
Lagrangian Duality in Online Scheduling with Resource

Augmentation and Speed Scaling

Nguyen Kim Thang∗

Abstract

We present an unified approach to study online scheduling problems in the resource aug-
mentation/speed scaling models. Potential function method is extensively used for analyzing
algorithms in these models; however, they yields little insight on how to construct potential
functions and how to design algorithms for related problems. In the paper, we generalize and
strengthen the dual-fitting technique proposed by Anand et al. [1]. The approach consists of
considering a possibly non-convex relaxation and its Lagrangian dual; then constructing dual
variables such that the Lagrangian dual has objective value within a desired factor of the pri-
mal optimum. The competitive ratio follows by the standard Lagrangian weak duality. This
approach is simple yet powerful and it is seemingly a right tool to study problems with resource
augmentation or speed scaling. We illustrate the approach through the following results.

1. We revisit algorithms EQUI and LAPS in Non-clairvoyant Scheduling to minimize total
flow-time. We give simple analyses to prove known facts on the competitiveness of such
algorithms. Not only are the analyses much simpler than the previous ones, they also
explain why LAPS is a natural extension of EQUI to design a scalable algorithm for the
problem.

2. We consider the online scheduling problem to minimize total weighted flow-time plus en-
ergy where the energy power f(s) is a function of speed s and is given by sα for α ≥ 1. For
a single machine, we showed an improved competitive ratio for a non-clairvoyant memo-
ryless algorithm. For unrelated machines, we give an O(α/ logα)-competitive algorithm.
The currently best algorithm for unrelated machines is O(α2)-competitive.

3. We consider the online scheduling problem on unrelated machines with the objective of
minimizing

∑
i,j wijf(Fj) where Fj is the flow-time of job j and f is an arbitrary non-

decreasing cost function with some nice properties. We present an algorithm which is 1
1−3ε -

speed, 2K(ε)
ε -competitive where K(ε) is a function depending on f and ε. The algorithm

does not need to know the speed (1 + ε) a priori. A corollary is a (1 + ε)-speed, k
ε1+1/k -

competitive algorithm (which does not know ε a priori) for the objective of minimizing the
weighted `k-norm of flow-time.

∗IBISC, University of Evry Val d’Essonne, France. Email: thang@ibisc.fr

1

1 Introduction

We consider online scheduling problems where jobs arrive at unrelated servers/machines over time.
Each job j has release date rj and its processing time pij and weight wij on machine i. At the
arrival time rj , job j becomes known to the scheduling algorithm. We distinguish two different
models. At time rj , in the non-clairvoyant model only the weights wij ’s becomes known to the
scheduler while in the clairvoyant model, all parameter of jobs j are available. A scheduler must
determine how to process jobs in order to optimize a quality of service without the knowledge about
future. In the paper, we study natural qualities of service related to the flow-times of jobs. The
flow-time of a job is the total amount of time it spends in the system, i.e., the difference of its
completion time and its release time.

A popular measure for studying the performance of online algorithms is competitive ratio. An
algorithm is said to be c-competitive if for any instance its objective is within factor c of the
optimal offline algorithm’s objective. Unfortunately, for many problems, any online algorithm has
large competitive ratio even that some heuristics have performance very close to the optimum
in practice. To remedy the limitation of pathological instances in worst-case analysis, a popular
relaxation resource augmentation model was introduced in [24]. In this relaxation, the online
algorithm is given extra speed to process jobs and compared to the optimal offline algorithm.
This model has successfully provided theoretical evidence for heuristics with good performance in
practice. Besides, algorithms could be classified according to their competitive ratios in the model
of resource augmentation for practical choices. We say an algorithm is s-speed c-competitive if for
any input instance the objective value of the algorithm while running at speed s is at most c times
the objective value of the optimal offline scheduler while running at unit speed. Ideally, we would
like algorithms to be constant competitive when given (1 + ε) times a resource over the optimal
offline algorithm for any constant ε > 0. Such algorithms are called scalable.

The most successful tool until now to analyze online scheduling algorithms with resource aug-
mentation is the potential function method. Potential functions has been designed and show that
the corresponding algorithms behave well in an amortized sense. Designing such potential functions
is far from trivial and often yields little insight about how to design such potential functions and
algorithms for related problems (a generalized variant with additional constraints for example).

Recently, Anand et al. [1] gave a more direct and interesting approach for analyzing online
scheduling algorithms with resource augmentation based on the technique of dual fitting for convex
programming relaxation. Informally, the technique could be described as follows. Consider a linear
(convex) programming relaxation of a given problem and the dual linear program (or Lagrangian
dual). Then construct a feasible solution for the dual (given an online algorithm) and prove that
its objective value is close to that of the online algorithm. The main advantage of this technique
is that the dual variables (which constitute the desired dual solution) often have intuitive inter-
pretations and their construction could be naturally deduced from the algorithm. Consequently,
the procedures of analyzing and designing algorithms are more interactive and could be done in a
principled manner.

Independently, Gupta et al. [20] gave a principled method to design online algorithms for non-
linear programs. Their approach could be seen as an extension of the online primal-dual method
for linear programming [10]. Roughly speaking, in the method the dual variables are set in such a
way that the increase rate in the dual objective is proportional to the one in the primal objective.
This approach is particularly powerful while the primal objective function is convex.

2

1.1 Approach and Contributions

The main contribution of the paper is to show a principled approach to design/analyze online
scheduling algorithms with resource augmentation (or speed scaling) by strengthening the dual
fitting technique in [1]. The approach is sharply inspired by the one in [1]. First, consider a
mathematical programming relaxation (associated with a given problem) which is not necessarily
convex and its Lagrangian dual. Then construct dual variables such that the Lagrangian dual has
objective value within a desired factor of the primal one (due to some algorithm). Then by the
standard Lagrangian weak duality1 for mathematical programming, the competitive ratio follows.

Lemma 1 (Weak duality) Consider a possibly non-convex optimization problem

p∗ := min
x
f0(x) : fi(x) ≤ 0, i = 1, . . . ,m.

where fi : Rn → R for 0 ≤ i ≤ m. Let X be the feasible set of x. Let L : Rn × Rm → R be the
Lagragian function

L(x, λ) = f0(x) +
m∑
i=1

λifi(x).

Define d∗ = maxλ≥0 minx∈X L(x, λ) where λ ≥ 0 means λ ∈ Rm+ . Then p∗ ≥ d∗.

Weak duality is indeed a direct consequent of the minimax inequality

max
λ∈Y

min
x∈X

L(x, λ) ≤ min
x∈X

max
λ∈Y

L(x, λ)

where X and Y are feasible sets of x and λ. Intuitively, our approach could be considered as a
one-shot game between an algorithm and an adversary. The algorithm chooses dual variables λ∗ in
such a way that whatever the choice of the adversary, the value minx∈X L(x, λ∗) is always within
a desirable factor c of the objective due to the algorithm. In the model, the adversary has less
resource than the algorithm. For example, if the algorithm processes jobs with unit rate then the
adversary can run only with rate (1− ε). We extensively use that advantage in proving bounds for
the dual objective.

In high level, our approach is the same as the one in [1] except that the relaxation is possibly
non-convex. However, the flexibility of our approach provides many advantages. First, a problem
could be more directly and naturally formulated as a non-convex program. For example, the
online scheduling problem to minimize total weighted flow time plus energy could be naturally
formulated by a non-convex relaxation (Section 4) while it is unclear how to formalize the problem
by a convex program. Consequently, the analysis is usually simpler, cleaner and the performance
guarantee is improved. Inversely, the simplicity of the analysis gives insights on the problems and so
(simple) algorithms could be designed. Second, as it is not constrained to be a convex optimization
program, additional constraints for generalized variants of a problem could be easily incorporated
(for example, from a single machine to unrelated machines). Thereby an algorithm for generalized
variants could be derived based on the previous ones for the basic problem and the ideas of the
analyses remain essentially the same.

We illustrate the advantages of the approach through the following results.

1For completeness, the proof of weak duality is given in the appendix

3

1. In Section 3, we revisit algorithms EQUI and LAPSε in Non-clairvoyant Scheduling to minimize
total flow-time. We give simple analyses to prove known facts that EQUI is 1

1/2−ε -speed, 1
ε -

competitive [16] and LAPSε is 1
1−2ε -speed, 2

ε2
-competitive [17]. Not only are the analyses

much simpler than the previous ones, they also explain why LAPSε is a natural extension of
EQUI to design a scalable algorithm for the problem.

2. In Section 4, we consider the online scheduling problem to minimize total weighted flow-time
plus energy where the energy power f(s) is a function of speed s and is given by sα for α ≥ 1.
For a single machine, we showed an improved competitive ratio O(2α) for a non-clairvoyant
memoryless algorithm (its performance was previously known to be O(3α)). For unrelated
machines, we give an O(α/ logα)-competitive algorithm. This bound matches to the currently
best algorithm for a single machine [8]. The currently best algorithm for unrelated machines
is O(α2)-competitive [1].

3. In Section 5, we consider the online scheduling problem on unrelated machines with the
objective of minimizing

∑
i,j wijf(Fj) where Fj is the flow-time of job j and f is an arbitrary

non-decreasing cost function with some nice properties (for example, f is in class C1 and f ′ is

non-decreasing). We derive an algorithm which is 1
1−3ε -speed, 2K(ε)

ε -competitive where K(ε)
is a function depending on f and ε. The algorithm does not need to know the speed (1 + ε)
a priori. A corollary is a (1 + ε)-speed, k

ε1+1/k -competitive algorithm (which does not know ε
a priori) for the objective of minimizing the weighted `k-norm of flow-time. That answers an
open question in [21] and marginally improves the currently best known algorithm which is
(1 + ε)-speed, k

ε2+1/k -competitive [1].

