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Abstract. This paper is devoted to the location of public facilities in
a metric space. Selfish agents are located in this metric space, and their
aim to minimize their own cost, which is the distance from their location
to the nearest facility. A central authority has to locate the facilities
in the space, but she is ignorant of the true locations of the agents.
The agents will therefore report their locations, but they may lie if they
have an incentive to do it. We consider two social costs in this paper:
the sum of the distances of the agents to their nearest facility, or the
maximal distance of an agent to her nearest facility. We are interested
in designing strategy-proof mechanisms that have a small approximation
ratio for the considered social cost. A mechanism is strategy-proof if no
agent has an incentive to report false information. This setting has been
previously studied for extreme cases where one and two facilities are
to be opened. In this paper, we consider the other extreme case: given
n agents, we wish to design strategy-proof mechanisms to locate n — 1
facilities. We study this problem in the general metric and in the tree
metric spaces. We provide lower and upper bounds on the approximation
ratio of deterministic and randomized strategy-proof mechanisms. Our
work could be considered as one step toward the general case.

1 Introduction

We study Fuacility Location Games that model the following problem in eco-
nomics. Consider installation of public service facilities such as hospitals or li-
braries within the region of a city, represented by a metric space. The authority
announces that some locations will be chosen within the region and run a survey
over the population; each inhabitant may declare the spot in the region that she
prefers some facility to be opened at. Every inhabitant wishes to minimize her
individual distance to the closest facility, possibly by misreporting her prefer-
ence to the authorities. The goals of the authority are twofold: avoiding such
misreports and minimizing some social objectives. The authority needs to de-
sign a mechanism, that maps the reported preferences of inhabitants to a set
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of locations where the facilities will be opened at, to fulfill the purposes. The
mechanism must be strategy-proof, i.e., it ensures that no inhabitant can ben-
efit by misreporting her preference. At the same time, the mechanism should
guarantee a reasonable approximation to the optimal social cost. The model has
many applications in telecommunication networks where locations may be easily
manipulated by reporting false IP addresses, false routers, etc.

1.1 Facility Location Games

We consider a metric space ({2,d), where d : {2 X 2 — R is the metric function.
Some usual metrics are the line, circle and tree metrics where the underlying
spaces are an infinite line, a circle and an infinite tree, respectively. The distance
between two positions in such metrics is the length of the shortest path connect-
ing those positions. Let n be the number of agents, each agent ¢ has a location
x; € £2. A location profile (or strategy profile) is a vector x = (x1,...,2,) € 2™
Let k be the number of facilities that will be opened. A deterministic mechanism
is a mapping f from the set of location profiles 2" to k locations in 2. Given a
reported location profile x the mechanism’s output is f(x) € £2¥ and the indi-
vidual cost of agent 4 under mechanism f and profile x is the distance from its
location to the closest facility, denoted by ¢;(f, x):

ci(f,x) :=d(f(x), ;) := min{d(F,z;) : F € f(x)}

A randomized mechanism is a function f from the set of location profiles to
A(02F) where A(£2%) is the set of probability distributions over £2*. The cost of
agent ¢ is now the expected distance from its location to the closest facility over
such distribution:

¢i(f,x) :=E[d(f(x),2;)] == E[min{d(F,z;) : F € f(x)}]

We are interested in two standard social objectives: (i) the utilitarian objective
defined as the total individual costs (total individual expected cost for a random-
ized mechanism), i.e., C(f,x) = > 1 ; ¢;(f,x); and (ii) the egalitarian objective
defined as the maximal individual cost (expected maximal individual cost for
a randomized mechanism), i.e., C(f,x) = E [maxi<;<, d(f(x), z;)]. This is thus
simply maxi<i<p ¢;(f,x) for deterministic mechanisms.

We say that a mechanism f is r-approzrimate with respect to profile x if

C(f,x) <r-OPT(x)

where OPT(x) is the social cost of an optimal facility placement (for the egali-
tarian or utilitarian social cost). Note that since for a randomized mechanism the
social cost is the expectation of the social cost on each chosen set of locations,
there always exists an optimal deterministic placement.

We will be concerned with strategy-proof (SP) mechanisms, which render
truthful revelation of locations a dominant strategy for the agents.
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Definition 1. (Strategyproofness) Let x = (x1,...,2,) denote the location
profile of n agents over the metric space (£2,d). A mechanism f is strategy-proof
(SP) if for every agent 1 < i < n and for every location = € 2, ¢;(f, (x},x_;)) >
ci(f,x) where x_; denotes the locations of the agents other than i in x.

1.2 Previous works

The facility locations game where only one facility will be opened is widely-
studied in economics. On this topic, Moulin [1] characterized all strategy-proof
mechanisms in the line metric space. Subsequently, Schummer and Vohra [2] gave
a characterization of strategy-proof mechanisms for the circle metric space. More
recently, Procaccia and Tennenholtz [3] initiated the study of approximating an
optimum social cost under the constraint of strategy-proofness. They studied de-
terministic and randomized mechanisms on the line metric space with respect to
the utilitarian and egalitarian objectives. Several (tight) approximation bounds
for strategy-proof mechanisms were derived in their paper. For general metric
space, Alon et al. [4] and Nguyen Kim [5] proved randomized tight bounds for
egalitarian and utilitarian objectives, respectively.

Concerning the case where two facilities are opened, Procaccia and Tennen-
holtz [3] derived some strategy-proof mechanisms with guaranteed bounds in
the line metric space for both objectives. Subsequently, Lu et al. [6] proved tight
lower bounds of strategy-proof mechanisms in the line metric space with respect
to the utilitarian objective. Moreover, they also gave a randomized strategy-proof
mechanism, called Proportional Mechanism, that is 4-approximate for general
metric spaces. It is still unknown whether there exists a deterministic strategy-
proof mechanism with bounded approximation ratio in a general metric space.

