precedence constraints. Algorithmica,410

55(1):205–226, 2009.411

13 Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of scheduling under precedence412

constraints. Operations Research, 26(1):22–35, 1978.413

14 Elaine Levey and Thomas Rothvoss. A (1 + epsilon)-approximation for makespan414

scheduling with precedence constraints using lp hierarchies. In Proc. 48th Symposium on415

Theory of Computing, pages 168–177, 2016.416

15 Shi Li. Scheduling to minimize total weighted completion time via time-indexed linear417

programming relaxations. In Proc. 58th Symposium on Foundations of Computer Science418

(FOCS), pages 283–294, 2017.419

16 Alix Munier, Maurice Queyranne, and Andreas S Schulz. Approximation bounds for a420

general class of precedence constrained parallel machine scheduling problems. In Proc.421

Conference on Integer Programming and Combinatorial Optimization, pages 367–382,422

1998.423

17 David B Shmoys, Clifford Stein, and Joel Wein. Improved approximation algorithms for424

shop scheduling problems. SIAM Journal on Computing, 23(3):617–632, 1994.425

18 Martin Skutella. A 2.542-approximation for precedence constrained single machine426

scheduling with release dates and total weighted completion time objective. Operations427

Research Letters, 44(5):676–679, 2016.428

19 Ola Svensson. Hardness of precedence constrained scheduling on identical machines.429

SIAM Journal on Computing, 40(5):1258–1274, 2011.430

20 Nguyen Kim Thang. Lagrangian duality in online scheduling with resource augmentation431

and speed scaling. In Proc. 21st European Symposium on Algorithms, pages 755–766,432

2013.433

	Introduction
	Our contribution and approach

	Preliminaries
	Approximation Algorithm for Completion Time plus Energy Minimization
	Approximation Algorithm for R|arborescences|j Cj
	Conclusion