Besides, using the approach, some related problems and direct generalizations of the above
problems could be proved. Those promising extensions will be discussed at the end of each section
and in the conclusion.

1.2 Related work

The online problems of minimizing objectives related to (weighted) flow-times of jobs have been
extensively studying. For the basic problem of minimizing total flow-time on single machine, it is
well-known that Shortest Remaining Processing Time (SRPT) is the optimal algorithm. However,
that is the only constant competitive algorithm. Bansal and Chan [3] showed that no algorithm is
constant competitive for the problem of minimizing total weighted flow-time on single machine. In
fact, no bounded competitive ratio holds for parallel machines setting [14, 19].

The strong lower bounds motivate the use of resource augmentation, originally introduced by
Kalyanasundaram and Pruhs [24], which circumvents the persimist worst-case paradigm. In the
same paper, the authors gave an O(1/ε)-competitive algorithm, called SETF, for the objective of
minimizing flow-time on a single machine in the non-clairvoyant setting. In this setting, without
resource augmentation the competitive ratios of every deterministic and randomized algorithms are
Ω(n1/3) and Ω(log n), respectively [28]. Edmonds [16] considered algorithm EQUI and showed that
it was (2 + ε)-speed, 2/ε-competitive. Later on, Edmonds and Pruhs [17] proposed a generalized
algorithm called LAPSε. They proved that LAPSε is (1+2ε)-speed, 4/ε2-competitive for minimizing
the objective of total flow-time (even with sublinear non-decreasing speedup curves).

In the clairvoyant setting, Bansal and Pruhs [4] proved that the Highest Density First (HDF)
algorithm is (1 + ε)-speed, O(1/ε)-competitive for the objective of weighted `k-norm of flow-time

4

on a single machine. Chadha et al. [11] gave the first (1 + ε)-speed, O(1/ε2)-competitive algorithm
for minimizing weighted flow time on unrelated machines. Recently, using the approach based
on linear programming and dual-fitting, Anand et al. [1] derived another simple algorithm which
is (1 + ε)-speed, O(1/ε)-competitive. Moreover, the authors extended this to an (1 + ε)-speed,
O(k/ε2+1/k)-competitive algorithm for the objective of weighted `k-norm of flow-time. Note that
the latter needs to know the speed (1 + ε) a priori.

For the objective of total flow-time plus energy on a single machine, Bansal et al. [8] gave
a (3 + ε)-competitive algorithm. Besides, they also proved a (2 + ε)-competitive algorithm for
minimizing total fractional weighted flow-time plus energy. Their results hold for a general class of
convex power functions. Those results also imply an O(α/ logα)-competitive algorithm for weighted
flow-time plus energy when the energy function is sα. Again, always based on linear programming
and dual-fitting, Anand et al. [1] proved an O(α2)-competitive algorithm for unrelated machines.
The total (weighted) flow-time plus energy in non-clairvoyant setting has been also considered
[12, 27]. Chan et al. [13] proved that a memoryless non-clairvoyant algorithm, which a variant of
algorithm EQUI with a policy on speed, was O(3α) competitive.

The objective of minimizing
∑

i,j wijf(Fj) for general cost function f aims to capture multiple
standard objectives in literature (weighted `k-norm of flow-time, weighted tardiness). A competi-
tive algorithm for a general cost function could be useful particularly in scheduling with multiple
objectives or in setting where objectives may compete with each other [2, 26]. For the offline version
on a single machine, Bansal and Pruhs presented a polynomial time O(log logP)-approximation
algorithm [5, 6] where P is the ratio of the maximum to minimum job size. Im et al. [23] showed
that the HDF algorithm is (2 + ε)-speed, O(1)-competitive for arbitrary non-decreasing cost func-
tion f on a single machine. They also gave a scalable algorithm when f is a concave and twice
differentiable.

Almost all of competitive algorithms with resource augmentation are proved by potential func-
tions. Those clever functions are used to show that a particular algorithm is locally competitive
in an amortized sense. Recently, a technique to construct potential functions for online scheduling
has been systematically formalized and given in [22]. However, that still yields little insight about
how to design algorithms and construct potential functions for related problems or for non-trivial
generalized variants.

Anand et al. [1] was the first who proposed studying online scheduling with resource augmenta-
tion by linear (convex) programming and dual fitting. By this elegant approach, they gave simple
algorithms and simple analysis with improved performance for problems where the analyses based
on potential functions are complex or it is unclear how to design such functions. Our approach is
greatly inspired by the one in [1].

Independently, Gupta et al. [20] gave a principled method to design online algorithms for
non-linear programs. They showed the application of the method to online speed-scaling prob-
lems. Subsequently, [25] have applied the method to design an αα-competitive for the problem of
minimizing the consumed energy plus lost values.

2 Preliminaries

In unrelated machine environment, we are given a set of m machines and jobs arrive over time. A
job j is released at time rj and requires pij units of processing time if it is scheduled on machine i.
The machines are allowed to process jobs preemptively. The flow-time of a job j is Fj = Cj − rj

5

where Cj is its the completion time. If a job j is assigned to machine i then its weighted flow-time
is wijFij . Consider a scheduling algorithm. A job j is pending at time t if it is not completed by
the algorithm, i.e., rj ≤ t < Cj . At time t, we denote qij(t) the remaining processing time of job j
on machine i. The total weight of pending jobs assigned to machine i at time t is denoted as Wi(t).
In case where all jobs have unit weight, we use Ni(t) (number of pending jobs) instead of Wi(t).
The residual density of a pending job j assigned to machine i at time t is δij(t) = wij/qij(t). The
density of a job j on machine i is δij(rj). We distinguish two different models: the non-clairvoyant
model in which at the arrival of job j, only the weights wij ’s becomes known to the scheduler; and
the clairvoyant model in which all parameter of jobs j are available at its release time. Note that
when only a single machine is considered, for simplicity the notations remain the same except that
the machine index (usually i) will be dropped.

3 Non-clairvoyant Scheduling

The problem. In this section, we study the non-clairvoyant online scheduling problem with the
objective of minimizing the total flow-time on a single machine. Let xj(t) be the variable that
represents the processing rate of the machine on job j at time t for every job j. Let Cj be a
variable representing the completion time of j. The relaxation could be formulated as the following
mathematical program.

min
∑
j

Cj − rj
pj

∫ Cj

rj

xj(t)dt

subject to

∫ Cj

rj

xj(t)dt = pj ∀j

n∑
j=1

xj(t) ≤ 1 ∀t

xj(t) ≥ 0 ∀j, t
xj(t) = 0 ∀j,∀t /∈ [rj , Cj]

Note that the last constraints are redundant but they are kept in order to make the relaxation
clear. The dual of that program is max minx,C L(x,C, λ, γ, µ) where L is the Lagrangian

∑
j

∫ Cj

rj

Cj − rj
pj

xj(t)dt+
∑
j

λj

(
pj −

∫ Cj

rj

xj(t)dt

)

+

∫ ∞
0

(
1−

∑
j

xj(t)

)
γ(t)dt−

∑
j

∫ ∞
0

xj(t)µj(t)dt

=
∑
j

λjpj −
∑
j

∫ Cj

rj

xj(t) ·
(
λj + γ(t)− Cj − rj

pj

)
dt+

∫ ∞
0

γ(t)dt−
∑
j

∫ ∞
0

xj(t)µj(t)dt

3.1 EQUI

Algorithm EQUI. The processor shares its resource equally to the pending jobs.

6

Let q1 ≤ . . . ≤ qn be remaining processing times of pending jobs at some time t. Assume that no
new job is released after t, then the remaining time before completion for the first job is nq1, that
for the second job is nq1 + (n− 1)(q2 − q1). By recurrence, the remaining time before completion
for job j is q1 + . . .+ qj−1 + (n+ 1− j)qj for 1 ≤ j ≤ n.

Suppose that at time t, a new job arrives with processing time q such that qk ≤ q < qk+1 for
some index k. Then the flow time of the new job, assuming that no new job is released after t, is
q1 + . . .+ qk−1 + (n+ 1− k)q. Moreover, due to the arrival of the new job, the completion time of
job k′ is increased by qk′ for k′ ≤ k; and by q for k′ > k. Hence, the marginal increase of the total
flow time due to the arrival of the new job is bounded by twice the flow time of that job.

Dual variables Choose γ(t) = 0, µj(t) = 0 for every j, t and λj = λEj such that λEj pj equals the
flow time of j (due to the algorithm) assuming that no new job arrives after rj . By the observation
on the flow time of jobs in EQUI, we have that

∑
j λ

E
j pj ≤ FE ≤ 2

∑
j λ

E
j pj where FE is the total

flow-time due to EQUI.

Lemma 2 It holds that 1
pj

(
λEj pj − (t − rj)

)
≤ NE(t) for t ≥ rj where NE(t) is the number of

pending jobs at time t by algorithm EQUI.

Proof Observe that if some request arrives between time rj and t, the left-hand side remains
unchanged while the right hand-side is non-decreasing. Therefore, it is sufficient to prove the
inequality assuming that no job is released after rj . Consider t ≤ CEj (since otherwise the inequality
trivially holds since the left-hand side is negative). Rename jobs in non-decreasing order of the
remaining processing times at rj , i.e., q1(rj) ≤ . . . ≤ qn(rj). Note that pj = qj(rj). Suppose that
k is the pending job with smallest index at time t, i.e., jobs 1, . . . , k − 1 have been completed. We
have that

1

pj

(
λEj pj − (t− rj)

)
=

1

pj

(
qk(t) + . . .+ qj−1(t) + (n− j)qj(t)

)
≤ NE(t)

where the last inequality follows since qk(t) ≤ . . . ≤ qj−1(t) ≤ qj(t) ≤ pj . �

Theorem 1 ([16]) Algorithm EQUI is 1
1/2−ε -speed, 1

ε -competitive for the problem of minimizing
total flow time.

