
Lagrangian Duality based Algorithms in Online
Energy-Efficient Scheduling
Nguyen Kim Thang

IBISC, Université d’Evry Val d’Essonne, France

Abstract
We study online scheduling problems in the general energy model of speed scaling with power
down. The latter is a combination of the two extensively studied energy models, speed scaling
and power down, toward a more realistic one. Due to the limits of the current techniques, only
few results have been known in the general energy model in contrast to the large literature of
the previous ones.

In the paper, we consider a Lagrangian duality based approach to design and analyze algo-
rithms in the general energy model. We show the applicability of the approach to problems which
are unlikely to admit a convex relaxation. Specifically, we consider the problem of minimizing
energy with a single machine in which jobs arrive online and have to be processed before their
deadlines. We present a max{4, αα}-competitive algorithm (whose the analysis is tight up to a
constant factor) where the energy power function is of typical form zα + g for constants α > 2
and g ≥ 0. Besides, we also consider the problem of minimizing the weighted flow-time plus
energy. We give an O(α/ lnα)-competitive algorithm; that matches (up to a constant factor) to
the currently best known algorithm for this problem in the restricted model of speed scaling.

1998 ACM Subject Classification F.2.2

Keywords and phrases Online Scheduling, Energy Minimization, Speed Scaling and Power-
down, Lagrangian Duality.

Digital Object Identifier 10.4230/LIPIcs.SWAT.2016.

1 Introduction

Energy-efficient algorithms [1] have gained considerable interest in the algorithmic commu-
nity in the last decade. Many results and techniques have been developed to reduce energy
while optimizing some objectives, especially in the domain of scheduling. There are two
widely studied models in energy-aware scheduling: power down and speed scaling. In the
power down model, a machine could be set in one of several states, which vary from low-
power states to high-power ones and there are transition costs from one state to another.
Depending on the required tasks to be performed, an algorithm has to decide when to make
a transition and to which states to switch. The goal is to minimize the total energy consump-
tion. In the speed scaling model, there is no state but now one can choose an appropriate
speed to process required tasks. The energy power of a machine is a convex function of its
speed. An algorithm needs to specify the machine speed and a policy to process jobs in
order to optimize some quality of service and the consumed energy. Each model captures
partly (but complementarily) a more realistic setting — the speed scaling with power down
model. In the latter, a machine could be set in different states and its speed could also be
varied as a function of required tasks.

A power management scheduling problem in a realistic setting is an online problem
[1], meaning that at any time the scheduler is not aware of future events and the decision
is irrevocable. The standard performance measure of an algorithm is the competitive ratio,

© Nguyen Kim Thang;
licensed under Creative Commons License CC-BY

15th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2016).
Editor: Rasmus Pagh; Article No. ; pp. :1–:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2 Lagrangian Duality in Generalized Energy April 12, 2016

defined as the worst ratio between the cost of the algorithm and that of the optimal solution.
As having been raised in [1], an important direction is to design efficient algorithms (in term
of competitive ratio) for online problems in the speed scaling and power down model (general
energy model for short). Attempting efficient algorithms for problems in the general energy
model, one encounters several limits of current tools. Hence there are only a few works on
the model [2, 6, 12] in contrast to a large literature of previous energy models.

Popular tools in online computation are the charging scheme and the potential function
method. The idea of the methods is to show that an algorithm behaves well in an amortized
sense. However, such methods yield little insight about the nature of problems. Recently,
different approaches based on the duality of mathematical programming to design and an-
alyze online scheduling have been proposed [3, 11, 16]. The approaches reveal the nature
of such the problems, hence lead to algorithms which are usually simple and competitive
[3, 11, 16, 10, 13, 14, 5]. An essential starting point of those approaches (except [16]) is to
formulate a linear or convex relaxation for a given problem. However, problems in the gen-
eral energy model unlikely admit convex program and that represents the main obstacle to
design competitive algorithms. In the paper, we show an approach to bypass this difficulty.

1.1 The Model, Approaches and Contribution

Model. We are given a single machine that can be set either in the sleep state or in the
active state. In the active state, the machine can be either in working state in which some job
is currently processed or in idle state in which no job is currently executed. Each transition
of the machine from the sleep state to the active one has cost A, which represents the wake-
up cost. In the sleep state, the energy consumption of the machine is 0. In the active state,
the machine can choose an arbitrary speed s(t) to execute jobs. Hence, if s(t) > 0 then the
machine is in the working state; otherwise if s(t) = 0, the machine is idle.

The power energy consumption of the machine at time t in its active state is P (s(t)) =
s(t)α + g where α > 2 and g = P (0) ≥ 0. The consumed energy (without wake-up cost) of
the machine is

∫∞
0 P (s(t))dt where the integral is taken during the machine’s active periods.

We decompose the latter into dynamic energy
∫∞

0 s(t)αdt and static energy
∫∞

0 gdt (where
again the integrals are taken during active periods). We call the model as the general energy
model.

Jobs arrive over time and could be processed preemptively, i.e., a job could be interrupted
and resumed later. At any time, the scheduler has to determine the state and the machine
speed (if it is active) and also a policy to execute jobs. In the paper, we study the following
problems.

In the first problem, each job j has a released time rj , a deadline dj , a processing volume
pj . A job j has to be fully processed in [rj , dj]. The objective is to minimize the total energy
consumption (the static, dynamic energy and the wake-up cost).

In the second problem, each job j has released time rj , weight wj and requires pj units
of processing volume. The flow-time of a job j is Cj − rj where Cj is the completion time
of the job. The objective is to minimize the total weighted flow-time plus the total energy
(including the wake-up cost).

Lagrangian Duality Approach.

To overcome the issues in the general energy model, we follow our duality approach presented
in [16]. The approach has been applied to non-convex relaxations for several problems in

Nguyen Kim Thang XX:3

[16]. However, such the problems admit linear relaxations with some lost factors1 and the
consideration of non-convex relaxations permits improvement on the competitive ratio. In
this paper, we study the approach for non-convex problems, i.e., the problems unlikely admit
a convex relaxation with bounded integrality gap. To the best of our knowledge, it is the
first time online algorithms have been designed based on non-convex relaxations.

We first briefly summarize the high level idea of the approach in [16]. Given a prob-
lem, formulate a relaxation which is not necessarily convex and its Lagrangian dual. Next
construct dual variables such that the Lagrangian dual has objective value within a desired
factor of the primal one (due to some algorithm). Then by the standard Lagrangian weak
duality2 in mathematical programming, the competitive ratio follows. Since the Lagrangian
weak duality also holds in the context of calculus of variations, the approach could be applied
for the unknowns which are not only variables but also functions.

Let L(x, λ) be the Lagrangian function with primal and dual variables x and λ, respec-
tively. Let X and Y are feasible sets of x and λ. Intuitively, the approach could be seen as a
game between an algorithm and an adversary. The algorithm chooses dual variables λ∗ ∈ Y
in such a way that whatever the choice (strategy) of the adversary, the value minx∈X L(x, λ∗)
is always within a desirable factor c of the objective due to the algorithm. We emphasize
that minx∈X L(x, λ∗) is taken over x feasible solutions of the primal.

An advantage of the approach is the flexibility of the formulation. As convexity is not
required, we can study a (non-convex) formulation of a given problem. The main core of
the approach is to determine the dual variables and to prove the desired competitive ratio.
Determining such dual variables is the crucial step in the analysis. Sometimes, the dual
variables have intuitive interpretations that inspire their construction.

It is worthy to note that in the analyses (of both problems), we consider mathemat-
ical programs in which the machine state variable remains 0-1 (without being relaxed).
An advantage of keeping the variables integer, which is allowed due to the flexibility of the
approach, is that we can additionally use charging-scheme-liked arguments. Hence, the anal-
yses are carried out by benefiting properties from both mathematical programming (weak
duality) and amortized method (charging scheme).

Our Results.

1. For the problem of minimizing the total consumed energy, we formulate a natural
non-convex formulation using the Dirac delta function. The Dirac function is useful to rep-
resent the wake-up cost — an issue that causes the problems in the general energy model
to be non-convex. We present a max{4, αα}-competitive algorithm and the analysis follows
the Lagrangian duality approach described above. In the construction of dual variables, a
key step of the analysis, we define these variables in such a way that they subtly capture the
marginal increase of the energy consumption. Note that the analysis is tight since our algo-
rithm, in the restricted speed scaling model (without static energy and wake-up cost), turns
out to be the OA algorithm, which has competitive ratio exactly αα [9]. Hence, even the
competitive ratio has been only slightly improved from max{4, αα + 2} [12] to max{4, αα},
it suggests that the duality-based approach is seemingly a right tool for online scheduling.
Besides, the formulation and the analysis give basics to study the second problem.

