
Fundamental Computer Science
Lecture 4: Complexity

Pseudo-polynomial algorithms

Denis Trystram
MoSIG1 and M1Info – University Grenoble-Alpes

March, 2021

Content

I Deal with numerical problems

I Refine the notion of NP-completeness
I pseudo-polynomial problems
I weakly and strongly NP-hardness

SubsetSum

Let us introduce a new problem:

SubsetSum

Input: a set of positive integers A = {a1, a2, . . . , ak}
t ∈ N

Question: is there a set B ⊆ A such that
∑

ai∈B ai = t?

SubsetSum ∈ NP-complete

First, SubsetSum ∈ NP

Verifier

I given the set B ⊆ A, create the sum of the elements in B and
compare with t

We will show next:
3SAT ≤P SubsetSum

SubsetSum ∈ NP-complete

First, SubsetSum ∈ NP

Verifier

I given the set B ⊆ A, create the sum of the elements in B and
compare with t

We will show next:
3SAT ≤P SubsetSum

Construction of the reduction from 3SAT

1. for each variable xi create two decimal numbers yi and zi
I intuition:

– select one of yi, zi in B
– if yi is in B, then xi = TRUE
– if zi is in B, then xi = FALSE

I each yi, zi has two parts:
– a variable part (see above)
– another part built from the clause it appears in

2. for each clause Cj , we create two decimal numbers gj and hj

Construction of the reduction from 3SAT

1. for each variable xi create two decimal numbers yi and zi
I intuition:

– select one of yi, zi in B
– if yi is in B, then xi = TRUE
– if zi is in B, then xi = FALSE

I each yi, zi has two parts:
– a variable part (see above)
– another part built from the clause it appears in

2. for each clause Cj , we create two decimal numbers gj and hj

x1 x2 x3 . . . xn C1 C2 . . . Cm

y1 1 0 0 . . . 0
z1 1 0 0 . . . 0
y2 0 1 0 . . . 0
z2 0 1 0 . . . 0
y3 0 0 1 . . . 0
z3 0 0 1 . . . 0
...

...
...

. . .
...

yn 0 0 0 0 1
zn 0 0 0 0 1
g1 1 0 . . . 0
h1 2 0 . . . 0
g2 0 1 . . . 0
h2 0 2 . . . 0
...

...
. . .

...
gm 0 0 0 1
hm 0 0 0 2

x1 x2 x3 . . . xn C1 C2 . . . Cm

y1 1 0 0 . . . 0 1 0 . . . 0
z1 1 0 0 . . . 0 0 0 . . . 1
y2 0 1 0 . . . 0 0 1 . . . 0
z2 0 1 0 . . . 0 1 0 . . . 0
y3 0 0 1 . . . 0 1 1 . . . 0
z3 0 0 1 . . . 0 0 0 . . . 1
...

...
...

. . .
...

...
. . .

...
yn 0 0 0 0 1 0 0 . . . 1
zn 0 0 0 0 1 0 0 . . . 0
g1 1 0 . . . 0
h1 2 0 . . . 0
g2 0 1 . . . 0
h2 0 2 . . . 0
...

...
. . .

...
gm 0 0 0 1
hm 0 0 0 2

x1 x2 x3 . . . xn C1 C2 . . . Cm

y1 1 0 0 . . . 0 1 0 . . . 0
z1 1 0 0 . . . 0 0 0 . . . 1
y2 0 1 0 . . . 0 0 1 . . . 0
z2 0 1 0 . . . 0 1 0 . . . 0
y3 0 0 1 . . . 0 1 1 . . . 0
z3 0 0 1 . . . 0 0 0 . . . 1
...

...
...

. . .
...

...
. . .

...
yn 0 0 0 0 1 0 0 . . . 1
zn 0 0 0 0 1 0 0 . . . 0
g1 1 0 . . . 0
h1 2 0 . . . 0
g2 0 1 . . . 0
h2 0 2 . . . 0
...

...
. . .

...
gm 0 0 0 1
hm 0 0 0 2

t 1 1 1 . . . 1 4 4 . . . 4

Example

(x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄3 ∨ x4)

x1 x2 x3 x4 C1 C2 C3

y1 1 0 0 0 1 0 0
z1 1 0 0 0 0 0 1
y2 1 0 0 0 1 0
z2 1 0 0 1 0 0
y3 1 0 1 1 0
z3 1 0 0 0 1
y4 1 0 1 1
z4 1 0 0 0
g1 1 0 0
h1 2 0 0
g2 1 0
h2 2 0
g3 1
h3 2

W 1 1 1 1 4 4 4

SubsetSum ∈ NP-complete

I Size of the created instance:
I |A| = 2n+ 2m
I each created integer has at most n+m digits (including t)

→ integers in the interval [0, 10n+m]
→ binary representation: at most log2 10

n+m = O(n+m) bits

On the example (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄3 ∨ x4)
a feasible assigment is: x1 = x4 = T , x2 = x3 = F

I B contains:
1000100, 100100, 10001, 1011
200, 10, 20, 2

I t = 1111444

I F is satisfiable iff there is a set B ⊆ A with
∑

ai∈B ai = t

SubsetSum ∈ NP-complete

I Size of the created instance:
I |A| = 2n+ 2m
I each created integer has at most n+m digits (including t)

→ integers in the interval [0, 10n+m]
→ binary representation: at most log2 10

n+m = O(n+m) bits

On the example (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄3 ∨ x4)
a feasible assigment is: x1 = x4 = T , x2 = x3 = F

I B contains:
1000100, 100100, 10001, 1011
200, 10, 20, 2

I t = 1111444

I F is satisfiable iff there is a set B ⊆ A with
∑

ai∈B ai = t

SubsetSum ∈ NP-complete

I Size of the created instance:
I |A| = 2n+ 2m
I each created integer has at most n+m digits (including t)