Proof As the adversary has only the speed (1/2− ε), the processing rate of adversary
∑

j xj(t) ≤
1/2− ε for all t. By the choice of dual variables corresponding to EQUI, we have

min
x,C

L ≥ F
E

2
−
∫ ∞
0

∑
j

xj(t)N
E(t) ≥ F

E

2
−
(

1

2
− ε
)∫ ∞

0
NE(t) = εFE

where the first inequality is due to Lemma 2; the second inequality follows by
∑

j xj(t) ≤ 1/2− ε.
Hence, the competitive ratio of EQUI is at most 1/ε. �

3.2 LAPSβ

Inspecting the analysis of EQUI, one realizes that in order to get a scalable algorithm, the machine
should share its power only to a small fraction of pending jobs instead of all such jobs. This
observation naturally leads to algorithm LAPS introduced in [17].

7

Algorithm LAPSβ. Let 0 < β ≤ 1. The processor shares its resource equally to the βNL(t) jobs
with the latest arrival times where NL(t) is the number of pending jobs at time t.

Note that in the definition of the algorithm, βNL(t) is not necessarily an integer. However, that
algorithm is equivalent to the following procedure. First, choose the dβNL(t)e most recent jobs.
Then among such jobs, the machine shares its power to the bβNL(t)c most recent ones proportional
to 1 and to the last job proportional to (βNL(t) − bβNL(t)c). For the ease and simplicity of the
exposition, we consider the version described in the definition.

Let j be a job released at time rj . We will bound the marginal increase of the total flow time due
to the arrival of j. Assuming that no new jobs are released after rj and let CLk be the completion
time of k for every pending job k at time rj . Rename jobs in the increasing order of CLk ’s. By the
algorithm, the completion time of job j is bounded by the following

CLj ≥ rj +
∑
k<j

qk(rj) + βNL(CLk) · pj

since at any moment during [t, CLj], the processor shares its resource to at least βN(CLk) jobs.
Besides, due to the arrival of j, the completion time of a job k > j increase by an amount pj and
the total completion times of jobs {k : k < j} increases by at most 1

β

∑
k<j qk(rj). Therefore, the

marginal increase of the total flow time due to job j is at most

(CLj − rj) +
1

β

∑
k<j

qk(rj) +NL(CLk) · pj ≤
(

1 +
1

β

)
(CLj − rj)

Dual variables. Choose γ(t) = 0, µj(t) = 0 for every p, t and λj = λLj such that 1+β
β λLj pj equals

the increase of the total flow time due to job j, assuming that no new job arrives after rj . By the

observation above, we have that λLj pj ≤ CLj − rj and
∑

j λ
L
j pj = β

1+βF
L where FL is the total

flow-time due to LAPSβ.

Lemma 3 It holds that 1
pj

(
λLj pj − (t− rj)

)
≤ βNL(t) for t ≥ rj.

Proof Observe that if some request arrives between time rj and t, the left-hand side remains
unchanged while the right hand-side is non-decreasing. Therefore, it is sufficient to prove the
inequality assuming that no job released after rj . Consider t ≤ CLj (since otherwise the inequality
trivially holds since the left-hand side is negative). Rename jobs in non-decreasing order completion
times. Suppose that u is the pending job with smallest index at time t, i.e., jobs 1, . . . , u− 1 have
been completed. Let Q be the total work (processing units) of jobs {k : k > j} that will be done in
[t, CLj]. During [t, CLj], the processor shares its resource to at most βNL(t) jobs. Therefore, at time

t the total remaining work of jobs {k : u ≤ k ≤ j} plus Q is at most βNL(t)qj(t) ≤ βNL(t)pj since
otherwise, there must have been a job k < j completed after CLj (contradiction to the definition of
job indices). Therefore

1

pj

(
λLj pj − (t− rj)

)
≤ 1

pj
(CLj − t) ≤ βNL(t)

�

8

Theorem 2 ([17]) Algorithm LAPSε is 1
1−2ε -speed, 2

ε2
-competitive for the problem of minimizing

total flow time.

Proof Note that now β is chosen as ε. By the choice of dual variables corresponding to EQUI, we
have

min
x,C

L ≥ ε

1 + ε
FL − ε

∫ ∞
0

∑
j

xj(t)N
L(t)

≥ ε

1 + ε
FL − ε1− ε

1 + ε

∫ ∞
0

NL(t) =
ε2

1 + ε
FL

where the first inequality is due to Lemma 3; the second inequality follows by
∑

j xj(t) ≤ 1− 2ε ≤
1−ε
1+ε . Hence, the competitive ratio of LAPSε is at most 2/ε2. �

3.3 Extensions

A straightforward generalized variant to minimize the total weighted flow-time could be easily
proved using the same analyses. Besides, online scheduling on a multiprocessor system with arbi-
trary speedup curves could be considered. In the model, jobs have varying degrees of paralleliz-
ability, some jobs may be sped up significantly when simultaneously process on multiple machines,
while other jobs may be sped up by very little. It was shown that EQUI was (2 + ε)-speed O(1)-
competitive [16] and LAPS was scalable [17]. By our approach, these results (together with related
results in the model) could be reproved by simple analyses. Recently, algorithm LAPS was proved to
be scalable for the online broadcast scheduling problem to minimize the total flow-time [9]. Again,
the proof could be done by an analysis similar to the one in the previous section. Consequently,
related results on broadcast scheduling follow in an unified manner. Those proofs will be appeared
in the full version of this paper.

4 Weighted Flowtime plus Energy

The problem. In this section, we study the online scheduling with the objective of minimizing
the total weighted flow-time plus energy. The energy power function is given by sα where s is
the speed of the machine and α ≥ 1 is a constant. In Section 4.1, we consider non-clairvoyant
algorithms on a single machine and Section 4.2, we consider algorithms on unrelated machines.

4.1 Non-clairvoyant Scheduling on Single Machine

Algorithm. At time t, the machine maintains a speed s(t) = βW (t)1/α where W (t) is the total
weight of pending jobs and β is a constant to be defined later. At any time, the machine shares its
resource to pending jobs proportional to their weights.

Analysis. Let sj(t) be the variable that represents the speed of job j at time t for every job j.
Let Cj be a variable representing the completion time of j. The problem could be relaxed as the
following mathematical program.

9

minimize

∫ ∞
0

(∑
j

sj(t)

)α
dt+

∑
j

(∫ Cj

rj

sj(t)dt

)
δj(Cj − rj)

subject to

∫ Cj

rj

sj(t)dt ≥ pj ∀j

sj(t) ≥ 0 ∀j, t ≥ rj
sj(t) = 0 ∀j,∀t /∈ [rj , Cj].

The dual of that program is max mins,C L where L is the associated Lagrangian function. Set
all dual variables except the ones corresponding to the first constraints equal 0, the dual becomes

min
s,C

L =

∫ ∞
0

(∑
j

sj(t)

)α
dt+

∑
j

∫ Cj

rj

δj(Cj − rj)sj(t)dt+
∑
j

λj

(
pj −

∫ Cj

rj

sj(t)dt

)

=
∑
j

λjpj −max
s,C

∑
j

∫ Cj

rj

sj(t)

(
λj − s(t)α−1 − δj(Cj − rj)

)
dt

where the speed of the machine s(t) =
∑

j sj(t).

Dual variables. Choose λj such that α+β(α−1)
β(α−1) λjpj equals the marginal increase of the total

weighted flow-time due to the arrival of job j.
For simplicity of the notations, denote qk = qk(rj) for every pending job k. Note that qj = pj .

At rj , rename jobs in non-increasing order of their residual densities, i.e., q1/w1 ≤ . . . ≤ qn/wn
(note that qk/wk is the inverse of job k’s residual density). Denote Wk = wk+. . .+wn for 1 ≤ k ≤ n.
Assuming that no new job arrives after rj , by the algorithm we have

β(C1 − rj) =
q1

w1
W1
W

1/α
1

= W
α−1
α

1

q1
w1

β(C2 − C1) = W
α−1
α

2

(
q2
w2
− q1
w1

)
. . . (1)

β(Ck − Ck−1) = W
α−1
α

k

(
qk
wk
− qk−1
wk−1

)
Hence, assuming that no new jobs are released after rj , we have

Ck − rj =
1

β

[
qk
wk
W

α−1
α

k +

(
W

α−1
α

k−1 −W
α−1
α

k

)
qk−1
wk−1

+ . . .+

(
W

α−1
α

1 −W
α−1
α

2

)
q1
w1

]
(2)

Lemma 4 We have that λj ≤ δj(Cj − rj) where Cj is the completion time of job j assuming that
no new job is released after rj.

Proof Let Ck for 1 ≤ k ≤ n be the completion time of pending jobs at time rj assuming no new job
arrives after that time. Let C ′k be the completion time of job k 6= j without job j in the instance.