Due to the absence of any positive result on the approximability of multi-
ple facility location games for more than two facilities, Fotakis and Tzamos [7]
considered a variant of the game where an authority can impose on some agents
the facilities where they will be served. With this restriction, they proved that
the Proportional Mechanism is strategy-proof and has an approximation ratio
linear on the number of facilities.

1.3 Contribution

Prior to our work, only extreme cases of the game where the authority opens
one or two facilities have been considered. No result, positive or negative, has
been known for the game with three or more facilities. In this paper, we consider
another extreme case of the game where k = n — 1 facilities will be opened
(note that the case when n facilities are open is trivial, opening a facility at each
player’s location is strategy-proof and optimal). Toward the general number of
facilities, we need to understand and solve the extreme cases of the problem.
This paper could be considered as one step toward this goal.

In this paper, we study strategy-proof mechanisms for the game with n agents
and n — 1 facilities in a general metric space and in a tree metric space. Our
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Objective |Tree metric space General metric space
Utilitarian [UB: n/2 (rand) UB: n/2 (rand)

LB: 3/2 (det), 1.055 (rand)|LB: 3 (det), 1.055 (rand)
Egalitarian|UB: 3/2 (rand) UB: n (rand)

LB: 3/2 (rand) [3] LB: 2 (det)

Table 1. Summary of our results. In a cell, UB and LB mean the upper and lower
bounds on the approximation ratio of strategy-proof mechanisms. The abbreviations
det and rand refer to deterministic and randomized strategy-proof mechanisms, respec-
tively.

main results are the following ones. For general metric spaces, we give a random-
ized strategy-proof mechanism, called Inversely Proportional Mechanism, that
is an n/2-approximation for the utilitarian objetctive and an n-approximation
for the egalitarian one. For tree metric spaces, we present another randomized
strategy-proof mechanism that particularly exploit the property of the metric.
This mechanism is also an n/2-approximation under the utilitarian objective but
it induces a 3/2-approximation (tight bound) under the egalitarian objective.

Besides, several lower bounds on the approximation ratio of determinis-
tic/randomized strategy-proof mechanisms are derived (see Table 1 for a sum-
mary). We proved that any randomized strategy-proof mechanism has ratio at
least 1.055 even in the tree metric space. The interpretation of this result is that
no mechanism, even randomized one, is both socially optimal and strategy-proof.
Moreover, deterministic lower bounds of strategy-proof mechanisms are shown
to be: at least 3/2 in tree metric space, utilitarian objective; at least 3 in a gen-
eral metric space, utilitarian objective; and at least 2 in general metric space,
egalitarian objective. Note that the lower bounds given for a the tree metric
space hold even for a line metric space.

Organization We study the performance of randomized SP mechanisms in gen-
eral metric spaces and in tree metric spaces in Section 2, and Section 3, respec-
tively. Due to the lack of space, some claims are only stated or partially proved.
We refer the reader to the appendix for the complete proofs of all claims.

2 SP mechanisms for general metric spaces

2.1 Inversely Proportional Mechanism

Consider the setting of n agents whose true locations are x = (z1,...,Z,).
For each location profile y = (yi1,...,yn), define P;(y) as the placement of
(n — 1) facilities at the reported locations of all but agent i, i.e., Pi(y) =
{y1,- - sYi=1,Yi+1,- - -, Yn}. Moreover, d(y;, P;(y)) is the distance between y; and
her closest location in P;(y). The idea of the mechanism is to choose with a given
probability a location y; where no facility is open (and to put n — 1 facilities
precisely on the n — 1 locations of the other agents), i.e., to choose with a given
probability the placement P;(y). The main issue is to find suitable probabilities
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such that the mechanism is strategy-proof, and such that the expected cost is
as small as possible.

Inversely proportional mechanism Let y be a reported location profile. If there
are at most (n — 1) distinct locations in profile y then open facilities at the
locations in y. Otherwise, choose placement P;(y) with probability

1
d(yi,P;
pily) = 5= (y (yl))
i=1 d(y;.P;(¥))
Lemma 1. The Inversely Proportional Mechanism is strategy-proof in a general
metric space.

Sketch of the proof. Let x = (z1,...,2,) be the true location profile of the
agents, and let d; := d(z;, P;(x)) for 1 < j < n.

If there are at most (n—1) distinct locations in profile x then the mechanism
locates one facility on each position: no agent has incentive to misreports its
location. In the sequel, we assume that all the agent locations in x are distinct.
If all the agents report truthfully their locations, the cost of agent i is

= il fx) = 3 pi(x) - e, Py(9) = pix) s = o

j=1 Zj:l 1/d
Thus ¢; < d;. Let us now suppose that ¢ misreports its location and bids .
Let x' = (z},2_;) be the location profile when ¢ reports 2} and the other agents
report truthfully their locations. Let dj = d(Pj(z;,x')) for j # i and d =
d(P;(z},x")). We will prove that ¢} := ¢;(f,x’) > ¢;. The new cost of agent 3 is:

;= ij(xl) “d(ws, Pi(x)) > pi(X') - di + (1 — pi(x)) min{d;, d(z;, 2})}

where the inequality is due to the fact that in P;(x’) (for j # i), agent i can

choose either some facility in {z1,...,2;—1,%it1,...,%,} or the facility opened
at z;. Define T':= {j : d} # d;, j # i}. Note that
1/d;

pi(x') =
Zj¢T 1/dj + ZjeT 1/d§‘ + 1/d;

Let e := d(z;,2}). Remark that i has no incentive to report its location z in
such a way that e > d; since otherwise ¢} > p;(x') - d; + (1 — p;(x'))d; = d; > ¢;.
In the sequel, consider e < d;. In this case,

¢ >pi(x) - di+ (1 —pi(x'))-e

We also show that e > |d; — d;| by using the triangle inequality. Then, by con-
S 1 1

sidering two cases (whether . T i larger than >, a or not), we show

that in both case ¢} > ¢;: any agent ¢ has no incentive to misreport its location,
i.e., the mechanism is strategy-proof. ]
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Theorem 1. The Inversely Proportional Mechanism is strategy-proof, an n/2-
approrimation with respect to the utilitarian social cost and an n-approximation
with respect to the egalitarian one. Moreover, there exists an instance in which
the mechanism gives the approximation ratio at least 5 — € for the utilitarian
social cost, and n — € for the egalitarian one, where ¢ > 0 is arbitrarily small.