1 factors polynomial in 1/ε in the resource augmentation model in which the machine has speed 1 + ε.
2 For completeness, the weak duality is given in the appendix.

SWAT 2016

XX:4 Lagrangian Duality in Generalized Energy April 12, 2016

2. For the problem of minimizing energy plus weighted flow-time, we derive anO(α/ lnα)-
competitive algorithm that matches the currently best known competitive ratio (up to a con-
stant factor) for the same problem in the restricted speed scaling model (where the wake-up
cost and the static energy cost are 0). The dual variables and the analysis are built upon
the salient ideas from the ones in the previous problem but in a more involved manner. In-
formally, the dual solutions are constructed in order to balance the weighted flow-time cost
and the energy cost at any moment in the schedule (the same idea of previous algorithms in
the speed scaling model). However, in the general energy model this cannot be guaranteed
for every moment in the schedule. Hence, we introduce an additional term to dual variables
that covers the moments where the two costs are not balanced. Intuitively, the additional
term represents the loss due to the non-convexity of the problem. It turns out that the loss
in term of competitive ratio is only a constant factor.

Due to the space constraint, the analysis is partly given. The full version can be found
on the website of the author.

1.2 Related work

Anand et al. [3] proposed studying online scheduling by linear (convex) programming and
dual fitting. By this approach, they gave simple algorithms and simple analyses with im-
proved performance for problems where the analyses based on potential functions are com-
plex or it is unclear how to design such functions. Gupta et al. [11] gave a primal-dual
algorithm for a class of scheduling problems with cost function f(z) = zα. In [16] we
generalized the approach in [3] and proposed to study online scheduling by non-convex pro-
gramming and the weak Lagrangian duality. Using that technique, [16] derive competitive
algorithms for problems related to weighted flow-time. The approaches based on duality
become more and more popular. Subsequently, many competitive algorithms have been
designed for different problems in online scheduling [3, 11, 16, 10, 13, 14, 5].

For the online problem of minimizing the energy consumption in the model of speed
scaling, Bansal et al. [9] gave a 2(α

α−1)αeα-competitive algorithm. Later on, Bansal et al.
[7] showed that no deterministic algorithm has better competitive ratio than eα/α. In the
general energy model, Irani et al. [15] were the first who studied the problem and they
derived an algorithm with competitive ratio (22α−2αα + 2α−1 + 2). Subsequently, Han et
al. [12] presented an algorithm which is max{4, αα + 2}-competitive. In offline setting,
the problem is recently showed to be NP-hard [2]. Moreover, they [2] also gave a 1.171-
approximation algorithm, which improved the 2-approximation algorithm in [15]. If the
instances are agreeable then the problem is polynomial [6]. Recently, Antoniadis et al. [4]
have given a FPTAS for the problem.

To the best of our knowledge, the objective of minimizing the total weighted flow-time
plus energy has not been studied in the speed scaling with power down energy model. How-
ever, this objective has been widely studied in speed scaling energy model. Bansal et al.
[8] gave an O(α/ logα)-competitive algorithm for weighted flow-time plus energy in a single
machine where the energy function is sα. Based on linear programming and dual-fitting,
Anand et al. [3] proved an O(α2)-competitive algorithm for unrelated machines. Subse-
quently, Nguyen [16] and Devanur and Huang [10] presented an O(α/ logα)-competitive
algorithms for unrelated machines by dual fitting and primal dual approaches, respectively.
It turns out that the different approaches lead to the same algorithm. To the best of our
knowledge, no competitive algorithm is known in the general energy model for this problem.

Nguyen Kim Thang XX:5

2 Minimizing Energy in Speed Scaling with Power Down Model

In this section, we study the problem of minimizing the total energy. We formulize the prob-
lem as a mathematical program. In such a program, we need to incorporate an information
about the machine states and the transition cost from the sleep state to the active one. Here
we make use of the properties of the Heaviside step function and the Dirac delta function to
encode the machine states and the transition cost. Recall that the Heaviside step function
H(t) = 0 if t < 0 and H(t) = 1 if t ≥ 0. Then H(t) is the integral of the Dirac delta function
δ (i.e., H ′ = δ) and it holds that

∫ +∞
−∞ δ(t)dt = 1. Now let F (t) be a function indicating

whether the machine is in active state at time t, i.e., F (t) = 1 if the machine is active at
t and F (t) = 0 if it is in the sleep state. Assume that the machine initially is in the sleep
state. Then A

∫ +∞
0 |F ′(t)|dt equals twice the transition cost of the machine (a transition

from the active state to the sleep state costs 0 while by the term A
∫ +∞

0 |F ′(t)|dt, it costs
A).

Let sj(t) be variable representing the speed of job j at time t. The problem could be
formulated as the following (non-convex) program.

min
∫ ∞

0
P

(∑
j

sj(t)
)
F (t)dt+ A

2

∫ +∞

0
|F ′(t)|dt (1)

subject to
∫ dj

rj

sj(t)F (t)dt ≥ pj ∀j

sj(t) ≥ 0, F (t) ∈ {0, 1} ∀j, t

Observe that each time a job is executed, the machine has to be in the active state. The
first constraint ensures that every job j must be fully processed during [rj , dj]. Note that
we do not relax the variable F (t). The objective function consists of corresponding terms to
the energy cost during the active periods and the wake-up cost. Recall that P (z) = zα + g.

2.1 Algorithm and Dual Variable Construction.
Define the critical speed sc = arg mins>0 P (s)/s. It has been observed in [6] that in any
algorithm, it would better to set the machine speed at least sc whenever it executes some
job. Let 0 < β ≤ 1 be some constant to be chosen later.

Let s∗(t) and s∗j (t) be the machine speed and the speed of job j at time t by the algorithm,
respectively. In the algorithm, we maintain variables, called virtual speeds, s(t) and sj(t).
Intuitively, job j would be processed by speed sj(t) at time t (and the machine would process
jobs by speed s(t)) if the wake-up cost equals A and the parameter g = 0. However, it is not
the case so the algorithm will process jobs by different speeds but it is the function related
to the virtual speeds.

During the execution of the algorithm, we also maintain a set of active jobs. Informally,
a job is active if it has been released but has not been processed by the algorithm. Initially,
set auxiliary variables s(t) and sj(t) equal 0 for every time t and jobs j. If a job is released
then it is marked as active.

Let τ be the current moment. Set s(t) ← s∗(t) for every t ≥ τ . Consider cur-
rently active jobs in the earliest deadline first (EDF) order. (The set of active jobs may
include new released job and jobs that have been released before τ but have not been
processed.) For every active job j and τ ≤ t ≤ dj , increase continuously sj(t) for all
t ∈ arg mint′ P ′(s(t′)) and update simultaneously s(t)← s(t) + sj(t) until

∫ dj
rj
sj(t′)dt′ = pj .

SWAT 2016

XX:6 Lagrangian Duality in Generalized Energy April 12, 2016

Now consider different states of the machine at the current time τ . We distinguish three
different states: (1) in working state the machine is active and is executing some jobs; (2)
in idle state the machine is active but its speed equals 0; and (3) in sleep state the machine
is inactive.
In working state. If s(τ) > 0 then set the machine speed s∗(t) ← max{s(t), sc} for t ≥ τ

as long as pending jobs exists. Additionally, mark all currently pending jobs as inactive.
Otherwise (if s(τ) = 0), switch the machine to the idle state.

In idle state. If s(τ) ≥ sc then switch to the working state.
If sc > s(τ) > 0. Do not execute any job; however, mark all currently pending jobs as
active. Intuitively, we delay the execution of such jobs until some moment where the
machine has to run at speed sc in order to complete these jobs (assuming that there is
no new job released).
Otherwise, if the total duration of idle state from the last wake-up equals A/g then
switch to the sleep state.

In sleep state. If s(τ) ≥ sc then switch to the working state.

Dual variables. Consider a job j and the virtual machine speed s(t, rj). If s(t, rj) > 0
for every t ∈ [rj , dj], set λj such that λjpj/β equals the marginal increase of the dynamic
energy due to the arrival of job j. If s(t, rj) = 0 for some moment t ∈ [rj , dj], define λj such
that λjpj equals the marginal increase of the dynamic and static energy due to the arrival
of job j (assuming no new job will be released later).