10

In other words, C ′k is the completion time of job k in case j is not released. First, observe that

function (a+x)
α−1
α −(b+x)

α−1
α is decreasing for a ≥ b > 0 and x ≥ 0 (the derivative of the function

is negative). Using that inequality and (2), we have

β(Ck − C ′k) ≤

(
W

α−1
α

k − (Wk − wj)
α−1
α

)
qk
wk

∀k < j(
W

α−1
α

j −W
α−1
α

j+1

)
qj
wj

∀k > j

Note that 1 − βx ≥ (1 − x)β ≥ 1 − x for β < 1 and 0 ≤ x ≤ 1. Applying these inequalities for
x = wj/Wk and x = wk/Wk where k < j and β = (α− 1)/α, we have

1−
(

1− wj
Wk

)α−1
α

1−
(

1− wk
Wk

)α−1
α

≤ α

α− 1

wj
wk

⇒
[
W

α−1
α

k − (Wk − wj)
α−1
α

]
qk ≤

α

α− 1

[
W

α−1
α

k − (Wk − wk)
α−1
α

]
qk
wk
wj

⇒ wk(Ck − C ′k) ≤
α

β(α− 1)
wj

[
W

α−1
α

k − (Wk − wk)
α−1
α

]
qk
wk

Besides, W
α−1
α

j W
1
α
j+1−Wj+1 ≤Wj −Wj+1 = wj . So W

α−1
α

j −W
α−1
α

j+1 ≤ wj/W
1
α
j+1. Together with

the inequality above, the marginal increase of the total weighted flowtime due to the arrival of job
j is

wj(Cj − rj) +
∑
k<j

wk(Ck − C ′k) +
∑
k>j

wk(Ck − C ′k)

≤ wj(Cj − rj) +
∑
k<j

α

β(α− 1)
wj

[
W

α−1
α

k − (Wk − wk)
α−1
α

]
qk
wk

+
1

β

∑
k>j

wk
wj

W
1
α
j+1

pj
wj

≤ wj(Cj − rj) + wj
∑
k<j

α

β(α− 1)

[
W

α−1
α

k − (Wk − wk)
α−1
α

]
qk
wk

+
1

β
wjW

α−1
α

j+1

pj
wj

≤ wj(Cj − rj) +
α

β(α− 1)
wj(Cj − rj) =

α+ β(α− 1)

β(α− 1)
wj(Cj − rj)

where the last inequality is due to (2). By the definition of λj , the lemma follows. �

Monotonicity. Consider two instances I and I ′ such that they are identical except that there
is only a job j ∈ I \ I ′. Moreover, assume that no job is released rj in either of the instances, i.e.,
rj = max{rk : k ∈ I} = max{rk : k ∈ I ′}.

Lemma 5 W (t) is monotone, i.e., W I
′
(t) ≤W I(t) for all t.

Proof For t < rj , the schedules of both instances are identical. We are interested in t ≥ rj . For
simplicity of the notations, denote qk = qk(rj) for every pending job k. Again, rename jobs in

11

non-increasing order of their residual densities, i.e., q1/w1 ≤ . . . ≤ qn/wn (note that qk/wk is the
inverse of job k’s residual density). Denote Wk =

∑n
u=k wu and W ′k =

∑n
u=k,u6=j wu for 1 ≤ k ≤ n.

Let Ck and C ′k be the completion time of job k 6= j for 1 ≤ k ≤ n in the schedules of instances I
and I ′, respectively. By the algorithm, we have an invariant that Cu < Cv and C ′u < C ′v for any
jobs u < v. In order to prove that W I

′
(t) ≤ W I(t) for all t, it is sufficient to show that C ′k < Ck

for 1 ≤ k 6= j ≤ n.
By (1), for any job k < j, it holds that Ck′ < Ck since W ′u < Wu for 1 ≤ u ≤ k. Consider a job

k > j. As Wj > Wj+1 and pj/wj ≥ pj−1/wj−1, we have

β(Cj+1 − Cj−1) = W
α−1
α

j

(
qj
wj
− qj−1
wj−1

)
+W

α−1
α

j+1

(
qj+1

wj+1
− qj
wj

)
> W

α−1
α

j+1

(
qj+1

wj+1
− qj−1
wj−1

)
Therefore, by (1) and the above inequality,

C ′u − C ′u−1 ≤ Cu − Cu−1 ∀1 ≤ u ≤ j − 1

C ′j+1 − C ′j−1 < Cj+1 − Cj−1
C ′u − C ′u−1 = Cu − Cu−1 ∀u ≥ j + 2

where conventionally C0 = rj . We deduce that C ′k < Ck for k > j. The lemma follows. �

Lemma 6 It holds that λj − δj(t− rj) ≤ 1
βW (t)(α−1)/α for all t.

Proof By the monotonicity of W (t), it is sufficient to prove the inequality assuming that no new
job arrives after rj . For simplicity of the notations, denote again qk = qk(rj) for every pending job
k. At rj , rename jobs in non-increasing order of their residual densities, i.e., q1/w1 ≤ . . . ≤ qn/wn
(note that qk/wk is the inverse of job k’s density). Denote Wk = wk + . . . + wn for 1 ≤ k ≤ n.
Suppose that at time t < Cj , job u is the pending one with the smallest index. In other words,
Cu−1 ≤ t < Cu. Note that [rj , t) ⊃ [rj , C1) ∪ [C1, C2) ∪ . . . ∪ [Cu−2, Cu−1). By (1) we get

β(t− rj) ≥
qu−1
wu−1

W
α−1
α

u−1 +

(
W

α−1
α

u−2 −W
α−1
α

u−1

)
qu−2
wu−2

+ . . .+

(
W

α−1
α

1 −W
α−1
α

2

)
q1
w1

By Lemma 4 and the above inequality, it holds that

λj − δj(t− rj) ≤ δj((Cj − rj)− (t− rj))

≤ δj
β

[
qj
wj
W

α−1
α

j +

(
W

α−1
α

j−1 −W
α−1
α

j

)
qj−1
wj−1

+ . . .+

(
W

α−1
α

u −W
α−1
α

u+1

)
qu
wu

]
≤ 1

β
W

α−1
α

u =
1

β
W (t)(α−1)/α

where the last inequality follows since qu/wu ≤ . . . ≤ qj/wj = 1/δj . �

Theorem 3 The algorithm is 2α-competitive for β = 2.

12

Proof Let F∗ be the total weighted flow-time due to the algorithm. By the choice of dual variables,
we have

min
s,C

L ≥
∑
j

λjpj −max
s,C

∑
j

∫ Cj

rj

sj(t)

(
λj − s(t)α−1 − δj(Cj − rj)

)
dt

≥ β(α− 1)

α+ β(α− 1)
F∗ −max

s,C

∑
j

∫ Cj

rj

sj(t)

(
λj − s(t)α−1 − δj(t− rj)

)
dt

≥ β(α− 1)

α+ β(α− 1)
F∗ −max

s,C

∫ ∞
0

(∑
j

sj(t)

)(
1

β
W (t)

α−1
α − s(t)α−1

)
dt

≥ β(α− 1)

α+ β(α− 1)
F∗ −max

s,C

∫ ∞
0

s(t)

(
1

β
W (t)

α−1
α − s(t)α−1

)
dt

where the second inequality holds since t ≤ Cj ; the third inequality is due to Lemma 6. By the

first order condition, s(t)

(
1
βW (t)

α−1
α − s(t)α−1

)
is maximized at s0(t) = W (t)1/α

(αβ)1/(α−1) . Hence,

min
s,C

L ≥ β(α− 1)

α+ β(α− 1)
F∗ − α− 1

(αβ)
α
α−1

∫ ∞
0

W (t)dt

=

[
β(α− 1)

α+ β(α− 1)
− α− 1

(αβ)
α
α−1

]
F∗

Besides, the primal value is

F∗ +

∫ ∞
0

sα(t)dt = (1 + βα)F∗

Hence, the competitive ratio is bounded by

1 + βα

β(α−1)
α+β(α−1) −

α−1
(αβ)

α
α−1

.

Choose β = 2, the competitive ratio is O(2α). �

4.2 Clairvoyant Scheduling on Unrelated Machines

Scheduling policy. At any time t, every machine i sets its speed si(t) = βWi(t)
1/α where Wi(t)

is the total (integral) weight of pending jobs assigned to machine i; and β > 0 is a constant to be
chosen later. At any time, every machine i processes the highest residual density job among the
pending ones assigned to i.

Assignment policy. At the arrival of a job j, assign j to machine i that minimizes the marginal
increase (due to the scheduling policy) of the total weighted flow-time.

13

Analysis. Let sij(t) be the variable that represents the speed of job j on machine i at time t. Let
Cj be a variable representing the completion time of j. Let xij be the variable indicating whether
job j is assigned to machine i. The problem could be relaxed as the following program.

minimize
∑
i

∫ ∞
0

(∑
j

sij(t)

)α
dt+

∑
i,j

(∫ Cj

rj

sij(t)dt

)
δijxij(Cj − rj)

+
α

β(α− 1)

∑
i,j

(∫ Cj

rj

sij(t)dt

)
xijw

α−1
α

ij

subject to xij

∫ Cj

rj

sij(t)dt = pijxij ∀j∑
i

xij ≥ 1 ∀j

xij ∈ {0, 1} ∀i, j
sij(t) ≥ 0 ∀i, j, t ≥ rj
sij(t) = 0 ∀j,∀t /∈ [rj , Cj].

The third term in the objective is inspired by the objective functions in [1]. The following
lemma show that the objective value of any feasible schedule is within a constant factor of the cost
of the schedule, which is the sum of the weighted flow-time and the energy consumed. The proof
again follows the one in [1].

Lemma 7 Consider a non-migratory schedule S for an instance I of the problem. Let xij and
sij(t) be the corresponding solution to the mathematical program. Then the objective value of such
solution for the mathematical program is at most (1 + α

β(α−1)) the cost of S.