Proof. By the previous lemma, the mechanism is strategy-proof. We consider the
approximation ratio of this mechanism. Recall that x = (z1,...,x,) is the true
location profile of the agents. Let P; := P;(x), d; := d(x;, P;) and p; = p;(x). Let
¢ :=argmin{d; : 1 < i < n}. For the egalitarian social cost, due to the triangle
inequality at least one agent has to pay dg/2, while the optimal solution for the
utilitarian objective has cost dy (placement Py for instance).

The mechanism chooses placement P; with probability p;. In P;, agent ¢ has
cost d; and the other agents have cost 0. Hence, the social cost induced by
the mechanism (in both objectives) is 3, p;(x)d; = ﬁ For the utilitarian

2 gince in the sum of the

. . 1 3 1 1 n
objective, the approximation ratio is @y, 174, < 3

denominator, there are two terms 1/d,. Similarly, it is at most —2n___ < pfor
9 de Zj 1/d7

the egalitarian objective.

We describe an instance on a line metric space in which the bounds n/2 and
n are tight. Let M be a large constant. Consider the instance on a real line in
which 1 = 1,290 = 2,201 = x; + M for 2 < i < n. We get d = dy =1 and
d; = M for 3 < i < n. An optimal solution chooses to put a facility in each z;
for i > 2 and to put the last one in the middle of [z, z5]. Its social cost is 1
for the utilitarian objective and 1/2 for the egalitarian one. The cost (in both
objectives) of the mechanism is

n B n B nM
Y 1/d; 2+ (n—=2)/M  2M +n—2
Hence, for any € > 0, one can choose M large enough such that the approxima-
tion ratio is larger than % — e for the utilitarian objectif and to n — e for the
egalitarian one. O

2.2 Lower bounds on the approximation ratio for SP mechanisms

Proposition 1. Any deterministic strategy-proof mechanism has approximation
ratio at least 3 — 2¢ for the wutilitarian objective and 2 — 2¢ for the egalitarian
objective where € > 0 arbitrarily small.

Proof. We consider the metric space induced by the graph in Figure 1. Note
that this is a discrete space where agents and possible locations for facilities are
restricted to be on vertices of the graph, i.e., 2 = V. There are three agents
in the game and two facilities to be opened. Let f be a deterministic strategy-
proof mechanism. Let x be a profile where 1 = Ay, x2 = By, x3 = Cy. For any
(deterministic) placement of two facilities, there is one agent with cost at least
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2 — 2e C
C1 Ca
1—e€
Co
1 \
2 — 2 1—e€ 1—e€ 2 — 2
(] [ J
O 1 O
Az Ay Ao Bo By Bj

Fig. 1. Graph metric that gives a lower bound on the ratio of strategy-proof mecha-
nisms in a general metric space (dots are the agents’ locations in profile x).

1. By symmetry of the graph as well as profile x, suppose that agent 1 has cost
at least 1.

Consider another profile y where y1 = A1,y2 = By, ys = Cp (y and x only
differ on the location of agent 1). In this profile, no facility is opened neither
at Ag nor at A; since otherwise agent 1 in profile x could report its location as
being A; and reduce its cost from 1 to 1 — € or 0. We study two cases: (i) in
profile f(y), there is a facility opened at As; and (ii) in profile f(y), no facility
is opened at As.

In the former, a facility is opened at As, no facility is opened at Ag, A;. For
the egalitarian objective, the social cost is at least 2 — 2¢. For the utilitarian
objective, the total cost of agents 2 and 3 is at least 1 and the cost of agent 1 is
2 — 2¢, that induces a social cost at least 3 — 2e. An optimal solution has cost 1
(for both objective) by opening a facility at A; and a facility at By.

In the latter, the cost of agent 1 is at least 2 — ¢ (since no facility is opened at
Ap, A1, Az). Consider a profile z similar to y but the location of agent 1 is now
at As. By strategy-proofness, no facility is opened at Ag, A1, A2 in f(z) (since
otherwise, agent 1 in profile y can decrease its cost by reporting its location as
As). So, the social cost induced by mechanism f in z is at least 4 — 3¢ (for both
objectives), while optimal is 1 (for both objectives) by placing a facility at As
and other at Bj.

Therefore, in any case, the approximation ratio of mechanism f is at least
3 — 2¢ for the utilitarian objective and 2 — 2¢ for the egalitarian objective. O

3 Randomized SP mechanisms on trees

We study in this section the infinite tree metric. This is a generalization of the
(infinite) line metric, where the topology is now a tree. Infinite means that, like
in the line metric, branches of the tree are infinite. As for the line metric, the
locations (reported by agents or for placing facilities) might be anywhere on the
tree. We first devise a randomized mechanism. To achieve this, we need to build
a partition of the tree into subtrees that we call components, and to associate
a status even or odd to each component. This will be very useful in particular
to show that the mechanism is strategy-proof. In the last part of this section,
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we propose a lower bound on the approximation ratio of any strategy-proof
mechanism.