2.2 Analysis
The Lagrangian dual of (1) is maxλ≥0 mins,F L(s, F, λ) where the minimum is taken over
(s, F) feasible solutions of the primal and L is the following Lagrangian function

L(s, F, λ) =
∫ ∞

0
P

(∑
j

sj(t)
)
F (t)dt+ A

2

∫ +∞

0
|F ′(t)|dt+

∑
j

λj

(
pj −

∫ dj

rj

sj(t)F (t)dt
)

≥
∑
j

λjpj −
∑
j

∫ dj

rj

sj(t)F (t)
(
λj −

P (s(t))
s(t)

)
1{s(t)>0}1{F (t)=1}dt+ A

2

∫ +∞

0
|F ′(t)|dt

(2)

where s(t) =
∑
j sj(t).

By weak duality, the optimal value of the primal is always larger than the one of the
corresponding Lagrangian dual. In the following, with the chosen values of dual variables, we
bound the Lagrangian dual value in function of the algorithm cost and show the competitive
ratio.

Let s∗(t, rj) be the machine speed at time t ≥ rj settled by the algorithm at time rj . In
other words, s∗(t, rj) would be the machine speed at time t if there is no new released job
after job j. Similarly, let s∗j (t, rj) be the speed of job j at time t settled by the algorithm at
time rj .

I Lemma 1. Let j be an arbitrary job.

1. If s∗(t, rj) > 0 for every t ∈ [rj , dj] then λj ≤ βP ′(s∗(t)) for every t ∈ [rj , dj].
2. Moreover, if s∗(t, rj) = 0 for some t ∈ [rj , dj] then λj = P (sc)/sc.

Proof. We prove the first claim. For any time t, speed s∗(t) is non-decreasing as long as new
jobs arrive. Hence, it is sufficient to prove the claim assuming that no other job is released

Nguyen Kim Thang XX:7

after j, i.e., λj ≤ βP ′(s∗(t, rj)). The marginal increase in the dynamic energy due to the
arrival of j could be written as

1
β
λjpj =

∫ dj

rj

[
P (s∗(t, rj))− P

(
s∗(t, rj)− s∗j (t, rj)

)]
dt ≤

∫ dj

rj

P ′(s∗(t, rj))s∗j (t)dt

= min
rj≤t≤dj

P ′(s∗(t, rj))
∫ dj

rj

s∗j (t, rj)dt = min
rj≤t≤dj

P ′(s∗(t, rj)) · pj

where minP ′(s∗(t, rj)) is taken over t ∈ [rj , dj] such that s∗j (t, rj) > 0. The inequality is
due to the convexity of P and the second equality follows the algorithm (that increase the
speed of job j at arg minP ′(s(t)) for rj ≤ t ≤ dj). So the first claim follows.

We are now showing the second claim. By the algorithm, the fact that s∗(t, rj) = 0 for
some t ∈ [rj , dj] means that job j will be processed at speed sc in some interval [a, b] ⊂ [rj , dj]
(assuming that no new job is released after rj). The marginal increase in the energy is
P (sc)(b− a) while pj could be expressed as sc(b− a). Therefore, λj = P (sc)/sc. J

I Theorem 2. The algorithm has competitive ratio at most max{4, αα}.
Proof. Let E∗1 be the dynamic energy of the algorithm schedule. We have E∗1 =

∫∞
0 [P (s∗(t))−

P (0)]dt ≤
∑
j λjpj/β due to the definition of λj ’s and 0 < β ≤ 1.

Let E∗2 be the static energy plus the wake-up energy of the algorithm, i.e., E∗2 =∫∞
0 P (0)F ∗(t)dt+ A

2
∫∞

0 |(F
∗)′(t)|dt where F ∗(t) is the corresponding state (active or sleep)

of the machine at time t by the algorithm. We will lower bound the Lagrangian dual objec-
tive by E∗1 and E∗2 .

By Lemma 1 (second statement), for every job j such that s∗(t, rj) = 0 for some t ∈
[rj , dj], λj = P (sc)

sc . By the definition of the critical speed, λj ≤ P (z)
z for any z > 0.

Therefore,∑
j

∫ dj

rj

sj(t)F (t)
(
λj −

P (s(t))
s(t)

)
dt ≤ 0 (3)

where in the sum is taken over jobs j such that s∗(t, rj) = 0 for some t ∈ [rj , dj].
Define

L1(s, λ) :=
∑
j

λjpj −
∑
j

∫ dj

rj

sj(t)F (t)
(
λj −

P (s(t))
s(t)

)
1{s(t)>0}1{F (t)=1}dt

which is the right-hand side of (2) without the wake-up term.
Let s̄(t) ∈ arg maxz zβP ′(s∗(t))− P (z). We have

L1(s, λ)

≥ βE∗1 −max
s,F

∑
j

∫ dj

rj

sj(t)F (t)
[
βP ′(s∗(t))− P (s(t))

s(t)

]
1{s(t)>0}1{F (t)=1}1{s∗(t)>0}dt

≥ βE∗1 −max
s

∫ ∞
0

s(t)
[
βP ′(s∗(t))− P (s(t))

s(t)

]
1{s(t)>0}1{F (t)=1}1{s∗(t)>0}dt

≥ βE∗1 −
∫ ∞

0

[
βP ′(s∗(t))s̄(t)− P (s̄(t))

]
1{s(t)>0}1{F (t)=1}1{s∗(t)>0}dt

≥ βE∗1 −
1
2

∫ ∞
0

[
βP ′(s∗(t))s̄(t)− P (s̄(t))

]
1{s∗(t)>0}dt

− 1
2

∫ ∞
0

[
βP ′(s∗(t))s̄(t)− P (s̄(t))

]
1{F (t)=1}dt

SWAT 2016

XX:8 Lagrangian Duality in Generalized Energy April 12, 2016

where in the first line, the sum is taken over jobs j such that s∗(t, rj) > 0 for all t ∈
[rj , dj]. Note that if s∗(t, rj) > 0 then s∗(t) ≥ s∗(t, rj) > 0. The first inequality follows
(3) and Lemma 1 (first statement). The second inequality holds since F (t) ∈ {0, 1} and
s(t) ≥

∑
j sj(t) where again the sum is taken over jobs j such that s∗(t, rj) > 0 for all

t ∈ [rj , dj]. The third inequality is due to the first order derivative and s̄(t) maximizes
function zβP ′(s∗(t))− P (z) (so s̄(t) is the solution of equation P ′(z(t)) = βP ′(s∗(t))).

As the energy power function P (z) = zα + g where α > 2 and g ≥ 0, s̄(t)α−1 =
β(s∗(t))α−1. Therefore,

L1(s, λ) ≥ βE∗1 −
1
2

∫ ∞
0

(
βα(s∗(t))α−1s̄(t)− (s̄(t))α − g

)
1{s∗(t)>0}dt

− 1
2

∫ ∞
0

(
βα(s∗(t))α−1s̄(t)− (s̄(t))α − g

)
1{F (t)=1}dt

= βE∗1 −
∫ ∞

0
(α− 1)βα/(α−1)(s∗(t))αdt+ 1

2

∫ ∞
0

g1{s∗(t)>0}dt+ 1
2

∫ ∞
0

g1{F (t)=1}dt

=
[
β − (α− 1)βα/(α−1)

]
E∗1 + 1

2

∫ ∞
0

g1{s∗(t)>0}dt+ 1
2

∫ ∞
0

g1{F (t)=1}dt

Choose β = 1/αα−1, we have that

L(s, F, λ) ≥ 1
αα

E∗1 + 1
2

∫ ∞
0

g1{s∗(t)>0}dt+ 1
2

∫ ∞
0

g1{F (t)=1}dt+ A

2

∫ ∞
0
|F ′(t)|dt

In order to prove the theorem, we prove the following claim.

I Claim 3. Define

L2(F) := 1
2

∫ ∞
0

g1{s∗(t)>0}dt+ 1
2

∫ ∞
0

g1{F (t)=1}dt+ A

2

∫ ∞
0
|F ′(t)|dt

Then, L2(F) ≥ E∗2/4 for any feasible solution (s, F) of the relaxation.

We first show how to deduce the theorem assuming the claim. By the claim, the dual

L(s, F, λ) ≥ E∗1/αα + L2(F) ≥ E∗1/αα + E∗2/4

whereas the primal is E∗1 + E∗2 . Thus, the competitive ratio is at most max{4, αα}. In the
remaining, we prove the claim by amortized arguments.