Proof In the objective function, the first and second terms capture the consumed energy and the
total weighted flow-time, respectively. We will show that the last term is bounded by α

β(α−1) the
cost of S.

Suppose that S schedules j on machine i and completes j at time T . Then the average speed
s̄i of i during [rj , T] is at least pij/(T − rj). Thus, T − rj ≥ pij/s̄i. The total energy consumed to
complete job j is at least (T − rj)s̄αi ≥ pij s̄

α−1
i . Therefore, the contribution of j to the cost of S is

at least

wij(T − rj) + pij s̄
α−1
i ≥ wijpij/s̄i + pij s̄

α−1
i

≥ pijw
α−1
α

ij

(
(α− 1)

1
α + (α− 1)−

α−1
α

)
≥ pijw

α−1
α

ij

where the second inequality is due to the first order condition. Again, as the energy function is
convex, the total energy consumed of a schedule is larger than the sum of energy consumed on each
individual job. Summing the above inequality for all jobs j, we deduce that the third term in the
objective function is bounded by factor α

β(α−1) the cost of S. �

The dual of that program is max minx,s,C L where L is the Lagrangian associated to the above
mathematical program. Set all dual variables except the ones corresponding to the first constraints

14

equal to 0, the Lagrangian becomes

∑
i

∫ ∞
0

(∑
j

sij(t)

)α
dt+

∑
j

∫ Cj

rj

δij(Cj − rj)xijsij(t)dt

+
α

β(α− 1)

∑
i,j

(∫ Cj

rj

sij(t)dt

)
xijw

α−1
α

ij +
∑
i,j

λijxij

(
pij −

∫ Cj

rj

sij(t)dt

)
Hence,

min
x,s,C

L = min
x

∑
i,j

λijpijxij −max
x,s,C

∑
i,j

∫ Cj

rj

xijsij(t)

(
λij − si(t)α−1 −

α

β(α− 1)
w
α−1
α

ij − δij(Cj − rj)
)
dt

Choose λij such that λijpij equals the total increase of the weighted flow-times of jobs (different
to j) assigned to machine i plus the weighted flow-time of job j if the latter is assigned to i.

Monotonicity. Consider two set of jobs I and I ′ assigned to machine i such that they are
identical except that there is only a job j ∈ I \ I ′. Moreover, assume that no job is released after
time rj in either of the instances. For every job k, define the fractional weight of k at time t as
wkqk(t)/pk. Let Vi(t) be the total fractional weight of pending jobs assigned to machine i. The
following lemma in [1] showed the monotonicity of Vi(t).

Lemma 8 ([1]) Vi(t) is monotone for every machine i, i.e., V I
′

i (t) ≤ V Ii (t) for all i, t.

Lemma 9 It holds that λij − δij(t− rj)− α
β(α−1)w

α−1
α

ij ≤ α
β(α−1)Vi(t)

α−1
α for all i, t.

Proof By Lemma 8, Vi(t) is non-decreasing function. Hence, it is sufficient to prove the inequality
for a fixed machine i assuming that no new job is released after rj . For simplicity of the notations,
as machine i is fixed, we drop the index of the machines in all the parameters. Moreover, denote
again qk = qk(rj) and δk = δk(rj) for every pending job k. At rj , rename jobs in non-increasing
order of their residual densities, i.e., q1/w1 ≤ . . . ≤ qn/wn (note that qk/wk is the inverse of job k’s
residual density). Denote Wk = wk + . . . + wn for 1 ≤ k ≤ n. The marginal increase in the total
weighted flow-time due to the arrival of job j is

wj

(
q1

βW
1/α
1

+ . . .+
qj

βW
1/α
j

)
+Wj+1

qj

βW
1/α
j

where the first term is the weighted flow-time of job j and the second one is the increase of the
weighted flow-time of other jobs (note that only jobs with density smaller than that of j has their
completion times increased). Let C∗j be the completion time of job j if it is assigned to machine i.
We consider different cases.

Case 1: t ≤ C∗j . Let k be the pending job at t with the smallest index. In other words, the
machine has processed all jobs 1, . . . , k − 1 and a part of job k in interval [rj , t]. By the definition

15

of λj , we have that

λj − δj(t− rj) = δj

(
qk(t)

βW
1/α
k

+
qk+1

βW
1/α
k+1

+ . . .+
qj

βW
1/α
j

)
+
Wj+1

βW
1/α
j

= δj

(
wk(t)

δkβW
1/α
k

+
wk+1

δk+1βW
1/α
k+1

+ . . .+
wj

δjβW
1/α
j

)
+
Wj+1

βW
1/α
j

≤ 1

β

(
wk(t)

W
1/α
k

+
wk+1

W
1/α
k+1

+ . . .+
wj

W
1/α
j

+
wj+1

W
1/α
j+1

+ . . .+
wn

W
1/α
n

)

≤ 1

β

∫ V (t)+wj

wn

dz

z1/α
≤ α

β(α− 1)
(V (t) + wj)

α−1
α ≤ α

β(α− 1)

(
V (t)

α−1
α + w

α−1
α

j

)
.

The second equality is due to the definition of the residual density. The first inequality follows
since δj ≤ δk′ for every job k′ ≤ j and Wj ≥ Wj+1 ≥ . . . ≥ Wn. The second inequality holds since
function z−1/α is decreasing. The last inequality holds because (α− 1)/α < 1.

Case 2: t > C∗j . Let k be the pending job at t with the smallest index. We have

λj − δj(t− rj) =
Wj+1

βW
1/α
j

− δj(t− C∗j) =
1

βW
1/α
j

(
wj+1 + . . .+ wn

)
−δj(t− C∗j)

≤ δj+1
qj+1

βW
1/α
j+1

+ . . .+ δn
qn

βW
1/α
n

− δj(t− C∗j)

≤ δk
qk(t)

βW
1/α
k

+ δk+1
qk+1

βW
1/α
k+1

+ . . .+ δn
qn

βW
1/α
n

= δk
wk(t)

δkβW
1/α
k

+ δk+1
wk+1

δk+1βW
1/α
k+1

+ . . .+ δn
wn

δnβW
1/α
n

≤ 1

β

∫ V (t)

wn

dz

z1/α
≤ α

β(α− 1)
V (t)

α−1
α

where the first inequality holds since Wj ≥ Wj+1 ≥ . . . ≥ Wn; the second inequality is due to
δj ≥ δk′ for every job k′ > j.

Combining both cases, the lemma follows. �

Theorem 4 The algorithm is 8(1 + α
lnα)-competitive for β = 1

α−1(α− 1 + ln(α− 1))
α−1
α .

16

Proof Let F∗ be the total weighted flow-time due to the algorithm. By the choice of dual variables,
we have

min
x,s,C

L = min
x

∑
i,j

λijpijxij −max
x,s,C

∑
i,j

∫ Cj

rj

xijsij(t)

(
λij − si(t)α−1 −

1

β
w
α−1
α

ij − δj(Cj − rj)
)
dt

≥ F∗ −max
x,s,C

∑
i,j

∫ Cj

rj

xijsij(t)

(
λij − si(t)α−1 −

1

β
w
α−1
α

ij − δj(t− rj)
)
dt

≥ F∗ −max
x,s,C

∑
i,j

∫ Cj

rj

xijsij(t)

(
α

β(α− 1)
Vi(t)

α−1
α − si(t)α−1

)
dt

= F∗ −max
x,s,C

∑
i

∫ ∞
0

(∑
j

xijsj(t)

)(
α

β(α− 1)
Vi(t)

α−1
α − si(t)α−1

)
dt

≥ F∗ −max
x,s,C

∑
i

∫ ∞
0

si(t)

(
α

β(α− 1)
Vi(t)

α−1
α − si(t)α−1

)
dt

where the first inequality follows by the assignment policy (assign job j to machine i that minimizes
λijpij) and t ≤ Cj ; the second inequality is due to Lemma 9. By the first order condition, function

z(α
β(α−1)V

α−1
α − zα−1) is maximized at z0 = V 1/α

((α−1)β)1/(α−1) . We have

min
x,s,C

L ≥ F∗ − α− 1

((α− 1)β)
α
α−1

∑
i

∫ ∞
0

Vi(t)dt

≥ F∗ − α− 1

((α− 1)β)
α
α−1

∑
i

∫ ∞
0

Wi(t)dt =

(
1− α− 1

((α− 1)β)
α
α−1

)
F∗

where the second inequality holds since Vi(t) ≤Wi(t) for every i and t. Besides, the total weighted
flow-time plus energy is F∗ +

∫∞
0 sα(t)dt = (1 + βα)F∗. Therefore the primal is bounded by(

(1 + βα) + α
β(α−1)(1 + βα)

)
F∗ (Lemma 7). Thus, the competitive ratio is at most

(1 + βα) + α
β(α−1)(1 + βα)

1− α−1
((α−1)β)

α
α−1

(3)

Choose β = 1
α−1(α− 1 + ln(α− 1))

α−1
α . Observe that(

1 +
ln(α− 1)

α− 1

)α−1
< eln(α−1) = α− 1 ⇒ (α− 1 + ln(α− 1))α−1 < (α− 1)α ⇒ β < 1

Moreover, β > (α − 1)−1/α. With the chosen β, the denominator of (3) becomes ln(α−1)
α−1+ln(α−1) and

the nominator is bounded by 8 (since α−1/α < β < 1 and α ≥ 2). Hence, the competitive ratio is
at most 8(1 + α/ lnα). �

4.3 Extensions

Our algorithm works for a more general class of energy power functions (the next section would
give an idea on this extension). Besides, the analyses could be generalized for broadcast scheduling
with objective for minimizing weighted flow-time plus energy.