3.1 Preliminary tool: partition into odd and even components

Partition procedure Given a tree 7 and a set of vertices V' on this tree, we
partition 7 into subtrees with respect to V. For the ease of description, consider
also some virtual vertices, named oo, which represent the extremities of the
branches in 7. We say that two vertices ¢ and j are neighbor if the unique path
in 7 connecting 7 and j contains no other vertex £. A component T} is a region of
the tree delimited by a mazimal set of pairwise neighbor vertices (see below for
an illustration). The maximality is in the sense of inclusion: 7} is maximal means
that there is no vertex i ¢ T; such that vertex ¢ is a neighbor of all vertices in
T:. The set {T1,...,T;n} of all components is a cover of the tree 7. Note that
a vertex i can appear in many sets T;. As 7 is a tree, the set of all T}’s is well
and uniquely defined.

For instance, in Figure 2, the components are the subtrees delimited by the
following sets of vertices: {1,2,3}, {1,4}, {2,5}, {2,6}, {6,10}, {4,7}, {4,8,9},
{3,000}, {5, 0}, {7,00}, {8,000}, {9,000}, {10, 00}.

FITN

Fig. 2. An illustration of the partition procedure

0dd and even components Root the tree at some vertex i, and define the depth
of a vertex j as the number of vertices in the unique path from iy to j (i has
depth 1). Then each component T corresponds to the region of the tree between
a vertex j (at depth p) and some of its sons (at depth p+ 1) in the tree. We say
that T is odd (resp. even) if the depth p of j is odd (resp. even). This obviously
depends on the chosen root.

For instance, in Figure 2 vertices of the same depth are in the same horizontal
position (the tree is rooted at vertex 1). Then the components corresponding
to {1,2,3},{1,4}, {5, 00}, {6,10},... are odd while the ones corresponding to
{2,5},{2,6},{3,0},{4,8,9},... are even.

Note that each vertex except the root — and the oo-vertices — is both in
(at least) one even component and in (at least) one odd component. The root is
in (at least) one odd component.
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3.2 A randomized mechanism

Given a reported profile y and a tree 7 as a metric space, let 2a := 2a(y) be
the minimum distance between any two neighbor agents. Let i* = i*(y) and
j* = j*(y) be neighbor agents such that d(y;»,y,;~) = 2a (if there are more
than one choice, break ties arbitrarily). We partition 7 into its components as
described previously, considering as vertices the set of locations y. Let T™ be
the component containing y;- and y;-, and let U be the set of agents in 1.
For instance, in Figure 3, the components are {7,10, 11,12}, {4,6, 7,8}, {6,13},
{13,000}, -+ Suppose that i* = 4 and j* = 7. Then T* is the component whose
set of agents is U = {4, 6,7, 8}.

We design a mechanism made of four deterministic placements Py, Ps, P3
and Py; each P; occurs with probability 1/4. Intuitively, the mechanism satisfies
the following properties: (i) all agents have the same expected cost a, and (ii)
for any component in 7, with probability 1/2, no facility is opened inside the
component (but possibly at its extremities). To get this, each agent ¢ different
from ¢* and j* will have its own facility F; open at distance «, while ¢* and j*
will “share” a facility open either at y;-, or at y;«, or in the middle of the path
between y;+ and y;-. However, to ensure strategy-proofness, we need to carefully
combine these positions.

If we remove the component T* (while keeping its vertices) from 7', we now
have a collection of subtrees 7; for i € U, where 7; is rooted at y; (the location
of agent ). For each rooted-subtree 7;, assign the status odd or even to its
components according to the procedure previously defined. In Figure 3 (B) if we
remove T we have four subtrees rooted at 4, 6, 7 and 8. Bold components are
odd.

9 9
8 'L
2 3 10 2 3 10
1 4 e 11 1 4 7 11
12
A 12 5
6 A
13
(A)

B)

Fig. 3. (A) A tree 7 and a profile y where agents’ locations are dots. (B) The four
subtrees obtained after removing 7. Bold components are the odd ones.

We are now able to define the four placements Py, Py, P3, Py. Nevertheless,
recall that a node is in at least one odd component and at least one even com-
ponent. Each agent ¢ # ¢, j* is associated with a facility F;, while ¢* and j*
share a common facility. We describe in the following the placements of these
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Fig. 4. Placements Py, P2, P5, P,y for the instance in Figure 3. Agents ¢*,j* are 4, 7.
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Facilities are represented by squares.

facilities. We distinguish the agents with respect to the subtree 7; where they are.

Placement i 1€ Tix Jj* 1€ Tl e U\{i", 5" }i € L\ U
foreU

P at y; 0] no facility E 0] O

P no facility E at ;- (0] O @]

Ps mid. yi*,y;=| O no facility E T* E

Py no facility E |mid. yi=,y;«| O T E

In this table, E (resp. O) means that we open a facility F; in an even com-
ponent (resp. odd component) at distance « of y; for agent i; T* means that
the facility F; is opened in the component T, with distance « from y;. For
the location of any facility, if there are several choices, pick one arbitrarily. In
placements P3 and P, “mid. ¢*, 7%” means that the position in the middle in the
path connecting y;+ and y;-. Denote F*(y) the facility opened at this position.
In this case, i* and j* share the same facility F*(y).

An illustration is shown in Figure 4. For instance, since y is in the subtree
Ty = 7;~, the facility Fy associated with agent 2 is opened in an odd (bold)
component in placements P; and P; and in an even one in placements P» and

Py

Table 2. Placements of facilities associated with agents
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Analysis By definition, all the placements Py, Py, P3, P, are well defined, i.e.,
there are at most n — 1 opening facilities in each placement (one associated to
each agent i # i*, j*, plus only one shared by i* and j*). The following lemma
shows some properties of the mechanism.

Lemma 2. Given a reported profile y, the expected distance between y; and its
closest facility equals a(y) for 1 < i < n. Moreover, for any component, there
are at least two placements in {Py, Ps, P3, Py} where the component does not
contain any facility (but facilities can be at the extremities of the component).

