Fundamental Computer Science
Turing Machines (extensions)
Training session

Denis Trystram

MoSIG1-M1Info, 2021
Consider a set \(A = \{a_1, a_2, \ldots, a_n\} \) of positive integers and an integer \(w \in \mathbb{N} \).

Give a Non-deterministic Turing Machine that recognizes the language \(L = \{A' \subseteq A : \sum_{a_i \in A'} a_i = w\} \).
1. choose non-deterministically a set $A' \subseteq A$
2. add the elements of A'
3. if they sum up to w, then accept
Solution

1. choose non-deterministically a set $A' \subseteq A$
2. add the elements of A'
3. if they sum up to w, then accept

- How to choose A' non-deterministically?
 - produce all binary numbers of n digits
 - start from $00\ldots0$ and add 1 at each iteration
Write a program for a Random Access Turing Machine that multiplies two integers. Assume that the initial configuration is $(1; 0, a_1, a_2, 0; \emptyset)$.
Write a program for a Random Access Turing Machine that multiplies two integers.
Assume that the initial configuration is \((1; 0, a_1, a_2, 0; \emptyset)\)

1: while \(R_1 > 0\) do
2: \(R_1 \leftarrow R_1 - 1\)
3: \(R_3 \leftarrow R_3 + R_2\)
Write a program for a Random Access Turing Machine that multiplies two integers. Assume that the initial configuration is \((1; 0, a_1, a_2, 0; \emptyset)\)

1: \textbf{while } R_1 > 0 \textbf{ do}
2: \quad R_1 \leftarrow R_1 - 1
3: \quad R_3 \leftarrow R_3 + R_2

or (all computations should pass through \(R_0\))

1: \quad R_0 \leftarrow R_1
2: \quad \textbf{while } R_0 > 0 \textbf{ do}
3: \quad R_0 \leftarrow R_0 - 1
4: \quad R_1 \leftarrow R_0
5: \quad R_0 \leftarrow R_3
6: \quad R_0 \leftarrow R_0 + R_2
7: \quad R_3 \leftarrow R_3
Write a program for a Random Access Turing Machine that multiplies two integers.
Assume that the initial configuration is $(1; 0, a_1, a_2, 0; \emptyset)$

1: while $R_1 > 0$ do
2: $R_1 \leftarrow R_1 - 1$
3: $R_3 \leftarrow R_3 + R_2$

or (all computations should pass through R_0)

1: $R_0 \leftarrow R_1$
2: while $R_0 > 0$ do
3: $R_0 \leftarrow R_0 - 1$
4: $R_1 \leftarrow R_0$
5: $R_0 \leftarrow R_3$
6: $R_0 \leftarrow R_0 + R_2$
7: $R_3 \leftarrow R_3$

1: load 1
2: jzero 9
3: sub =1
4: store 1
5: load 3
6: add 2
7: store 3
8: jump 1
9: halt