17

5 Arbitrary Cost Functions of Flow-time

The problem. In this section, we study the online scheduling on unrelated machines to minimize
a general objective

∑
i,j wijf(Fj) where f is a function with certain properties (described below).

At the arrival time of a job, the scheduler has to immediately assign it to a machine. Jobs will be
entirely processed on their machines and the migration of jobs across machines is not allowed. (In
practice, it is not desirable to migrate jobs from a machine to others.)

Properties. f(0) = f ′(0) = 0 and for any ε > 0 arbitrarily small,

(P1) there exists a function K1(ε) such that f(z1 + z2) ≤ 1
1−εf(z1) +K1(ε)f(z2) ∀z1, z2 ≥ 0;

(P2) f ′(z) is non-decreasing. By this property, we can deduce that

k∑
`=1

a`f
′(A`−1) ≤ f(Ak) ≤

k∑
i=`

a`f
′(A`)

where A` = a1 + . . .+ a` and a` ≥ 0 for every 1 ≤ ` ≤ k.

(P3) there exists a function K2(ε) such that f ′(z1 + z2) ≤ 1
1−εf

′(z1) +K2(ε)f
′(z2) ∀z1, z2 ≥ 0;

(P4) there exists a function K3(ε) such that f ′(z + z
K3(ε)

) ≤ 1
1−εf

′(z) ∀z ≥ 0;

(P5) there exists a function K4 ≥ 1 such that zf ′(z) ≤ K4f(z) ∀z ≥ 0.

Define K(ε) = max{K1(ε), 3K2(ε)K3(ε)K4}

Scheduling policy. At time t, every machine i schedules the highest residual density job among
the ones assigned to i.

Assignment policy. For a job j, recall that qij(t) is the remaining processing time of j on
machine i. Let Qj(t) be the remaining time of job j from t to its completion time by the algorithm.
Let Ui(t) be the set of jobs assigned to machine i and are still pending at t. At the arrival time rj ,

job j is assigned to the machine i that minimize λ̃ij , which is defined as

δijf

(∑
u∈Ui(rj)
δu(rj)≥δij

qu(rj) + pij

)
+

∑
u∈Ui(rj)
δu(rj)<δij

wiu
pij

(
f(Qu(rj) + pij)− f(Qu(rj))

)

where δij is the density of job j on machine i, i.e., δij = δij(rj). Note that λ̃ijpij is the marginal
increase of the objective function if job j is assigned to machine i.

Analysis. Let xij be the variable indicating whether job j is assigned to machine i. Besides, let
sij(t) be the rate that a machine i processes job j at time t. The problem could be relaxed as the
following mathematical program where variable Cj represents the completion time of job j.

18

minimize
∑
i,j

δijxi,j

∫ Cj

rj

sij(t)

(
f(Cj − rj) + f(pij)

)
dt

subject to xij

∫ Cj

rj

sij(t)dt ≥ pijxij ∀j∑
j

sij(t) ≤ 1 ∀i, t

∑
i

xij ≥ 1 ∀j

xij ∈ {0, 1} ∀i, j
sij(t) ≥ 0 ∀j, t ≥ rj
sij(t) = 0 ∀j,∀t /∈ [rj , Cj].

Note that if job j is assigned to machine i then Cj − rj ≥ pij . Thus, the objective function in

the relaxation is bounded by 2
∑

i,j δi,jxi,j
∫ Cj
rj

sij(t)f(Cj−rj) where the latter represents twice the

objective of the problem.
The dual of that program is max minx,s,C L where L is the Lagrangian function associated to

the above relaxation. Set all dual variables except the ones corresponding to the first constraints
equal to 0, the Lagrangian function becomes

∑
i,j

δijxij

∫ Cj

rj

sij(t)

(
f(Cj − rj) + f(pij)

)
dt+

∑
i,j

λijxij

(
pij −

∫ Cj

rj

sij(t)dt

)
Hence, the Lagragian dual is

max min
x,s,C

L ≥ min
x,s,C

∑
i,j

λijpijxij −
∑
i,j

xij

∫ Cj

rj

sij(t)

(
λij − δijf(Cj − rj)− δijf(pij)

)
dt (4)

Dual variables. Choose λij such that λij := (1−ε)2
K(ε) λ̃ij .

Lemma 10 It holds that λij− δijf(t−rj)− δijf(pij) ≤ 1
K(ε)

∑
u∈Ui(t)wuf

′(Qu(t)) for every t ≥ rj.

The proof of the lemma is in the appendix.

Theorem 5 The algorithm is 1
1−3ε -speed and 2K(ε)

ε -competitive.

Proof Let F∗ be the objective value
∑

i,j wijf(Fj) of the algorithm and let C∗j be the completion

time of job j due to the algorithm. Recall that K(ε)
(1−ε)2λijpij is the marginal contribution of job j to

19

the objective value if it is assigned to machine i. By Lemma 11, we have∑
i,j

∫ Cj

rj

xijsij(t)

(
λij − δijf(Cj − rj)− δijf(pij)

)
dt

≤
∑
i,j

∫ Cj

rj

xijsij(t)

(
λij − δijf(t− rj)− δijf(pij)

)
dt

≤ 1

K(ε)

∑
i

∑
j

∫ Cj

rj

xijsij(t)

(∑
u∈Ui(t)

wiuf
′(Qu(t))

)
dt

=
1

K(ε)

∑
i

∑
u

∫ ∞
0

(∑
j

xijsij(t)

)
wiuf

′(Qu(t)) · 1{Qu(t)>0}dt

=
1

K(ε)

∑
i

∑
u

∫ C∗u

ru

(∑
j

xijsij(t)

)
wiuf

′(Qu(t))dt

=
1

K(ε)

∑
i

∑
u

∫ C∗u

ru

(∑
j

xijsij(t)

)
wiuf

′(C∗u − t)dt

≤ 1− 3ε

K(ε)

∑
i,u

wiuf(C∗u − ru)

In the first equality, observe that for any job u ∈ Ui(t), it means that Qu(t) > 0. The last inequality
follows by the fact that the adversary can only schedule with rate at most (1− 3ε).

Therefore, we deduce

max min
x,s,C

L
(4)

≥ min
x,s,C

∑
i,j

λijpijxij −
∑
i,j

xij

∫ Cj

rj

sij(t)

(
λij − δijf(Cj)− δijf(pij)

)
dt

≥ (1− ε)2

K(ε)
F∗ − 1− 3ε

K(ε)
F∗ ≥ ε

K(ε)
F∗

where the second inequality follows since by the algorithm, every job j is assigned to machine i

with minimal λij , so
∑

ij λijxij ≥
(1−ε)2
K(ε) F

∗. Hence, the competitive ratio is at most 2K(ε)/ε. �

Corollary 1 The algorithm is 1
1−3ε -speed O(k

ε1+1/k)-competitive for the objective of weighted `k-
norm of flow-time.

Proof If f(z) = zk then by simple estimations, K1(ε) =
(
k
ε

)k
, K2(ε) =

(
k−1
ε

)k−1
, K3(ε) = O(k/ε)

and K4 = k − 1. Thus, K(ε) = O
(
kk+1

εk

)
. Applying the above theorem, the competitive ratio of

the problem with objective of weighted `k-norm of flow-time is O(k
(k+1)/k

ε1+1/k) = O(k
ε1+1/k). �

5.1 Extensions

We have considered the problem in the model of non-migration of jobs accros machines. However,
the same algorithm is still competitive even migration is allowed. The analysis remains essentially
the same. Besides, the objective function could be generalized for different jobs j a function fj .
These functions could be generalized such that they only need to be in C1 almost everywhere.

20

6 Conclusion and Further Directions

In the paper, we have proved competitive algorithms in the resource augmentation/speed scaling
models for different online scheduling problems using an unified approach. The approach is simple
yet powerful in designing and analyzing algorithms. It seems to be a right tool to study problems
in the resource augmentation/speed scaling models. Besides the extensions mentioned in previous
sections, a future direction is to study online scheduling problems with the objectives of differ-
ent nature, for example throughput-related objective. Moreover, different constraints might be
incorporated, for example the bounded-speed model [7, 27] or the capacitated machine model [18].

An interesting future direction is to investigate different online problems with resource aug-
mentation using the approach. Moreover, the min max game between algorithms and adversaries
may give insights not only for designing algorithms but also for constructing counter-examples. In
the latter, an adversary will choose variables such that the Lagrangian function has value far from
optimum whatever the variable choices of any algorithm. That direction is worthy to study and
that may gives ideas for seeking the reverse engineer goal described in [15]: can hard instances of
problems be used to design algorithms?

References

[1] S. Anand, Naveen Garg, and Amit Kumar. Resource augmentation for weighted flow-time
explained by dual fitting. In Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms,
pages 1228–1241, 2012.

[2] Yossi Azar, Leah Epstein, Yossi Richter, and Gerhard J. Woeginger. All-norm approximation
algorithms. J. Algorithms, 52(2):120–133, 2004.

[3] Nikhil Bansal and Ho-Leung Chan. Weighted flow time does not admit o(1)-competitive
algorithms. In Proc. 20th ACM-SIAM Symposium on Discrete Algorithms, pages 1238–1244,
2009.

[4] Nikhil Bansal and Kirk Pruhs. Server scheduling in the weighted `p norm. In Proc. 6th Latin
American Symposium on Theoretical Informatics, pages 434–443, 2004.

[5] Nikhil Bansal and Kirk Pruhs. The geometry of scheduling. In Proc. 51th Symposium on
Foundations of Computer Science, pages 407–414, 2010.