Now we prove the strategy-proofness of the mechanism. Suppose that an
agent 7 strategically misreports its location as z; (while other agents’ locations
remain unchanged). Let x' = (2}, z_;), where x = (z1,...,2,) is the true lo-
cation profile. Define the parameters 2o := 2a(x),* := i*(x), j* := j*(x). For
every agent 7, N'(i,x) denotes the set of its neighbors in profile x (N (7, x) does
not contain %). The strategy-proofness is due to the two following main lemmas.

Lemma 3. No agent i has incentive to misreport its location as x} such that

N(i,x) # N(i,x').

Sketch of the proof. Tf N(i,x) # N(i,x'), then agent i is serviced by a facil-
ity outside 7" with probability 1/2 (by Lemma 2), where T” is the component
formed from A (i,x). Since the distance from z; to any agent in N (i,x) is at
least 2, agent ¢ has no incentive to report . O

Lemma 4. Agent i cannot strictly decrease its cost by reporting a location x} #
x; such that N(i,x) = N (i,x').

Theorem 2. The mechanism is strategy-proof and it induces a n/2-approzimation
according to the utilitarian objective and a tight 3/2-approzimation according to
the egalitarian objective.

Proof. The mechanism is strategy-proof by previous lemmas. The cost of each
agent is «, so in the utilitarian objective, the cost induced by the mechanism is
na. An optimal placement is to open facilities at the locations of all agents but
i*, which induces a cost 2«.. Hence, the mechanism is n/2-approximation for the
utilitarian objective.

Consider the egalitarian objective. By the mechanism, in P; and P, the max-
imum cost of an agent is «, while in P; and P, it is 2a. The average maximum
cost of the mechanism is 3a/2. An optimal solution is to open facilities at lo-
cations of agents other than ¢*, j* and open one facility at the midpoint of the
path connecting z;« and z;-; that gives a cost a.. So, the approximation ratio is
3/2 and this ratio is tight, i.e., no randomized strategy-proof mechanism can do
better [3, Theorem 2.4]. O
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3.3 Lower bounds on the approximation ratio of SP mechanisms

In this section, we consider only the utilitarian objective (as the tight bound for
the egalitarian objective has been derived in the previous section).

Proposition 2. No deterministic strategy-proof mechanism on a line metric
space has an approzimation ratio smaller than 3/2.

The following proposition indicates that even with randomization, we cannot
get an optimal strategy-proof mechanism for the utilitarian objective.

Proposition 3. No randomized strategy-proof mechanism on a line metric space
has an approzimation ratio smaller than 10 — 4y/5 ~ 1.055.

4 Discussion and Further Directions

The results presented in this paper are a first step towards handling the general
case where one wishes to locate k facilities in a metric space with n agents (for
1 < k < n). The general case is widely opened since nothing on the performance
of strategy-proof mechanisms is known. Any positive or negative results on the
problem would be interesting. We suggest a mechanism based on the Inversely
Proportional Mechanism in which the k facilities are put on reported locations.
Starting with the n reported locations the mechanism would iteratively elimi-
nate a candidate until k locations remain. We do not know whether this mech-
anism is strategy-proof. For restricted spaces such as line, cycle or tree metric
spaces, there might be some specific strategy-proof mechanisms with guaranteed
performance which exploits the structures of such spaces. Besides, some charac-
terization of strategy-proof mechanisms (as done by Moulin or Schummer and
Vohra [1,2]), even not a complete characterization, would be helpful.
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Appendix

A SP mechanisms for general metric spaces

Lemma 1. The Inversely Proportional Mechanism is strategy-proof in a general
metric space.

Proof. Recall that x = (x1,...,2,) is the true location profile of the agents. Let
d; :=d(zj, Pj(x)) for 1 <j <n.

If there are at most (n — 1) distinct locations in profile x (some d; equals
0) then by the mechanism, every agent has cost 0 and no one has incentive to
strategically misreports its location. In the sequel, assume that all the agent
locations in x are distinct (d; > 0 Vj).

If all agents report truthfully their locations, the cost of agent i is

o Zp] (i, P <>>—pi<x>-di_m

By the formula, it is straightforward that ¢; < d;.

In the sequel, we suppose that ¢ misreports its location as x}. Let x’ =
(xf,x_;) be the location profile when i reports z; and the other agents report
truthfully their locations. Let d; = d(P;(z;,x’)) for j # i and d} = d(P;(z},x')).
We will prove that ¢} := ¢;(f,x ) > .

If z; = x; for some other agent j then by the mechanism, all the facilities
are opened in P;(x). That induces the cost d; for agent ¢, which is strictly larger
than ¢;. So if 7 benefits by its strategical report, the new profile x’ must consist
of n distinct locations, i.e., d;- >0V1l<j<n.

The new cost of agent i is

= ij d(xs, Pj(x')) = pi(x') - di + (1 = pi(x')) min{d;, d(a;, 27) }

where the inequality is due to the fact that in P;(x’) (for j # i), agent ¢ can
choose either some facility in {x1,...,2;-1,%+1,...,2n} or the facility opened
at x}. Define T':= {j : d; # d;, j # i}. Note that

() —
bi S ier ds + 3 jep 1d; + 1/d;

Let e := d(z;, z}). Remark that ¢ has no incentive to report its location 2 in
such a way that e > d; since otherwise ¢} > p;(x') - d; + (1 — p;(x'))d; = d; > ¢;.
In the sequel, consider e < d;. In this case,

¢; 2 pi(x') - di + (1 = pi(x')) - e (1)

Observe that the right-hand side of the inequality above decreases if p;(x’) de-
creases (since e < d;).
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First, we claim that e > |d; — d;|. Let F be a facility in placement P;(x)
such that d; = d(z;, F'), where d(z;, F') is the distance between z; and F. We
have d; — d; = d(z}, P;(x)) — d; < d(}, F) — d(z;, F) < d(zy,2;) = e (the
last inequality is due to the triangle inequality). Similarly, d; — d; < e. Thus,

We are now ready to prove that ¢} > ¢;.