Proof of claim. Consider the algorithm schedule. An end-time u is a moment in the sched-
ule such that the machine switches from the idle state to the sleep state. Conventionally,
the first end-time in the schedule is 0. Partition the time line into phases. A phase [u, v) is
a time interval such that u, v are two consecutive end-times. Observe that in a phase, the
schedule has transition cost A and there is always a new job released in a phase (otherwise
the machines would not switch to non-sleep state). We will prove the claim on every phase.
In the following, we are interested in phase [u, v) and whenever we mention L2(F), it refers
to 1

2
∫ v
u
g1{s∗(t)>0}dt+ 1

2
∫ v
u
g1{F (t)=1}dt+ A

2
∫ v
u
|F ′(t)|dt.

By the algorithm, the static energy of the schedule during the idle time is A,
i.e.,

∫ v
u
g1{s∗(t)=0}dt = A. Let (s, F) be an arbitrary feasible primal solution.

If during [u, v), the machine according to the solution (s, F) makes a transition from
sleep state to non-sleep state (i.e., F (t′) = 0 and F (t′′) = 1 for some u ≤ t′ < t′′ < v) or

Nguyen Kim Thang XX:9

inversely then

L2(F) ≥ 1
2

∫ v

u

g1{s∗(t)>0}dt+ A

2

≥ 1
2

∫ v

u

g1{s∗(t)>0}dt+ 1
4

(∫ v

u

g1{s∗(t)=0}dt+A

)
≥ 1

4E
∗
2
∣∣
[u,v).

If during [u, v), the machine following solution (s, F) makes no transition (from non-sleep
static to sleep state or inversely) then F (t) = 1 during [u, v) in order to process jobs released
in the phase. Therefore,

L2(F) ≥ 1
2

∫ v

u

g1{s∗(t)>0}dt+ 1
2

∫ v

u

g1{F (t)=1}dt = 1
2

∫ v

u

g1{s∗(t)>0}dt+ 1
2

∫ v

u

gdt

≥ 1
2

∫ v

u

g1{s∗(t)>0}dt+ 1
4

∫ v

u

g1{s∗(t)=0}dt+ A

4

≥ 1
4

(∫ v

u

g1{s∗(t)>0}dt+
∫ v

u

g1{s∗(t)=0}dt+A

)
= 1

4E
∗
2
∣∣
[u,v)

where the second inequality follows the algorithm: as the machine switches to sleep state at
time v, it means that the total idle duration in [u, v) incurs a cost A. J

The proof of the claim completes the theorem proof. J

3 Minimizing Energy plus Weighted Flow-Time in Speed Scaling
with Power Down Model

In this section, we study the problem of minimizing total weighted flow-time plus energy.
Let F (t) be a function indicating whether the machine i is in active state at time t, i.e.,
F (t) = 1 if the machine is active at t and F (t) = 0 if it is in the sleep state. Let sj(t) be
the variable that represents the speed of job j at time t. Let Cj be a variable representing
the completion time of j. Similar as the previous section, the problem can be formulized as
the following (non-convex) program.

min
∫ ∞

0
2P
(∑

j

sj(t)
)
F (t)dt+ 2

∑
j

(∫ Cj

rj

sj(t)F (t)dt
)
wj
pj

(Cj − rj)

+A

∫ ∞
0
|F ′(t)|dt (4)

subject to
∫ Cj

rj

sj(t)F (t)dt = pj ∀j

sj(t) ≥ 0, F (t) ∈ {0, 1} ∀j, t

The first constraint ensures that every job j must be completed by some moment Cj which
is its completion time. In the objective function, the first and second terms represent twice
the consumed energy and the total weighted flow-time, respectively. Note that in the second
term,

∫ Cj
rj

sj(t)F (t)dt = pj by the constraints. The last term stands for twice the transition
cost.

Notations. We say that a job j is pending at time t if it has not been completed, i.e.,
rj ≤ t < Cj . At time t, denote qj(t) the remaining processing volume of job j. The total
weight of pending jobs at time t is denoted as W (t). The density of a job j is δj = wj/pj .
Recall that the critical speed sc ∈ arg minz≥0 P (z)/z. As P (z) = zα + g, by the first order
condition, sc satisfies (α− 1)(sc)α = g.

SWAT 2016

XX:10 Lagrangian Duality in Generalized Energy April 12, 2016

3.1 The Algorithm
We first describe intuitively the ideas of the algorithm. In the speed scaling model, all
previous algorithms explicitly or implicitly balance the weighted flow-time of jobs and the
consumed energy to process such jobs. That could be done by setting the machine speed
at any time t proportional to some function of the total weight of pending jobs (precisely,
proportional to W (t)1/α where W (t) is the total weight of pending jobs). Our algorithm
follows the idea of balancing the weighted flow-time and the energy. However, in the general
energy model, the algorithm would not be competitive if the speed is always set propor-
tionally to W (t)1/α since the static energy might be large due to the long active periods of
the machine. Hence, even if the total weight of pending jobs on the machine is small, in
some situation the speed is maintained larger than W (t)1/α. In fact, it will be set to be the
critical speed sc.

An issue while dealing with the general model is to determine the state of the machine
at a given time (active or inactive). If the total weight of pending jobs is small and the
machine is active for a long time, then the static energy is large. Otherwise if pending jobs
remain for long time then the weighted flow-time is large. The algorithm, together with
dual variables, are constructed in order to bypass this difficulty.

Description of algorithm.

At any time t, we distinguish different states of the machine: the working state (the machine
is active and currently processes some job), the idle state (the machine is active but currently
processes no job) and the sleep state. At time t, we (re)compute the total weight of pending
jobs and consider different scenarios corresponding to the current machine state.

In working state. If αW (t)(α−1)/α > P (sc)/sc then the machine speed is set as W (t)1/α.
Otherwise, the speed is set as sc. At any time, the machine processes the highest density
job among the pending ones.

In idle state. 1. If αW (t)(α−1)/α > P (sc)/sc then switch to the working state.
2. If 0 < αW (t)α−1

α ≤ P (sc)/sc then make a plan to process pending jobs with speed
(exactly) sc in non-increasing order of their density. The plan consists of a single
block (with no idle time) and the block length could be explicitly computed (given
the processing volumes of all jobs and speed sc). Hence, the total consumed energy
in the plan can be computed and it is independent of the starting time of the plan.
Choose the starting time of the plan in such a way that the total energy consumption
in the plan equals the total weighted flow-time of all jobs in the plan. There always
exists such starting time since if the plan begins immediately at the current time, the
energy is larger than the weighted flow-time; and inversely if the starting time is large
enough, the weighted flow-time dominates the energy consumption.
At the starting time of a plan, switch to the working state. (Note that the plan
together with its starting time could be changed due to the arrival of new jobs.)

3. Otherwise, if the total duration of idle state from the last wake-up equals A/g then
switch to sleep state.

In sleep state. Use the same policy as the first two steps of the idle state.

3.2 Analysis
The Lagrangian dual of program (4) is max mins,C,F L where L is the corresponding La-
grangian function and the maximum is taken over dual variables. We need to choose ap-

Nguyen Kim Thang XX:11

propriate dual variables and prove that for any feasible solution (s, C, F) of the primal, the
Lagragian dual is bounded by a desired factor from the primal.

Dual variables.

Denote the dual variables corresponding to the first constraints of (4) as λj ’s. Set all dual
variables (corresponding to the primal (4)) except λj ’s equal 0. The values of dual variables
λj ’s is defined as follows.

Fix a job j. At the arrival of a job j, rename pending jobs as {1, . . . , k} in non-increasing
order of their densities, i.e., p1/w1 ≤ . . . ≤ pk/wk (note that pa/wa is the inverse of job a’s
density). Denote Wa = wa + . . .+ wk for 1 ≤ a ≤ k.

Define λj such that

λjpj = wj

j∑
a=1

qa(rj)
W

1/α
a

+Wj+1
qj(rj)
W

1/α
j

+ P (sc)qj(rj)
sc

(5)

Note that qj(rj) = pj . If job j is processed with speed larger than sc then the first term
stands for the weighted flow-time of j and the second term represents an upper bound on
the increase of the weighted flow-time of jobs with density smaller than δj due to the arrival
of j. Observe that as j arrives, the jobs with higher density than δj are completed earlier
and the ones with smaller density than δj may have higher flow-time. Here, the second term
in (5) captures the marginal change in the total weighted flow-time. The third term in (5)
is introduced in order to cover energy consumption during the execution periods of job j

if it is processed by speed sc. That term is necessary since during such periods the energy
consumption and the weighted flow-time are not balanced.

With the constructed dual variables, we are able to prove the competitiveness of the
algorithm.

I Theorem 4. The algorithm is O(α/ lnα)-competitive.

