
Primal-dual and dual-fitting analysis of online scheduling

algorithms for generalized flow-time problems

Spyros Angelopoulos∗ Giorgio Lucarelli† Nguyen Kim Thang‡

1 Introduction

We consider online scheduling problems in which a set of jobs J arrive over time, and
the jobs must be executed on a single processor. In particular, each job j ∈ J is released
at time rj and it is characterized by a processing time pj > 0 and a weight wj > 0, which
become known after its release. The density of job j is δj = wj/pj . Given a scheduling
strategy, we denote by Cj the completion time of job j. The flow time of j is then defined
as Fj = Cj − rj . A natural optimization objective is to design schedules that minimize
the total weighted flow time, i.e.,

∑
j∈J wjFj . We assume that preemptions are allowed.

Total weighted flow-time has been extensively studied. In the unweighted setting, it
is well-known that the online algorithm Shortest Remaining Processing Time is optimal.
In contrast, Bansal and Chan [2] showed that no algorithm is constant-competitive for
minimizing total weighted flow-time on a single processor. This rather pessimistic lower
bound motivated the study of the effect of resource augmentation, originally introduced
by Kalyanasundaram and Pruhs [6]. Given some optimization objective (e.g. total
flow time), an algorithm is said to be α-speed β-competitive if it is β-competitive with
respect to an offline optimal scheduling algorithm of speed 1

α (here α ≤ 1). In this
context, Becchetti et al. [3] showed that the natural algorithm Highest-Density-First
(HDF) is (1 + ε)-speed 1+ε

ε -competitive for total weighted flow time.
Im et al. [5] introduced a generalization of the total weighted flow-time problem,

in which jobs may incur non-linear contributions to the objective. More formally, they
defined the Generalized Flow-Time Problem (GFP) in which the objective is to minimize∑

j∈J wjg(Fj), where g : R+ → R+ is a given non-decreasing cost function with g(0) = 0.
This extension captures many natural variants of flow-time with real-life applications;
moreover, it is an appropriate formulation of the setting of optimizing simultaneously
several objectives. Im et al. [5] showed that HDF is (2 + ε)-speed O(1ε )-competitive
algorithm for general non decreasing functions g. On the negative side, they showed
that no oblivious algorithm is O(1)-competitive with speed augmentation 2− ε, for any
ε > 0; the term oblivious refers to algorithms that do not know the function g. If g is a
twice-differentiable, concave function, then there is an (1 + ε)-speed O( 1

ε2
)-competitive

algorithm, while for unit size jobs and general cost functions, FIFO is (1 + ε)-speed
4
ε2

-competitive [5]. Convex cost functions have been studied by Fox et al. [4].
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Most of the above results rely to techniques based on amortized analysis, with or
without an explicit potential function. More recently, techniques based on tools from
linear programming have emerged for online scheduling problems. One of the main ben-
efits in the application of primal-dual techniques is the fact that it offers intuition on
both aspects of algorithm design and analysis. The objective of this work is to present a
unified framework for a class of generalized flow-time problems that is based on primal-
dual and dual-fitting techniques. More precisely, we first give a primal-dual analysis of
HDF for the total weighted flow time problem which, albeit significantly more compli-
cated than the known combinatorial one, yields insights about more complex problems.
We then abstract the salient ideas of this proof into a framework which is applicable to
more complex objectives and uses similar intuitive geometric interpretations of the pri-
mal/dual objectives. This framework allows us to either reprove in a simpler way known
results or obtain improvements as well as new results. A full version of this abstract can
be found in [1].

2 Results

A common approach in obtaining a competitive scheduling algorithm is by first deriving
an algorithm for the fractional objective. Let qj(t) be the remaining processing time of

job j at time t. The fractional remaining weight wj(t) of j at time t is wj
qj(t)
pj

. The

fractional objective of the GFP problem is
∑

j wj(t)g
′(t − rj). In [4] is proved that

if an algorithm is s-speed c-competitive for online fractional GFP, then there exists an
(1 + ε)s-speed 1+ε

ε c-competitive algorithm for the integral objective, for 0 < ε ≤ 1.