1/d; .
In this case, pl(x ) > S l/dj+Z/j;T T, Let A=>. di Using (1) we
have .,
, 4 Ae  d; + Aed,

> + -
"TA+ g A+ Adi+l

We show that ¢ > ¢; = ﬁ/di by proving

d; + Aed, d;
Ad +1 ~ Ad;+1
& Ad? + d; + A%ed;d, + Aed, > Ad;d, + d;
& Ad? + A’ed;d, + Aed, > Ad;d,

Recall that e > |d} —d;| > d;—d;. Thus Ad?+ Aed] > Ad?+ Ad* — Ad,;d; > Ad,d,
(by Cauchy inequality). Therefore, ¢ > c¢;.

Case 2: Y e d% > ier d%-'

Let R ={j € T :d; <d;} CT. For every agent j € R, dj = d(P;(x'),z;) <

d(Pj(x),z;) = dj. The difference is necessarily due to the new report x}, so
I— < 1 vy, (") > d/

dj = d(xj, ;). As 5 <z Vie T\ R, p;(x') > S +ZJ€R T

7
J

I+

IS

Denote B = ZMRJ# <, we have using (1):

1 d; 1
, 7 B+ 2jer F+(B+Tiend)e
CiZB — 1'di+B T, 1 ¢% ’B T 1
tljerT T tljera T tljera T
. : / o 1 .
Again, we show ¢ >C’_7B+Z_jeRfj+dﬁ by proving
d; 1

>
B+ZjeRd%+dL; B+ZjeRdLj+d%

& —+ B+Zd, e B+Z—+l >B+Z

JER J JER J ’
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It is sufficient to prove that

Bdl Be
2“>B 2
AR @
and p )
iy 4 f 5> vieR (3)

did; djd; did9 - d}
Consider inequality (2). If B = 0 or if d; > d} then the inequality is straight-
forward. If d; < d] then the left-hand side of (2) is larger than 245£5¢ > B since
e > d; — d;. The inequality follows.

Consider inequality (3) for a fixed agent j € R. Observe that e = d(z;,x}) >
d(wi, w5) — d(xj, x5) > dj — d. If d; > dj then

d e ddi+ed _ ddj+(d—d)d, d;d+(di—d)d; 1
dd;, " d;d; ~  didd; © did; d, did; d’ =
Otherwise, if d; < d} then fd; > ﬁd}. Therefore,
d; e e d; e e didg + ed; + ed; did; + ed; + ed;
/ + ! + ! > / + ! + ! J! = ! ! > ! ! —
d;d; djdj didj d;d; djdj didj didjdj didjdj
- di(d +e) + (d} — d;)d; _ did; + di(d + e — dj) 1
= did,d, did; d’ =

Thus, inequality (3) follows. Therefore, ¢, > ¢; since inequalities (2) and (3)
hold.

In both cases, we have proved that any agent ¢ has no incentive to misreport
its location, i.e., the mechanism is strategy-proof. O

B SP mechanisms on trees

Lemma 2. Given a reported profile y, the expected distance between y; and its
closest facility equals a(y) for 1 < i < n. Moreover, for any component, there
are at least two placements in {Py, Py, P3, Py} where the component does not
contain any facility (but facilities can be at the extremities of the component).

Proof. Consider an agent i # i*(y), j*(y) where we recall that i*(y), j*(y) de-
note the two players whose reported locations are at minimum distance. In any
placement, the closest facility is opened at distance a(y) from y;. For agent
i* = i*(y), the distance from y;» to the closest facility is: 0 in Py, 2a(y) in P,
a(y) in P; and Py. Hence, the average is a(y), and similarly for agent j*(y).
Let T' be the component containing the locations of agents i*(y) and j*(y).
No facility is opened inside T under placements P; and P,. Besides, by the def-
inition of the mechanism, there are at least two placements in {Py, P2, Ps, Py}
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where a component does not contain a facility!. ]

Lemma 3. No agent i has incentive to misreport its location as x} such that

N(i,x) # N(i,x').

Proof. Suppose that N (i,x) # N (i,x’). In this case, the locations of agents in
N (i,x) form a component 7" of tree 7 with respect to profile x'. By Lemma 2,
with probability at least 1/2, no facility is opened in 7", i.e., in those cases agent
1 is serviced by a facility outside T”. Note that the distance from z; to the loca-
tion of any agent in NV (i,x) is at least 2. Therefore, the new cost of agent i is
at least «, meaning ¢ has no incentive to report . O

Lemma 4. Agent i cannot strictly decrease its cost by reporting a location x} #
x; such that N(i,x) = N(i,x’).

Proof. As N (i,x) = N (i,x’), the path connecting z; and 2} contains no other
agent’s location. Hence, there is a component 77 in the partition of 7 with
respect to x’ such that «; € T/ and z; € T]. Let 2o’ be the minimum distance
between two neighbors in x’. Also let e = d(z;, z}).

Case 1: Consider the case where, with the new location a7, ¢ is neither *(x’)
nor j*(x’). Hence, o’ > a. By Lemma 2, with probability at least 1/2, no facility
is opened inside T7. In this case, the distance from z; to the closest facility is at
least min{d(z;, z}) + d(x}, F}), d(x;, x¢) + d(xe, F})} where: £ € N(i,x) and F} is
its associated facility; and FY is the facility opened at distance o’ from a7, F} is in
a component different from 77. In other words, this distance is at least min{e +
o/, 2a} since d(z}, F!) = o and d(z;, ;) > 2a. Besides, with probability at most
1/2, the closest facility to x; is either F] (the facility opened in component 77
at distance o from ) or some other facility F in 77 for some ¢ € N (4,x). The
former gives a distance d(x;, F}) > max{d(z}, F}) —d(z}, ;),0} = max{a’—e, 0}
(by triangular inequality). The latter gives a distance d(z;, F;) > max{d(x;, z¢)—
d(ze, F}),0} > max{2a — o/, 0}. Hence, the cost of agent ¢ is at least

1
3 (min{e + o/, 2a} + min{max{a’ — e, 0}, max{2a — o/, 0}}) > «

where the inequality is due to o/ > «. Indeed, this is immediate if e + o’ > 2a.
Otherwise, the cost is either at least e+a’+a'—e = 2a/, or e+a’ +2a—a’ > 2a.
Hence, ¢;(x') > ¢;(x).