4 Conclusion

In this paper, we have shown that the Lagrangian duality approach is appropriate to study
certain problems which unlikely admit a convex formulation. For many optimization prob-
lems, it is challenging to come up with a strong formulation in which the integral constraint
of variables is relaxed and the integrality gap is relatively small. The Lagrangian duality
approach gives the flexibility to study directly certain problems without relaxing the inte-
grality and without linear/convex formulation. As mentioned earlier and having observed
in the analyses, by the approach, one can benefit from techniques in mathematical program-
ming and amortized analysis. It would be interesting to see more work in this direction.
For concrete questions, the problems studied in the paper are open for unrelated machine
environment. One would expect the existence of algorithms with similar competitive ratio
(up to a constant factor).

Acknowledgement. We thank anonymous reviewers for their useful feedbacks that improve
the presentation of the paper.

References
1 Susanne Albers. Energy-efficient algorithms. Commun. ACM, 53(5):86–96, 2010.

SWAT 2016

XX:12 Lagrangian Duality in Generalized Energy April 12, 2016

2 Susanne Albers and Antonios Antoniadis. Race to idle: new algorithms for speed scaling
with a sleep state. ACM Transactions on Algorithms (TALG), 10(2):9, 2014.

3 S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time
explained by dual fitting. In Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms,
pages 1228–1241, 2012.

4 Antonios Antoniadis, Chien-Chung Huang, and Sebastian Ott. A fully polynomial-time
approximation scheme for speed scaling with sleep state. In Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1102–1113. SIAM,
2015.

5 Yossi Azar, Nikhil R. Devanur, Zhiyi Huang, and Debmalya Panigrahi. Speed scaling in the
non-clairvoyant model. In Proc. 27th ACM on Symposium on Parallelism in Algorithms
and Architectures, pages 133–142, 2015.

6 Evripidis Bampis, Christoph Dürr, Fadi Kacem, and Ioannis Milis. Speed scaling with
power down scheduling for agreeable deadlines. Sustainable Computing: Informatics and
Systems, 2(4):184–189, 2012.

7 Nikhil Bansal, Ho-Leung Chan, Dmitriy Katz, and Kirk Pruhs. Improved bounds for speed
scaling in devices obeying the cube-root rule. Theory of Computing, 8(1):209–229, 2012.

8 Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary power
function. In Proc. 20th ACM-SIAM Symposium on Discrete Algorithms, pages 693–701,
2009.

9 Nikhil Bansal, Tracy Kimbrel, and Kirk Pruhs. Speed scaling to manage energy and
temperature. J. ACM, 54(1), 2007.

10 Nikhil R. Devanur and Zhiyi Huang. Primal dual gives almost optimal energy efficient
online algorithms. In Proc. 25th ACM-SIAM Symposium on Discrete Algorithms, 2014.

11 Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Online primal-dual for
non-linear optimization with applications to speed scaling. In Proc. 10th Workshop on
Approximation and Online Algorithms, pages 173–186, 2012.

12 Xin Han, Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prudence W. H. Wong.
Deadline scheduling and power management for speed bounded processors. Theor. Comput.
Sci., 411(40-42):3587–3600, 2010.

13 Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive algorithms from
competitive equilibria: Non-clairvoyant scheduling under polyhedral constraints. In STOC,
2014.

14 Sungjin Im, Janardhan Kulkarni, Kamesh Munagala, and Kirk Pruhs. Selfishmigrate: A
scalable algorithm for non-clairvoyantly scheduling heterogeneous processors. In Proc. 55th
IEEE Symposium on Foundations of Computer Science, 2014.

15 Sandy Irani, Sandeep K. Shukla, and Rajesh Gupta. Algorithms for power savings. ACM
Transactions on Algorithms, 3(4), 2007.

16 Nguyen Kim Thang. Lagrangian duality in online scheduling with resource augmentation
and speed scaling. In Proc. 21st European Symposium on Algorithms, pages 755–766, 2013.

Nguyen Kim Thang XX:13

Appendix: The full version

I Lemma A.1 (Weak duality). Consider a possibly non-convex optimization problem

p∗ := min
x
f0(x) : fi(x) ≤ 0, i = 1, . . . ,m.

where fi : Rn → R for 0 ≤ i ≤ m. Let X be the feasible set of x. Let L : Rn × Rm → R be
the Lagragian function

L(x, λ) = f0(x) +
m∑
i=1

λifi(x).

Define d∗ = maxλ≥0 minx∈X L(x, λ) where λ ≥ 0 means λ ∈ Rm+ . Then p∗ ≥ d∗.

Proof. We observe that, for every feasible x ∈ X , and every λ ≥ 0, f0(x) is bounded below
by L(x, λ):

∀x ∈ X , ∀λ ≥ 0 : f0(x) ≥ L(x, λ)

Define a function g : Rm → R such that

g(λ) := min
z
L(z, λ) = min

z
f0(z) +

m∑
i=1

λifi(z)

As g is defined as a point-wise minimum, it is a concave function.
We have, for any x and λ, L(x, λ) ≥ g(λ). Combining with the previous inequality, we

get
∀x ∈ X : f0(x) ≥ g(λ)

Taking the minimum over x, we obtain ∀λ ≥ 0 : p∗ ≥ g(λ). Therefore,

p∗ ≥ max
λ≥0

g(λ) = d∗.

J

A.1 Complete Analysis of Section 3

The Analysis
The Lagrangian dual of program (4) is max mins,C,F L where L is the corresponding La-
grangian function where the maximum is taken over dual variables. The purpose of the
section is to choose appropriate dual variables and prove that for any feasible solution
(s, C, F) of the primal, the Lagragian dual is bounded by a desired factor from the primal.

Dual variables.

Denote the dual variables corresponding to the first constraints of (4) as λj ’s. Set all dual
variables (corresponding to the primal (4)) except λj ’s equal to 0. The values of dual
variables λj ’s is defined as the follows.

Fix a job j. At the arrival of a job j, rename pending jobs as {1, . . . , k} in non-increasing
order of their densities, i.e., p1/w1 ≤ . . . ≤ pk/wk (note that pa/wa is the inverse of job a’s
density). Denote Wa = wa + . . .+ wk for 1 ≤ a ≤ k.

Define λj such that

λjpj = wj

j∑
a=1

qa(rj)
W

1/α
a

+Wj+1
qj(rj)
W

1/α
j

+ P (sc)qj(rj)
sc

(6)

SWAT 2016

XX:14 Lagrangian Duality in Generalized Energy April 12, 2016

Note that qj(rj) = pj . If job j is processed with speed larger than sc then the first term
stands for the weighted flow-time of j and the second term represents an upper bound of
the increase in the weighted flow-time of jobs with density smaller than δj . Observe that
due to arrival of j, the jobs with higher density than δj are completed earlier and the ones
with smaller density than δj may have higher flow-time. Informally, the second sum in (6)
captures the marginal change in the total weighted flow-time of jobs different from j. The
third term in (6) is introduced in order to cover energy consumed during the execution
periods of job j if it is processed by speed sc. That term is necessary since during such
periods the energy consumption and the weighted flow-time are not balanced.

The Lagrangian function L(s, C, F, λ) with the chosen dual variables becomes

A

∫ ∞
0
|F ′(t)|dt+ 2

∫ ∞
0

P

(∑
j

sj(t)
)
F (t)dt+ 2

∑
j

δj(Cj − rj)
∫ Cj

rj

sj(t)F (t)dt

+
∑
j

λj

(
pj −

∫ Cj

rj

sj(t)F (t)dt
)

=
∑
j

λjpj +A

∫ ∞
0
|F ′(t)|dt+

∑
j

∫ Cj

rj

δj(Cj − rj)sj(t)F (t)dt

−
∑
j

∫ Cj

rj

sj(t)F (t)
(
λj − 2P (s(t))

s(t) − δj(Cj − rj)
)
dt

Notations.

We denote s∗(t) the machine speed at time t by the algorithm. So by the algorithm, if
s∗(t) > 0 then s∗(t) ≥ sc. Let E∗1 and E∗2 be the total dynamic and static energy consumed
by the algorithm schedule, respectively. In other words, E∗1 =

∫∞
0 (s∗(t))αdt and E∗2 =

∫∞
0 g

where the integral is taken over all moments t where the machine is active (either in working
or in idle states). Additionally, let E∗3 be the total transition cost of the machine. Moreover,
let F∗ be the total weighted flow-time due to the algorithm.

We relate the energy cost of the algorithm schedule and the chosen values of dual variables
by the following lemma. Note that by definition of λj ’s, we have that

∑
j λjpj ≥ F∗.