Let xj(t) ∈ [0, 1] be a variable that indicates the execution rate of j ∈ J at time t.
The following is a valid linear-programming formulation for fractional GFP and its dual.

min
∑
j∈J

δj

∫ ∞
rj

g(t− rj)xj(t)dt (P)

∫ ∞
rj

xj(t)dt ≥ pj ∀j ∈ J (1)∑
j∈J

xj(t) ≤ 1 ∀t ≥ 0 (2)

xj(t) ≥ 0 ∀j ∈ J , t ≥ 0

max
∑
j∈J

λjpj −
∫ ∞
0

γ(t)dt (D)

λj − γ(t) ≤ δjg(t− rj) ∀j ∈ J , t ≥ rj (3)

λj , γ(t) ≥ 0 ∀j ∈ J ,∀t ≥ 0

The primal complementary slackness (CS) condition states that for a given job j
and time t, if xj(t) > 0, i.e., if the algorithm executes job j at time t, then it should
be that γ(t) = λj − δjg(t − rj). We would like then the dual variable γ(t) to be such
that we obtain some information about which job to schedule at time t. To this end,
for any job j ∈ J , we define the curve γj(t) = λj − δjg(t − rj), with domain [rj ,∞),
and slope −δj . In order to ensure feasibility, our algorithm for every t ≥ 0 choose
γ(t) = max{0,maxj∈J :rj≤t{γj(t)}}. We say that at time t the line γj is dominant if
γj(t) = γ(t). We can thus restate the primal CS condition as a dominance condition: if a
job j is executed at time t, then γj must be dominant at t. Based on this, we abstract the
essential properties in order to obtain optimal online algorithms for fractional objectives.
We consider that the primal solution is generated by an online algorithm A. The crux
is in maintaining dual variables λj , upon release of a new job z at time τ , such that the
following properties are satisfied: (P1) Future dominance: if the algorithm A executes
job j at time t ≥ τ , then γj is dominant at t; (P2) Past dominance: if the algorithm
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A executes job j at time t < τ , then γj remains dominant at t. In addition, the primal
solution for t < τ does not change due to the release of z; and (P3) Completion: γ(t) = 0
for all t > Cmax, where Cmax is the completion time of the last job.

Theorem 1. Any algorithm that satisfies the properties (P1), (P2) and (P3) with respect
to a feasible dual solution is an optimal online algorithm for the fractional GFP problem
with general cost functions g.

Corollary 2.
(i) HDF is optimal for the fractional online GFP problem with linear cost function.
(ii) HDF is optimal for the fractional online problem of minimizing

∑
j∈J wjg(Cj).

(iii) Adapted HDF is maxj
maxi bij
mini bij

-speed 1-competitive for the online Packing Scheduling

Problem problem of minimizing
∑

j∈J δj
∫∞
rj

(t− rj)xj(t)dt subject to packing constraints

{Bx ≤ 1,x ≥ 0} which must be upheld at all times, where B = {bij > 0}.
(iv) FIFO (resp. LIFO) is optimal for the fractional online GFP problem with convex
(resp. concave) costs functions and jobs of equal density.

In order to allow for competitive algorithms, we relax certain properties: (Q1) if the
algorithm A schedules job j at time t ≥ τ then γj(t) ≥ 0 and λj ≥ γj′(t) for every other
pending job j′ at time t; (Q2) if the algorithm A schedules job j at time t < τ , then
γj(t) ≥ 0 and λj ≥ γj′(t) for every other pending job j′ at time t. In addition, the primal
solution for t < τ is not affected by the release of z; and (Q3) γ(t) = 0 for all t > Cmax.

Theorem 3. Any algorithm that satisfies the properties (Q1), (Q2) and (Q3) with re-
spect to a feasible dual solution is a 1

1−ε -speed 1
ε -competitive algorithm for the fractional

GFP problem with general cost functions g.

Corollary 4. FIFO (resp. HDF) is 1
1−ε -speed 1

ε -competitive for the fractional online
GFP problem with general cost functions and equal-density jobs (resp. for the fractional
online GFP problem with concave cost functions).
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