! There are facilities in T under P and P; but facilities are put on the extremities
under placements P; and P». Notice that a component may never receive a facility
if there are two components named {i, 00} and 4 is located at the intersection of two
branches of the tree, see location 3 in Figure 2.
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Case 2: Consider the case where with the new location z) agent i = i*(x’) (the
case where i = j*(x’) is completely similar)?. Let j = j*(x’). Let dy, do, d3, dy4 be
the distance from z; to the closest facility in placements Py, Py, P3, Py (in x’),
respectively. Let T” be the component in 7 with respect to x’ that contains
and x;. By the triangle inequality, we know that

e+2a" =d(x;, ) + d(x),x;) > d(z;, z;) > 2« (4)

We study the two sub-cases and prove that Zle dy > 4o always holds, meaning
that agent i’s deviation cannot be profitable since its cost is « when it reports
its true location x;.

(a) The true location z; belongs to T".

For each agent ¢ # i, j, let F be its associated facility. The facility opened
in the middle of [z}, ;] is denoted by F*(x"). We have:

dy = min{d(z;, z}), d(z;, F})} = min{e, d(x;, x¢) + d(ze, F})} > minf{e, 2a + o’}

(
do = min{d(z;, z;), d(x;, F})} > min{d(x;, z;),2a + o'} > 2« (
ds = min{d(z;, F*(x')),d(z;, F})} > min{2a — o', e + o/, 2a + o'} (
dy = min{d(z;, F*(x')),d(z;, F})} > min{2a — a’,e + o/, 2a + o'} (
where £ # i, j is some agent in M (i, x’) (note that agents £ in the expressions
above are not necessarily the same). The first equality in (5) is due to the
fact that in placement P;, agent i goes either to the facility opened at x or
to a facility (outside T") associated to some other agent. In placement P,
agent ¢ can either choose a facility opened at z; or another one outside 77,
that is translated in the equality in (6). In placement P; and P,, agent ¢
can go either to facility F*(x’) opened in the midpoint connecting x} and

xj, or to the facility associated with some agent ¢ (inside and outside 7’
respectively).

If e+ <2a—a then Zf:z dy > 2a+2e+2a’ > 4o (since e+ 2 > 2a).
In the sequel, assume ¢ + o’ > 2a — /. If e > 2a + o then dy + d3 >
4. Otherwise, 2?21 dy > e+ min{d(z;,z;),2a + o/} + 2max{2a — «/,0}.
Note that by the triangle inequality e + d(z;,z;) = d(z}, z;) + d(z;, x;) >
d(z}, ;) = 2¢/. Therefore, Zle d; > min{2a/+4a—20’, 2a+a'+2a—a'} =
4. Hence, the new cost of ¢ is at least a.

(b) The true location x; does not belong to T".

2 Contrasting with Case 1, o’ < a does not necessarily hold.
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Let T/ be the component in 7 with respect to profile x” such that T} contains
x; and z}. Similar to the previous case, we have:

do = min{d(z;, x;), d(z;, F})} = min{d(z;, z;) + d(«}, x;),d(z;, x¢) + d(z¢, F))}
> min{e + 2/, 2a + o'} > 2« 9)
dsz = min{d(z;, F*(x')),d(x;, F})}
> min{d(z;, x}) + d(x}, F*(x')), d(z;, x¢) — d(x¢, F))} = min{e + o/, 2a — o'}
(10)
dy = min{d(z;, F*(x')),d(z;, F})} > min{e + o/, 2a + o'} (11)

where ¢ # i,j is some agent in N (i,x’) (again agents ¢ in the expressions
above are not necessarily the same). In placement P, agent ¢ can choose
either a facility opened at z; or another one outside 7. The last inequality
of (9) is due to e + 2a’ > 2« (Inequality 4). In placement P; and Py, agent
i can go either to facility F*(x’) opened in the midpoint connecting z, and
x;, or some facilities associated with some agent /.

Ife+ o <2a—a then Z?:Q dy > 2a+2e+ 20’ > 4o (since e+ 2/ > 2a).
Otherwise, E?:z d; > min{e + 4o, 4a} > 4. Again, the new cost of agent ¢
is at least a.

In conclusion, no agent has incentive to strategically misreport its location. O

Proposition 2. No deterministic strategy-proof mechanism on a line metric has
an approzimation ratio smaller than 3/2.

Proof. We prove the theorem for four agents (the construction can be straight-
forwardly generalized for any even number of agents). Let f be a deterministic
SP mechanism with finite approximation ratio. Consider a profile x in Figure 5
in which 2y = A,29 = B,23 = C,24 = D where d(A,B) = d(C,D) = 1 and
d(B,C) is very large. For any placement of three facilities, there is one agent
with cost at least 1/2. By symmetry, suppose that agent 4 has cost at least 1/2.

Let f: (D, +o0) — (D, +00) U {400} be the function indicating the facility
opened in (D, +00) with smallest coordinate while the location of agent 4 varies
in interval (D, +00) (the other agents’ locations remain unchanged at A, B, C).
Conventionally, f(z) = +oo if there is no facility opened in (D, +oc). Let F* :=
inf Image(f). As f has a finite approximation ratio, F* is finite (while the
location of agent 4 is far enough from D, f must open a facility closed to that
location).