I Lemma A.2. It holds that 2E∗1 + 2E∗2 ≥ F∗ and
∑
j λjpj ≥ E∗1 .

Proof. We prove the first inequality. Consider times t where the machine speed is sc. By
the algorithm P (sc)/sc ≥ αW (t)(α−1)/α. Recall that by the definition of critical speed
g = (α− 1)(sc)α, so α(sc)α = P (sc). Therefore, sc ≥W (t)1/α. Hence, since α > 2,

E∗2 =
∫ ∞

0
g1{s∗(t)=sc}dt =

∫ ∞
0

(α− 1)(sc)α1{s∗(t)=sc}dt ≥
∫ ∞

0
W (t)1{s∗(t)=sc}dt.

Now consider times t where the machine speed is W (t)1/α strictly larger than sc. Thus
the dynamic energy consumed on such periods is

E∗1 ≥
∫ ∞

0
(s∗(t))α1{s∗(t)>sc}dt ≥

∫ ∞
0

W (t)1{s∗(t)>sc}dt

Nguyen Kim Thang XX:15

During periods where some jobs are still pending but the machine speed is 0 (that
corresponds to the case 2, idle state in the algorithm description), by the algorithm plan,
the total weighted flow time of jobs in such periods is bounded by (E∗1 + E∗2) Therefore,

2E∗1 + 2E∗2 ≥
∫ ∞

0
W (t)dt = F∗.

In the rest, we prove the second inequality
∑
j λjpj ≥ E∗1 . By the definition of λj ’s

(particularly the third term in (6)),
∑
j λjpj covers the total energy of machine during all

intervals where the machine processes jobs by speed sc. Denote Γ as
∑
j λjpj subtracting

the energy incurred during periods where the machine speed is sc. We need to prove that Γ
is at least the total energy incurred over the moments where the machine speed is strictly
larger than sc. In the following, we are interested only in such moments.

Consider a job k processed at time t with speed larger than sc. By the definition of λj ’s,
Γ contributes to time t an amount at least

∑
j wj/W (t)1/α where the sum is taken over

pending jobs j with density smaller than that of k. The latter is exactly W (t). Thus, Γ
contributes to time t an amount W (t)(α−1)/α.

Now consider an arbitrarily small interval [a, b] where the machine processes only job k
and the speed is strictly larger than sc. Let W be the total weight of pending jobs over
[a, b]. The processing amount of k done over [a, b] is W 1/α(b− a) while the energy amount
consumed in that interval is W (b − a). Hence, in average the machine spends a dynamic
energy amount of W (α−1)/α at time t.

Therefore, during periods where the machine speed is larger than sc, Γ increases at
rate proportionally to the one of the dynamic energy. The second inequality of the lemma
follows. J

I Corollary A.3. It holds that
∑
j λjpj ≥

7
8E
∗
1 + 1

16F
∗ − 1

8E
∗
2 .

Proof. By the previous lemma, we deduce that∑
j

λjpj ≥ E∗1 ≥
7
8E
∗
1 + 1

8

(
1
2F
∗ − E∗2

)
= 7

8E
∗
1 + 1

16F
∗ − 1

8E
∗
2 .

J

In the following, we show the main technical lemma.

I Lemma A.4. Let j be an arbitrary job. Then, for every t ≥ rj

λj − δj(t− rj) ≤ max
{

α

α− 1W (t)
α−1
α + P (sc)

sc
, 2P (sc)

sc

}
(7)

Proof. Fix a job j. We prove by induction on the number of released jobs after rj . The
base case follows Lemma A.5 and the induction step is done by Lemma A.7. J

I Lemma A.5. If no new job is released after rj then inequality (7) holds.

Proof. Denote the instance as I0. At rj , rename jobs in non-increasing order of their
densities, i.e., p1/w1 ≤ . . . ≤ pn/wn (note that pa/wa is the inverse of job a’s density).
Denote Wa = wa + . . .+ wn for 1 ≤ a ≤ n.

By definition of λj ,

λj −
P (sc)
sc

= δj

[
q1(rj)
W

1/α
1

+ . . .+ qj(rj)
W

1/α
j

]
+Wj+1

W
1/α
j

SWAT 2016

XX:16 Lagrangian Duality in Generalized Energy April 12, 2016

Let Ca(I0) be the completion time of job a for 1 ≤ a ≤ n. Moreover, let ` be the largest
job index such that αW (α−1)/α

` > P (sc)/sc. In other words, job ` is processed by speed
strictly larger than sc and the other jobs with larger index (if exist) will be processed by
speed sc. Fix a time t, let k be the pending job at t with the smallest index. We first prove
the following claim.

I Claim A.6. It holds that

λj − δj(t− rj)−
P (sc)
sc

≤ max
{

wk

W
1/α
k

+ wk+1

W
1/α
k+1

+ . . .+ wn

W
1/α
n

,
P (sc)
sc

}
Proof of claim. We consider different cases.

Case 1: ` ≤ j.

In this case, job j will be processed by speed sc.
Subcase 1.1: t ≤ C`(I0). During interval [rj , t], the machine has completed jobs 1, . . . , k−

1 and has processed a part of job k. Precisely, during [rj , t] the machine has processed
qa(rj) units of job a for every job 1 ≤ a < k and has executed (qk(rj) − qk(t)) units of
job k. Moreover, every job 1 ≤ a ≤ k is processed with speed W 1/α

a . Therefore,

λj − δj(t− rj)−
P (sc)
sc

= δj

[
qk(t)
W

1/α
k

+ qk+1(rj)
W

1/α
k+1

+ . . .+ qj(rj)
W

1/α
j

]
+Wj+1

W
1/α
j

≤ δj
[

pk

W
1/α
k

+ pk+1

W
1/α
k+1

+ . . .+ pj

W
1/α
j

]
+Wj+1

W
1/α
j

= δj

(
wk

δkW
1/α
k

+ wk+1

δk+1W
1/α
k+1

+ . . .+ wj

δjW
1/α
j

)
+Wj+1

W
1/α
j

≤ wk

W
1/α
k

+ wk+1

W
1/α
k+1

+ . . .+ wj

W
1/α
j

+ wj+1

W
1/α
j+1

+ . . .+ wn

W
1/α
n

≤
∫ W (t)

0

dz

z1/α = α

α− 1W (t)
α−1
α

The first inequality is because qa(rj) ≤ pa for every job a. The first equality is due to the
definition of the density. The second inequality follows since δj ≤ δa for every job a ≤ j
and Wj+1 ≥ . . . ≥Wn. The third inequality holds since function z−1/α is decreasing.

Subcase 1.2: t > C`(I0). In this case k > `, i.e., during [rj , t] the machine i has completed
jobs 1, . . . , `. Similarly as the previous subcase, we have

λj − δj(t− rj)−
P (sc)
sc

≤
n∑

a=`+1

wa

W
1/α
a

≤
∫ W`+1

0

dz

z1/α = α

α− 1W
α−1
α

`+1 ≤
P (sc)
sc

where the last inequality follows the definition of `.

Case 2: ` > j.

In this case, job j will be processed with speed strictly larger than sc.
Subcase 2.1: t ≤ Cj(I0). The proof is done in the same manner as in Subcase 1.1.

Nguyen Kim Thang XX:17

Subcase 2.2: t > Cj(I0). For simplicity, denote Ca = Cj(I0). Partition time after Cj(I0)
as ∪na=j [Ca, Ca+1). During an interval [Ca, Ca+1), the weight Wa is unchanged so to
show inequality (7), it is sufficient to prove it for t = Cj , Cj+1, . . . , Cn−1.
We prove again by induction. For the base case t = Cj , the claim inequality holds by
the previous case. Assume that the inequality holds at t = Ca, we will prove that it
holds at t = Ca+1 for a ≥ j. We are interested only in τ ∈ [Ca, Ca+1). Let V (τ) =
waqa(τ)/pa +wa+1 + . . .+wn. Informally, V (τ) is the fractional weight of pending jobs
at time τ .
During period [τ, τ+dτ] assume that the total fractional weight of pending jobs varies by
dV (τ). During the same period [τ, τ+dτ], the total processing volume done by algorithm
is at least W 1/α

a dτ since the speed is either W (τ)1/α(= W
1/α
a) or sc but in the latter, by

the algorithm, sc ≥W (τ)1/α. Moreover, jobs a processed during [τ, τ + dτ] have density
at most δj . Therefore, dV (τ) ≤ δjW

1/α
a dτ . In other words, V ′(τ)dτ ≤ δjW

1/α
a dτ .