[6] Nikhil Bansal and Kirk Pruhs. Weighted geometric set multi-cover via quasi-uniform sampling.
In Proc. 20th European Symposium on Algorithms, pages 145–156, 2012.

[7] Nikhil Bansal, Ho-Leung Chan, Tak Wah Lam, and Lap-Kei Lee. Scheduling for speed bounded
processors. In Proc. 35th Colloquium on Automata, Languages and Programming, pages 409–
420, 2008.

[8] Nikhil Bansal, Ho-Leung Chan, and Kirk Pruhs. Speed scaling with an arbitrary power func-
tion. In Proc. 20th ACM-SIAM Symposium on Discrete Algorithms, pages 693–701, 2009.

[9] Nikhil Bansal, Ravishankar Krishnaswamy, and Viswanath Nagarajan. Better scalable al-
gorithms for broadcast scheduling. In Proc. 37th Colloquium on Automata, Languages and
Programming, pages 324–335, 2010.

21

[10] Niv Buchbinder and Joseph Naor. The design of competitive online algorithms via a primal-
dual approach. Foundations and Trends in Theoretical Computer Science, 3(2-3):93–263, 2009.

[11] Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A competitive algo-
rithm for minimizing weighted flow time on unrelatedmachines with speed augmentation. In
Proc. 41st ACM Symposium on Theory of Computing, pages 679–684, 2009.

[12] Ho-Leung Chan, Jeff Edmonds, Tak Wah Lam, Lap-Kei Lee, Alberto Marchetti-Spaccamela,
and Kirk Pruhs. Nonclairvoyant speed scaling for flow and energy. Algorithmica, 61(3):507–517,
2011.

[13] Sze-Hang Chan, Tak Wah Lam, Lap-Kei Lee, Hing-Fung Ting, and Pan Zhang. Non-
clairvoyant scheduling for weighted flow time and energy on speed bounded processors. Chicago
J. Theor. Comput. Sci., 2011, 2011.

[14] Chandra Chekuri, Sanjeev Khanna, and An Zhu. Algorithms for minimizing weighted flow
time. In Proc. 33rd ACM Symposium on Theory of Computing, pages 84–93, 2001.

[15] Nikhil R. Devanur and Kamal Jain. Online matching with concave returns. In Proc. 44th
ACM Symposium on Theory of Computing, pages 137–144, 2012.

[16] Jeff Edmonds. Scheduling in the dark. Theor. Comput. Sci., 235(1):109–141, 2000.

[17] Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary speedup curves.
ACM Transactions on Algorithms, 8(3):28, 2012.

[18] Kyle Fox and Madhukar Korupolu. Weighted flowtime on capacitated machines. In Proc. 24th
ACM-SIAM Symposium on Discrete Algorithms, pages 129–143, 2013.

[19] Naveen Garg and Amit Kumar. Minimizing average flow-time : Upper and lower bounds. In
Proc. 48th Symposium on Foundations of Computer Science, pages 603–613, 2007.

[20] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. Online primal-dual for non-
linear optimization with applications to speed scaling. In Proc. 10th Workshop on Approxi-
mation and Online Algorithms, pages 173–186, 2012.

[21] Sungjin Im. Online Scheduling Algorithms for Average Flow Time and its Variants. PhD
thesis, University of Illinois at Urbana-Champaign, 2012.

[22] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A tutorial on amortized local competitiveness
in online scheduling. SIGACT News, 42(2):83–97, 2011.

[23] Sungjin Im, Benjamin Moseley, and Kirk Pruhs. Online scheduling with general cost functions.
In Proc. 23rd ACM-SIAM Symposium on Discrete Algorithms, pages 1254–1265, 2012.

[24] Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. J. ACM, 47(4):
617–643, 2000.

[25] Peter Kling and Peter Pietrzyk. Profitable scheduling on multiple speed-scalable processors.
In Proc. 25th Symposium on Parallelism in Algorithms and Architectures, 2013.

22

[26] V. S. Anil Kumar, Madhav V. Marathe, Srinivasan Parthasarathy, and Aravind Srinivasan. A
unified approach to scheduling on unrelated parallel machines. J. ACM, 56(5), 2009.

[27] Tak Wah Lam, Lap-Kei Lee, Isaac Kar-Keung To, and Prudence W. H. Wong. Online speed
scaling based on active job count to minimize flow plus energy. Algorithmica, 65(3):605–633,
2013.

[28] Rajeev Motwani, Steven Phillips, and Eric Torng. Non-clairvoyant scheduling. Theor. Comput.
Sci., 130(1):17–47, 1994.

Appendix

Lemma 1 (Weak duality) Consider a possibly non-convex optimization problem

p∗ := min
x
f0(x) : fi(x) ≤ 0, i = 1, . . . ,m.

where fi : Rn → R for 0 ≤ i ≤ m. Let X be the feasible set of x. Let L : Rn × Rm → R be the
Lagragian function

L(x, λ) = f0(x) +
m∑
i=1

λifi(x).

Define d∗ = maxλ≥0 minx∈X L(x, λ) where λ ≥ 0 means λ ∈ Rm+ . Then p∗ ≥ d∗.

Proof We observe that, for every feasible x ∈ X , and every λ ≥ 0, f0(x) is bounded below by
L(x, λ):

∀x ∈ X , ∀λ ≥ 0 : f0(x) ≥ L(x, λ)

Define a function g : Rm → R such that

g(λ) := min
z
L(z, λ) = min

z
f0(z) +

m∑
i=1

λifi(z)

As g is defined as a point-wise minimum, it is a concave function.
We have, for any x and λ, L(x, λ) ≥ g(λ). Combining with the previous inequality, we get

∀x ∈ X : f0(x) ≥ g(λ)

Taking the minimum over x, we obtain ∀λ ≥ 0 : p∗ ≥ g(λ). Therefore,

p∗ ≥ max
λ≥0

g(λ) = d∗.

�

23

5 Arbitrary Cost Functions of Flow-time

Lemma 11 It holds that λij − δijf(t− rj)− δijf(pij) ≤ 1
K(ε)

∑
u∈U(t)wuf

′(Qu(t)) for every t ≥ rj.

Let U1
i (t) ⊂ Ui(t) be the set of pending jobs u assigned to machine i and δiu(rj) ≥ δij . Let

U2
i (t) = Ui(t) \ U1

i (t). Recall that

K(ε)

(1− ε)2
λij = δijf

(∑
u∈U1

i (rj)

qu(rj) + pij

)
+

∑
u∈U2

i (rj)

wiu
pij

(
f(Qu(rj) + pij)− f(Qu(rj))

)
.

By increasing property of function f ′,∑
u∈U2

i (rj)

wiu
pij

(
f(Qu(rj) + pij)− f(Qu(rj))

)
≤

∑
u∈U2

i (rj)

wiu
pij

pijf
′(Qu(rj) + pij)

=
∑

u∈U2
i (rj)

wiuf
′(Qu(rj) + pij)

Hence,

K(ε)

(1− ε)2
λij ≤ δijf

(∑
u∈U1

i (rj)

qu(rj) + pij

)
+

∑
u∈U2

i (rj)

wiuf
′(Qu(rj) + pij) (5)

To prove Lemma 11, observe that if some new job is assigned to machine i after rj , then the
right-hand side of the lemma inequality increases while the left-hand side remains unchanged (as
λij is unchanged). Hence, it is sufficient to prove Lemma 11 assuming that no new job is released
after rj . Let t0 be the completion time of job j if j is scheduled in machine i by the algorithm.
Lemma 11 follows Lemma 12 and Lemma 13.

Lemma 12 If no new job is released after rj then λij−δijf(t−rj)−δijf(pij) ≤ 1
K(ε)

∑
u∈Ui(t)wiuf

′(Qu(t))
for every rj ≤ t ≤ t0.

Proof We prove the inequality in the lemma for a fixed machine i. For simplicity, we drop the
machine index i of all parameters and variables (which correspond to the ones on machine i). First,
we prove the following claim.

Claim 1 It holds that

∑
u∈U2(t)

wuf
′(Qu(rj) + pj) ≤

1

(1− ε)2

 ∑
u∈U2(t)

wuf
′(Qu(t))

+
K(ε)

1− ε
δj

(
f(t− rj) + f(pj)

)

Proof of claim Observe that U2(rj) = U2(t) and qu(t) = qu(rj) for u ∈ U2(rj) since no such job u is
scheduled in interval [rj , t]. Let V ′ be the set of jobs u ∈ U2(t) such that t− rj ≤ 1

K3(ε)
(Qu(t) +pj).