For € > 0, let *(¢) = inf{ f~}([F*, F* +¢))}, i.e., for any § > 0, there exists
z5(€) € (D,+00) such that |z5(e) — z*(e)] < 6 and f(ws(e)) € [F*, F* + ¢).

If Image(f) N (D, D + 1/2) # () then agent 4 may report a false location and
reduce its cost, contradicting the strategy-proofness of f. Therefore, Image(f) C
[D +1/2,400) U {400}

If there exits ey such that 2*(eg) = D. Then consider a profile in which agent
4 locates at xs5(eg) (0 arbitrarily small) and the other agents locate at A, B, C.
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1 +o0 z*

A B C D —

Fig. 5. Instance which gives the lower bound on the ratio of a deterministic strategy-
proof mechanism in a line metric space. The cases (i) and (ii) are illustrated in the
upper and lower lines, respectively.

We have f(z5(eo)) € [D+1/2,+00) and no facility is opened by f in the interval
(D —1/2, D) (by strategy-proofness of f). Thus, the cost of agent 4 is at least
1/2 — §. Moreover, there are at most two facilities in (—oo, D — 1/2) so the total
cost of the other agents is at least 1. Therefore, the total cost is at least 3/2 — 4,
while OPT is 1. In the sequel, assume that z*(e) > D for all e.

Fix € > 0 and denote z* := z*(¢). Consider a profile y in which agent 4
locates at y4 = min{z*, D + 1/2} — v (v > 0 small enough such that y, > D)
and the other agents locate at A, B, C. By definition of z*, f(y4) > F*. Observe
that the closest facility to agent 4 is not f(y4) since otherwise, the agent could

report its location as in f~! ([F*,F* + f(y“%) to strictly reduce its cost.

Hence, the closest facility to y4 is in (—oo, D — 1/2). In other words, no facility
is opened in the ball with center y, and radius y4 — (D — 1/2).

Consider two cases: (i) D 4+ 1/2 < z*; and (ii) D + 1/2 > 2*(> D). (An
illustration is shown in Figure 5.)

(i) In this case y4 = D +1/2 —~. In profile y, no facility is opened in the ball
with center y4 and radius 1 — . Hence, for any placement of three facilities
with that property, the total cost is at least 3/2 —~. The optimal cost is 1
by placing facilities at locations of all agents but agent 1.

(ii) In this case y4 = x* — 7. By strategy-proofness, F™* is not in the ball

with center y4 and radius ys — (D — 1/2) — e. (Otherwise, agent 4 can
reduce the cost by reporting its location in f=* ([F*, F* + ¢))). Hence, F* >
Yo+ (ya—D+1/2) —e=2(z* —y) —D+1/2 —e.
Let § > 0 such that 2* +8 < D+1/2 and f(z*+9) € [F*, F* +¢). Consider
a profile z in which agent 4 locates at z4 = z* + 0 and the other agents
locate at A, B,C. In this profile, no facility is opened in (D — 1/2, F*)
and there is (at least) one facility opened in [F*, F* + €). Therefore, the
cost of agent 4 is at least |F™* — z4| > 1/2 — § — 2y — € (since z* > D).
For any placement of the two other facilities in interval (—oo, D — 1/2),
the total cost of the other agents is at least 1; so the total cost is at least
3/2 — 6 — 2y — e. The optimal cost is 1 by placing facilities at locations of
all agents but agent 1.
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In any case, we can choose parameter €, §,y arbitrarily small, so the approxima-
tion ratio is arbitrarily close to 3/2. m|

Proposition 3. No randomized strategy-proof mechanism on a line metric space
has an approzimation ratio smaller than 10 — 4y/5 ~ 1.055.

Proof. Let f be a randomized strategy-proof mechanism with an approximation
ratio strictly better than 1+ ¢ > 1. Consider a profile x where the positions of
the agents are 1 = A,zo = B,z3 = C,x4 = D (Figure 6). For any placement
of three facilities, the total cost is at least 1. Hence, there exists an agent with
(expected) cost at least 1/4. Without loss of generality, suppose that agent 1
(with z; = A) has cost ¢1(f,x) > 1/4.

Fig. 6. Instance which gives the lower bound on the ratio of a randomized strategy-
proof mechanism in a line metric space.

Let 0 < § < 1/4 be a constant to be defined later. Let A’ ¢ [A, B] be a
location at distance ¢ from A. Let y be the profile in which agent 1 is located
at y; = A’ and the other agents’ locations are the same as in x. By strategy-
proofness, ¢1(f,x) < § 4+ ¢1(f,y). Hence, ¢1(f,y) > 1/4 — 4. In y, an optimal
solution has cost 1 (e.g. place the facilities at the locations of the agents other
than agent 4). As f is a (1 + ¢)-approximation, the total cost of the solution
returned by the mechanism is ¢1(f,y) + co(f,y) + e3(f,y) + ca(f,y) < 1+ e.
Thus, cs(f,y) +ca(f,y) < 3/4+¢e+4.

In outcome f(y), let p be the probability that the closest facility of agent
3 is also the closest facility of agent 4 (in other words, agents 3 and 4 share
one facility with probability p; and with probability (1 — p) there is at most one
facility between A’ and B). We have c3(f,y) + c4(f,y) > p- 1 = p. Therefore,
p<3/4+ec+0.

Besides, the social cost of f(y) is at least p+ (1 —p)(1 +0) = 1 4+ — pd.
This is lower bounded by 14+ 8§ — (3/4+¢c+6)d. Hence, 1 +6 — (3/44+e+6)d <

C(f,y) <1+e. We de2duce that e > 5/14;662.
The function 6/14_;55 for 6 € (0,1) attains maximal value 9 — 4v/5 for § =

\/5/2— 1. Therefore, the approximation ratio is at least 14+¢ > 10—4+/5 =~ 1.055.
O