Taking integral, we get

wa = Wa −Wa+1 =
∫ Ca+1

Ca

V ′(τ)dτ ≤
∫ Ca+1

Ca

δjW
1/α
a dτ = δjW

1/α
a (Ca+1 − Ca) (8)

Therefore,

λj − δj(Ca+1 − rj)−
P (sc)
sc

= λj − δj(Ca − rj)−
P (sc)
sc
− δj(Ca+1 − Ca)

≤ max
{

wa

W
1/α
a

+ . . .+ wn

W
1/α
n

,
P (sc)
sc

}
− wa

W
1/α
a

≤ max
{
wa+1

W
1/α
a+1

+ . . .+ wn

W
1/α
n

,
P (sc)
sc

}
where the first inequality is due to the induction hypothesis and inequality (8).

Combining all the cases, the claim holds. J

Using the claim, the lemma follows immediately as shown below.

λj − δj(t− rj)−
P (sc)
sc

≤ max
{

wk

W
1/α
k

+ . . .+ wn

W
1/α
n

,
P (sc)
sc

}

≤ max
{∫ W (t)

0

dz

z1/α ,
P (sc)
sc

}
= max

{
α

α− 1W (t)
α−1
α ,

P (sc)
sc

}
where the inequality holds since function z−1/α is decreasing. (Recall that k is the pending
job at time t with the smallest index.) J

I Lemma A.7. Assume that inequality (7) holds if there are (n− 1) jobs released after rj.
Then the inequality also holds if n jobs are released after rj.

Proof. Denote the instance as In. Among such jobs, let n be the last released one (at time
rn). By induction hypothesis, it remains to prove the lemma inequality for t ≥ rn.

We first show the claim that inequality (7) holds for any time t ≥ Cj(In) by a similar
argument as in Subcase 2.2 of the previous claim. Indeed, we prove the claim by fixing the
processing volume of job n and varying its weight wn. Note that Cj(In) depends on wn
and when wn is varied, Cj(In) is also varied. However, with a fixed value of wn, Cj(In)
is fixed and we are interested only in t ≥ Cj(In). If wn = 0 then the claim follows the
induction hypothesis (the instance becomes the one with (n − 1) jobs). Assume that the

SWAT 2016

XX:18 Lagrangian Duality in Generalized Energy April 12, 2016

claim holds for some value wn. Now increase an arbitrarily small amount of wn and consider
a time t ≥ Cj(In) (corresponding to the current value of wn). Due to that increase, during
period [t, t + dt] the total fractional weight of pending jobs varies by dV (t). During the
same period [t, t + dt], the total processing volume done by algorithm is at least V (t)1/αdt

since the machine speed is at least W (t)1/α. Moreover, jobs processed during [t, t+ dt] have
density at most δj . Therefore, dV (t) ≤ δjV (t)1/αdt. So

α

α− 1dW (t)(α−1)/α = dW (t)
W (t)1/α ≤ δjdt

This inequality means that in the lemma inequality (7), the decrease in the left-hand side
is larger than that in the right-hand side while varying the weight of job n. Hence, the
inequality holds for t ≥ Cj(In).

Now we consider instance In with fixed parameters for job n. We will prove the lemma
for t < Cj(In). Denote t0 = Cj(In). Again, rename jobs in non-increasing order of their
densities at time rn. (After rn, no new job is released and the relative order of jobs is
unchanged.) Let Wa be the total weight of pending jobs at rn which have density smaller
than δa. Recall that the total weight of pending jobs at time t is W (t).

Let k be the pending job with the smallest index at time t in the instance In. During
[t, t0], the machine processes (a part) of job k, jobs k + 1, . . . , j. These jobs have density at
least δj . We deduce

λj − δj(t− rj)−
P (sc)
sc

= λj − δj(t0 − rj)−
P (sc)
sc

+ δj(t0 − t)

≤ α

α− 1W (t0)
α−1
α + δj(t0 − t)

≤ α

α− 1W (t0)
α−1
α + δj

(
qk(t)
W

1/α
k

+ qk+1(rn)
W

1/α
k+1

+ . . .+ qj(rn)
W

1/α
j

)

≤ α

α− 1W (t0)
α−1
α +

∫ Wk

Wj+1

dz

z1/α

≤ α

α− 1W
α−1
α

k = α

α− 1W (t)
α−1
α

The first inequality follows the previous claim, stating that inequality (7) holds for t ≥ t0.
The second inequality follows the fact that at any time the speed of the machine is at least
W (t)1/α. The third inequality holds since δk ≤ δk+1 ≤ . . . ≤ δj and function z−1/α is
decreasing. The last inequality holds since W (t0) = Wj+1 and Wk = W (t). J

I Theorem A.8. The algorithm is O(α/ lnα)-competitive.

Proof. Recall that the dual has value at least minL(s, C, F, λ) where the minimum is taken
over (s, C, F) feasible solution of the primal. The goal is to lower bound the Lagrangian
function.

L(s, C, F, λ) =
∑
j

λjpj +A

∫ ∞
0
|F ′(t)|dt+

∑
j

∫ Cj

rj

δj(Cj − rj)sj(t)F (t)dt

−
∑
i,j

∫ Cj

rj

sj(t)F (t)
(
λj − 2P (s(t))

s(t) − δj(Cj − rj)
)
1{s(t)>0}dt (9)

for any feasible primal solution (s, C, F).

Nguyen Kim Thang XX:19

Fix a feasible primal solution (s, C, F). Define L1(s, C, F, λ) as

∑
j

∫ Cj

rj

sj(t)F (t)
(
λj − 2P (s(t))

s(t) − δj(Cj − rj)
)
1{s(t)>0}dt

I Claim A.9. Let (s, C, F) be an arbitrary feasible solution of the primal. Then,

L1(x, s, C, F, λ) ≤ 1
(α− 1)

1
α−1
F∗ − 1

2

∫ ∞
0

g1{F (t)>0}dt−
1
2

∫ ∞
0

g1{s∗(t)>0}dt

I Claim A.10. Let (s, C, F) be an arbitrary feasible solution of the primal. Define

L2(F) :=
∑
j

∫ Cj

rj

δj(Cj − rj)sj(t)F (t)dt+A

∫ ∞
0
|F ′(t)|dt

+ 1
2

∫ ∞
0

g1{F (t)>0}dt+ 1
2

∫ ∞
0

g1{s∗(t)>0}dt

Then, L2(F) ≥ (E∗2 + E∗3)/4.

We first show how to prove the theorem assuming the claims. By (9), we have

L(s, C, F, λ) ≥
∑
j

λjpj +A

∫ ∞
0
|F ′(t)|dt+

∑
j

∫ Cj

rj

δj(Cj − rj)sj(t)F (t)dt

−
∑ 1

(α− 1)1/(α−1)F
∗ + 1

2

∫ ∞
0

g1{F (t)>0}dt+ 1
2

∫ ∞
0

g1{s∗(t)>0}dt

≥
∑
j

λjpj −
1

(α− 1)1/(α−1)F
∗ + 1

4E
∗
2 + 1

4E
∗
3

≥
(

1− 1
(α− 1)1/(α−1)

)(
7
8E
∗
1 + 1

16F
∗ − 1

8E
∗
2

)
+1

4E
∗
2 + 1

4E
∗
3

≥
(

1− 1
(α− 1)1/(α−1)

)(
7
8E
∗
1 + 1

16F
∗
)

+1
8E
∗
2 + 1

4E
∗
3

≥ ln(α− 1)
2(α− 1)

(
7
8E
∗
1 + 1

16F
∗
)

+1
8E
∗
2 + 1

4E
∗
3

where the first and second inequalities are due to Claim A.9 and Claim A.10, respectively.
The third inequality follows Corollary A.3 and

∑
j λjpj ≥ F∗. The last inequality is due to

the fact that 2 ≥ (α− 1)
1

α−1 ≥ 1 + ln(α−1)
α−1 for every α > 2.

Besides, the primal objective is at most 2(F∗ + E∗1 + E∗2 + E∗3). Hence, the competitive
ratio is O(α/ lnα).

In the rest, we prove the claims.