24

Let V ′′ = U2(t) \ V ′. We have∑
u∈U2(rj)

wuf
′
(
Qu(rj) + pj

)
=

∑
u∈U2(rj)

wuf
′
(

(t− rj) +Qu(t) + pj

)

=
∑
u∈V ′

wuf
′
(

(t− rj) +Qu(t) + pj

)
+
∑
u∈V ′′

wuf
′
(

(t− rj) +Qu(t) + pj

)
(P4)
≤ 1

1− ε
∑
u∈V ′

wuf
′(Qu(t) + pj) +

∑
u∈V ′′

wuf
′
(
t− rj +Qu(t) + pj

)
(P3)
≤ 1

1− ε
∑
u∈V ′

wuf
′(Qu(t) + pj) +

1

1− ε
∑
u∈V ′′

wuf
′(Qu(t) + pj) +K2(ε)

∑
u∈V ′′

wuf
′(t− rj)

≤ 1

1− ε
∑

u∈V ′∪V ′′
wuf

′(Qu(t) + pj) +K2(ε)δj
∑
u∈V ′′

qu(t)f ′(t− rj)

≤ 1

1− ε
∑

u∈U2(rj)

wuf
′(Qu(t) + pj) +K2(ε)K3(ε)δj(t− rj)f ′(t− rj)

(P5)
≤ 1

1− ε
∑

u∈U2(rj)

wuf
′(Qu(t) + pj) +K2(ε)K3(ε)K4δjf(t− rj). (6)

The third inequality follows because δj ≥ δu(rj) for all u ∈ U2(t). The fourth inequality holds since∑
u∈V ′′ qu(t) ≤ maxu∈V ′′ Qu(t) ≤ K3(ε)(t− rj) (by definition of V ′′).
Let V be the set of jobs u ∈ U2(t) such that pj ≤ Qu(t)/K3(ε). Similarly, we have∑

u∈U2(t)

wuf
′(Qu(t) + pj) =

∑
u∈V

wuf
′(Qu(t) + pj) +

∑
u∈U2(t)\V

wuf
′(Qu(t) + pj)

(P4)
≤ 1

1− ε
∑
u∈V

wuf
′(Qu(t)) +

∑
u∈U2(t)\V

wuf
′(Qu(t) + pj)

(P3)
≤ 1

1− ε

 ∑
u∈U2(t)

wuf
′(Qu(t))

+K2(ε)
∑

u∈U2(t)\V

wuf
′(pj)

≤ 1

1− ε

 ∑
u∈U2(t)

wuf
′(Qu(t))

+K2(ε)δjf
′(pj)

∑
u∈U2(t)\V

qu(t)

<
1

1− ε

 ∑
u∈U2(t)

wuf
′(Qu(t))

+K2(ε)K3(ε)δjf
′(pj)pj

(P5)
≤ 1

1− ε

 ∑
u∈U2(t)

wuf
′(Qu(t))

+K2(ε)K3(ε)K4δjf(pj) (7)

where the third inequality follows since δu(rj) ≤ δj and qu(t) = qu(rj) for u ∈ U2(t) = U2(rj);
the fourth inequality is due to the fact that

∑
u∈U2

i (t)\V
qu(t) is bounded by the maximal Qu(t) for

u ∈ U2
i (t) \ V , which is bounded by K3(ε)pj (by definition of V).

25

Combining (7) and (6), we get∑
u∈U2(rj)

wuf
′
(
Qu(rj) + pj

)
≤ K(ε)

1− ε
δj

(
f(t− rj) + f(pj)

)
+

1

(1− ε)2
∑

u∈U2(t)

wuf
′(Qu(t))

�

We are now proving the lemma. Observe that machine i schedules jobs with rate 1, it holds
that ∑

u∈U1(rj)

qu(rj) + pj = (t− rj) +
∑

u∈U1(t)

qu(t) + qj(t)

Therefore,

f

(∑
u∈U1(rj)

qu(rj) + pj

)
= f

(
(t− rj) +

∑
u∈U1(t)

qu(t) + qj(t)

)
(P1)
≤ K1(ε)f(t− rj) +

1

1− ε
f

(∑
u∈U1(t)

qu(t) + qj(t)

)
(P1)
≤ K1(ε)f(t− rj) +

K1(ε)

1− ε
f(pj) +

1

(1− ε)2
f

(∑
u∈U1(t)

qu(t)

)
(P2)
≤ K1(ε)

1− ε

(
f(t− rj) + f(pj)

)
+

1

(1− ε)2
∑

u∈U1(t)

qu(t)f ′(Qu(t)) (8)

Hence, using (5) and (8), we get

K(ε)

(1− ε)2
λj ≤

K1(ε)

1− ε
δj

(
f(t− rj) + f(pj)

)
+

1

(1− ε)2
∑

u∈U1(t)

δjqu(t)f ′(Qu(t))

+
∑

u∈U2(rj)

wuf
′(Qu(rj) + pj)

(Claim 1)

≤ 2K(ε)

1− ε
δj

(
f(t− rj) + f(pj)

)
+

1

(1− ε)2
∑

u∈U1(t)∪U2(t)

wuf
′(Qu(t)).

where the second inequality is due to δu ≥ δj for every u ∈ U1(t). Rearranging the terms, the
lemma follows (for ε ≤ 1/2). �

Lemma 13 If no new job is released after rj then λij−δijf(t−rj)−δijf(pij) ≤ 1
K(ε)

∑
u∈Ui(t)wiuf

′(Qu(t))
for every t > t0.

Proof Again we drop the machine index to simplify the notations. First we argue the following
claim.

Claim 2 It holds that∑
u∈U2(rj)

wuf
′(Qu(rj)) ≤

3K2(ε)K3(ε)K4

1− ε
δjf(t− rj)−

1

1− ε
δjf(t0 − rj) +

1

1− ε
∑
u∈U(t)

wuf
′(Qu(t))

26

Proof of claim Let W = {u1, . . . , ua} ⊂ U2(rj) be the set of jobs processed by the algorithm in
interval [t0, t] where all jobs in W but probably ua have been completed. It means that at time t,
the machine is processing job a or has just completed job (a−1). Hence, U(t) = U2(rj)\W ∪a. For
simplicity, denote qu = qu(rj) for all pending jobs u at time rj . Recall that qu(t) is the remaining
of job u at time t. We have∑
u∈U2(rj)

wuf
′(Qu(rj))

≤ δj

a−1∑
b=1

qubf
′
(
t0 − rj + qu1 + . . .+ qub

)
+ δj

(
qua − qua(t)

)
f ′
(
t0 − rj + qu1 + . . .+ qua−1 + qua − qua(t)

)
+

∑
u∈U2(rj)\W∪a

wuf
′
(
t− rj +Qu(t)

)
(P3)
≤ 1

1− ε
δj

[
a−1∑
b=1

qubf
′(t0 − rj + qu1 + . . .+ qub−1

) + (qua − qua(t))f ′(t0 − rj + qu1 + . . .+ qua−1)

]

+K2(ε)δj

[
a−1∑
b=1

qubf
′(qub) +

(
qua − qua(t)

)
f ′(qua − qua(t))

]
+
∑
u∈U(t)

wuf
′(t− rj +Qu(t))

(P2)
≤ 1

1− ε
δj

[
a−1∑
b=1

qubf
′(t0 − rj + qu1 + . . .+ qub−1

) + (qua − qua(t))f ′(t0 − rj + qu1 + . . .+ qub)

]

+K2(ε)δj

(
a−1∑
b=1

qub + qua − qua(t)

)
f ′

(
a−1∑
b=1

qub + qua − qua(t)

)
+
∑
u∈U(t)

wuf
′(t− rj +Qu(t))

(P2)&(P5)
≤ 1

1− ε
δj [f(t− rj)− f(t0 − rj)] +K2(ε)K4δjf(t− rj)

+
∑
u∈U(t)

wuf
′(t− rj +Qu(t)) (9)

where in the inequalities, note that qu1 + . . .+ qua−1 + qua − qua(t) = t− t0 ≤ t− rj .
Let W ′ be the set of jobs u ∈ U(t) such that t − rj ≤ 1

K3(ε)
Qu(t). Let W ′′ = U(t) \W ′. Then

27

we have∑
u∈U(t)

wuf
′(t− rj +Qu(t)) =

∑
u∈W ′

wuf
′(t− rj +Qu(t)) +

∑
u∈W ′′

wuf
′(t− rj +Qu(t))

(P4)
≤ 1

1− ε
∑
u∈W ′

wuf
′(Qu(t)) +

∑
u∈W ′′

wuf
′(t− rj +Qu(t))

(P3)
≤ 1

1− ε
∑
u∈W ′

wuf
′(Qu(t)) +

1

1− ε
∑
u∈W ′′

wuf
′(Qu(t)) +K2(ε)

∑
u∈W ′′

wuf
′(t− rj)

≤ 1

1− ε
∑

u∈W ′∪W ′′
wuf

′(Qu(t)) +K2(ε)δj
∑
u∈W ′′

quf
′(t− rj)

≤ 1

1− ε
∑

u∈W ′∪W ′′
wuf

′(Qu(t)) + 2K2(ε)K3(ε)δj(t− rj)f ′(t− rj)

(P5)
≤ 1

1− ε
∑

u∈W ′∪W ′′
wuf

′(Qu(t)) + 2K2(ε)K3(ε)K4δjf(t− rj) (10)

The third inequality follows by δj ≥ δu for u ∈ U2(t). In the fourth inequality, note that∑
u∈W ′′ qu ≤ (t0 − rj) +

∑
u∈W ′′ qu(t) ≤ (t − rj) + maxu∈W ′′ Qu(t) ≤ 2K3(ε)(t − rj) (by defini-

tion of W ′′).
Using (9) and (10), we deduce that∑

u∈U2(rj)

wuf
′(Qu(rj)) ≤

3K2(ε)K3(ε)K4

1− ε
δjf(t− rj)−

1

1− ε
δjf(t0 − rj) +

1

1− ε
∑
u∈U(t)

wuf
′(Qu(t))

�

We are now proving the lemma. By (5), we have

K(ε)

(1− ε)2
λj ≤ δjf(t0 − rj) +

∑
u∈U2(rj)

wuf
′(Qu(rj) + pj)

(P3)
≤ δjf(t0 − rj) +

1

1− ε
∑

u∈U2(rj)

wuf
′(Qu(rj)) +K2(ε)δjf

′(pj)pj

(Claim 2)

≤ 3K2(ε)K3(ε)K4

(1− ε)2
δjf(t− rj) +

1

(1− ε)2
∑
u∈U(t)

wuf
′(Qu(t)) +K2(ε)K4δjf(pj)

Rearranging the terms, the lemma follows. �

28