I Claim A.9. Let (s, C, F) be an arbitrary feasible solution of the primal. Then,

L1(s, C, F, λ) ≤ 1
(α− 1)

1
α−1
F∗ − 1

2

∫ ∞
0

g1{F (t)>0}dt−
1
2

∫ ∞
0

g1{s∗(t)>0}dt

SWAT 2016

XX:20 Lagrangian Duality in Generalized Energy April 12, 2016

Proof of claim. We have

L1(s, C, F, λ) :=
∑
j

∫ Cj

rj

sj(t)F (t)
(
λj − 2P (s(t))

s(t) − δj(Cj − rj)
)
1{s(t)>0}dt

≤
∑
j

∫ Cj

rj

sj(t)F (t)
(
λj − 2P (s(t))

s(t) − δj(t− rj)
)
1{s(t)>0}dt

where the inequality holds because the integral for each job j is taken over rj ≤ t ≤ Cj .
Let T be the set of time t such that α

(α−1)W (t)α−1
α ≤ P (sc)

sc . Then by Lemma A.4, for
any t ∈ T

λj − δj(t− rj) ≤ 2P (sc)
sc

Therefore,∑
j

∫ Cj

rj

sj(t)F (t)
(
λj − 2P (s(t))

s(t) − δj(t− rj)
)
1{t∈T}dt ≤ 0 (10)

since sc = arg minz≥0 P (z)/z. Hence,

L1(s, C, F, λ)

≤
∑
j

∫ Cj

rj

sj(t)F (t)
(
λj − 2P (s(t))

s(t) − δj(t− rj)
)
1{s(t)>0}1{F (t)>0}1{t/∈T}dt

≤
∑
j

∫ Cj

rj

sj(t)F (t)
(

α

(α− 1)W (t)
α−1
α − P (s(t))

s(t)

)
1{s(t)>0}1{F (t)>0}1{t/∈T}dt

=
∫ ∞

0
s(t)

(
α

(α− 1)W (t)
α−1
α − P (s(t))

s(t)

)
1{s(t)>0}1{F (t)>0}1{t/∈T}dt

≤
∫ ∞

0

(
α

(α− 1)W (t)
α−1
α s̄(t)− P (s̄(t))

)
1{s(t)>0}1{F (t)>0}1{t/∈T}dt

≤
∫ ∞

0

(
α

(α− 1)W (t)
α−1
α s̄(t)− P (s̄(t))

)
1{F (t)>0}1{s∗(t)>0}dt

≤ 1
2

∫ ∞
0

(
α

(α− 1)W (t)
α−1
α s̄(t)− P (s̄(t)

)
1{F (t)>0}dt

+ 1
2

∫ ∞
0

(
α

(α− 1)W (t)
α−1
α s̄(t)− P (s̄(t)

)
1{s∗(t)>0}dt

The first inequality is due to (10) and note that if F (t) = 0 then the contribution of the
term inside the integral is 0. The second inequality follows Lemma A.4 and recall that sc =
arg minz≥0 P (z)/z. The equality is because

∑
j sj(t)F (t) =

∑
j sj(t) = s(t) for t such that

F (t) > 0 (meaning that F (t) = 1). The third inequality is due to the first order derivative
and s̄(t) is the solution of P ′(z) = α

(α−1)W (t)α−1
α . The fourth inequality holds since the

term inside the integral is non-negative and {t : t /∈ T} ⊂ {t : s∗(t) > sc} ⊂ {t : s∗(t) > 0}.
Recall that P (z) = zα+g. Replacing s̄(t) = (α−1)−1/(α−1)W (t)1/α (solution of P ′(z) =

α
(α−1)W (t)α−1

α), we get:

L1(s, C, F, λ)

≤ α− 1
(α− 1)

α
α−1

∫ ∞
0

W (t)− 1
2

∫ ∞
0

g1{F (t)>0}dt−
1
2

∫ ∞
0

g1{s∗(t)>0}dt

= 1
(α− 1)

1
α−1
F∗ − 1

2

∫ ∞
0

g1{F (t)>0}dt−
1
2

∫ ∞
0

g1{s∗(t)>0}dt

Nguyen Kim Thang XX:21

J

I Claim A.10. Let (s, C, F) be an arbitrary feasible solution of the primal. Define

L2(F) :=
∑
j

∫ Cj

rj

δj(Cj − rj)sj(t)F (t)dt+A

∫ ∞
0
|F ′(t)|dt

+ 1
2

∫ ∞
0

g1{F (t)>0}dt+ 1
2

∫ ∞
0

g1{s∗(t)>0}dt

Then, L2(F) ≥ (E∗2 + E∗3)/4.

Proof of claim. Consider the algorithm schedule. An end-time u is a moment in the
algorithm schedule such that the machine switches from the idle state to the sleep state.
Conventionally, the first end-time in the schedule is 0. Partition the time line into phases. A
phase [u, v) is a time interval such that u, v are two consecutive end-times. Observe that in a
phase, the schedule has transition cost A and some new job is released in a phase (otherwise
the machine would not switch to non-sleep state). We will prove the claim on every phase.
In the following, we are only interested in phase [u, v) and define

L2(F)
∣∣
[u,v) :=

∑
j:u≤rj<v

∫ Cj

rj

δj(Cj − rj)sj(t)F (t)dt+A

∫ v

u

|F ′(t)|dt

+ 1
2

∫ v

u

g1{F (t)>0}dt+ 1
2

∫ v

u

g1{s∗(t)>0}dt

By the algorithm, the static energy on machine i during its idle time is A,
i.e.,

∫ v
u
g1{s∗(t)=0}dt = A. If during [u, v), the schedule induced by solution (s, C, F)

makes a transition from non-sleep state to sleep state or inversely then L2(F)
∣∣
[u,v) ≥

1
2
∫ v
u
g1{s∗(t)>0}dt+A. Hence

L2(F)
∣∣
[u,v) ≥

1
2

(∫ v

u

g1{s∗(t)>0}dt+
∫ v

u

g1{s∗(t)=0}dt+A

)
= 1

2E
∗
2
∣∣
[u,v) + 1

2E
∗
3
∣∣
[u,v).

If during [u, v), the schedule induced by solution (x, s, C, F) makes no transition (from
non-sleep static to sleep state or inversely) then either F (t) = 1 or F (t) = 0 for every
t ∈ [u, v]. Note that by definition of phases, some job is released during [u, v). We consider
cases.

Case 1: F (t) = 1 ∀u ≤ t ≤ v.

Then,

L2(F)
∣∣
[u,v)

≥ 1
2

∫ v

u

g1{s∗(t)>0}dt+ 1
2

∫ v

u

g1{F (t)=1}dt = 1
2

∫ v

u

g1{s∗(t)>0}dt+ 1
2

∫ v

u

gdt

≥ 1
2

∫ v

u

g1{s∗(t)>0}dt+ 1
4

∫ v

u

g1{s∗(t)=0}dt+ A

4

≥ 1
4

(∫ v

u

g1{s∗(t)>0}dt+
∫ v

u

g1{s∗(t)=0}dt+A

)
= 1

4E
∗
2
∣∣
[u,v) + 1

4E
∗
3
∣∣
[u,v)

where the second inequality follows since the total idle duration in [u, v) incurs a cost A (so
the machine switches to sleep state at time v).

SWAT 2016

XX:22 Lagrangian Duality in Generalized Energy April 12, 2016

Case 2: F (t) = 0 ∀u ≤ t ≤ v.

As the machine is in the sleep state during [u, v) in solution (s, C, F), all jobs released in [u, v)
will be completed later than v (in the solution s, C, F). However, as at time v the algorithm
sets the machine in the sleep state, those jobs are completed before v by the algorithm. Note
that the algorithm always balances the total weighted flow-time to the dynamic energy (in
case the machine speed is strictly larger than sc) or the static energy plus dynamic energy
(in case the machine speed is sc). Therefore, the total weighted flow-time of jobs released
in [u, v) by solution (s, C, F) is at least the static energy of the algorithm during [u, v). In
other words,

L2(F)
∣∣
[u,v) ≥

∑
j:u≤rj<v

∫ Cj

rj

δj(Cj − rj)sj(t)F (t)dt+ 1
2

∫ v

u

g1{s∗(t)>0}dt

≥
∫ v

u

g1{s∗(t)=0}dt+ 1
2

∫ v

u

g1{s∗(t)>0}dt

≥ 1
2

∫ v

u

g1{s∗(t)=0}dt+ 1
2

∫ v

u

g1{s∗(t)>0}dt+ A

2 = 1
2E
∗
2
∣∣
[u,v) + 1

2E
∗
3
∣∣
[u,v)

where the third inequality is again due to the fact that the total idle duration in [u, v) incurs
a static energy at least A. J

The proofs of the claims complete the theorem proof. J

	Introduction
	The Model, Approaches and Contribution
	Related work

	Minimizing Energy in Speed Scaling with Power Down Model
	Algorithm and Dual Variable Construction.
	Analysis

	Minimizing Energy plus Weighted Flow-Time in Speed Scaling with Power Down Model
	The Algorithm
	Analysis

	Conclusion
	Complete Analysis of Section 3