→ integers in the interval [0, 10n+m]
→ binary representation: at most log2 10

n+m = O(n+m) bits

On the example (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x̄1 ∨ x̄3 ∨ x4)
a feasible assigment is: x1 = x4 = T , x2 = x3 = F

I B contains:
1000100, 100100, 10001, 1011
200, 10, 20, 2

I t = 1111444

I F is satisfiable iff there is a set B ⊆ A with
∑

ai∈B ai = t

(⇒)

I assume that F is satisfiable

I for each xi:
– if xi = TRUE, then add yi to B
– if xi = FALSE, then add zi to B

I for each Cj :
– if 1 literal is TRUE, then add both gj and hj in B
– if 2 literals are TRUE, then add hj in B
– if 3 literals are TRUE, then add gj in B

I B is a SubsetSum
– left part of t: we select only one of yi and zi, for each 1 ≤ i ≤ n
– right part of t: we select gj and hj in order to have exactly 4 for
each clause

(⇒)

I assume that F is satisfiable

I for each xi:
– if xi = TRUE, then add yi to B
– if xi = FALSE, then add zi to B

I for each Cj :
– if 1 literal is TRUE, then add both gj and hj in B
– if 2 literals are TRUE, then add hj in B
– if 3 literals are TRUE, then add gj in B

I B is a SubsetSum
– left part of t: we select only one of yi and zi, for each 1 ≤ i ≤ n
– right part of t: we select gj and hj in order to have exactly 4 for
each clause

(⇒)

I assume that F is satisfiable

I for each xi:
– if xi = TRUE, then add yi to B
– if xi = FALSE, then add zi to B

I for each Cj :
– if 1 literal is TRUE, then add both gj and hj in B
– if 2 literals are TRUE, then add hj in B
– if 3 literals are TRUE, then add gj in B

I B is a SubsetSum
– left part of t: we select only one of yi and zi, for each 1 ≤ i ≤ n
– right part of t: we select gj and hj in order to have exactly 4 for
each clause

SubsetSum ∈ NP-complete

3. F is satisfiable iff there is a set B ⊆ A with
∑

ai∈B ai = t

(⇐)
I assume there is a set B such that

∑
ai∈B ai = t

I each column contains at most 6 ones (3 at the top and 3 at the
bottom)

I there is no other way to have 1 in the variable-left part of t except
from selecting exactly one of each yi and zi

I then, set:
– xi = TRUE, if yi ∈ B
– xi = FALSE, if zi ∈ B

I there is no way to have 4 in the clause-right part of t by selecting
only gj and hj

I thus, at least one literal (yi, zi) should be one for each clause column

I therefore, this assignment satisfies F

SubsetSum ∈ NP-complete

3. F is satisfiable iff there is a set B ⊆ A with
∑

ai∈B ai = t

(⇐)
I assume there is a set B such that

∑
ai∈B ai = t

I each column contains at most 6 ones (3 at the top and 3 at the
bottom)

I there is no other way to have 1 in the variable-left part of t except
from selecting exactly one of each yi and zi

I then, set:
– xi = TRUE, if yi ∈ B
– xi = FALSE, if zi ∈ B

I there is no way to have 4 in the clause-right part of t by selecting
only gj and hj

I thus, at least one literal (yi, zi) should be one for each clause column

I therefore, this assignment satisfies F

SubsetSum ∈ NP-complete

3. F is satisfiable iff there is a set B ⊆ A with
∑

ai∈B ai = t

(⇐)
I assume there is a set B such that

∑
ai∈B ai = t

I each column contains at most 6 ones (3 at the top and 3 at the
bottom)

I there is no other way to have 1 in the variable-left part of t except
from selecting exactly one of each yi and zi

I then, set:
– xi = TRUE, if yi ∈ B
– xi = FALSE, if zi ∈ B

I there is no way to have 4 in the clause-right part of t by selecting
only gj and hj

I thus, at least one literal (yi, zi) should be one for each clause column

I therefore, this assignment satisfies F

SubsetSum ∈ NP-complete

3. F is satisfiable iff there is a set B ⊆ A with
∑

ai∈B ai = t

(⇐)
I assume there is a set B such that

∑
ai∈B ai = t

I each column contains at most 6 ones (3 at the top and 3 at the
bottom)

I there is no other way to have 1 in the variable-left part of t except
from selecting exactly one of each yi and zi

I then, set:
– xi = TRUE, if yi ∈ B
– xi = FALSE, if zi ∈ B

I there is no way to have 4 in the clause-right part of t by selecting
only gj and hj

I thus, at least one literal (yi, zi) should be one for each clause column

I therefore, this assignment satisfies F

SubsetSum ∈ NP-complete

3. F is satisfiable iff there is a set B ⊆ A with
∑

ai∈B ai = t

(⇐)
I assume there is a set B such that

∑
ai∈B ai = t

I each column contains at most 6 ones (3 at the top and 3 at the
bottom)

I there is no other way to have 1 in the variable-left part of t except
from selecting exactly one of each yi and zi

I then, set:
– xi = TRUE, if yi ∈ B
– xi = FALSE, if zi ∈ B

I there is no way to have 4 in the clause-right part of t by selecting
only gj and hj

I thus, at least one literal (yi, zi) should be one for each clause column

I therefore, this assignment satisfies F

An algorithm for SubsetSum

I Dynamic Programming

I consider the integers sorted in non-decreasing order:
a1 ≤ a2 ≤ . . . ≤ an

I S[i, q] =

 True, if there is a SubsetSum among the i first
integers which sums up exactly to q

False, otherwise

Algorithm

1: Initialization:
– S[i, 0] = True, for any i ≥ 1

– S[1, q] =

{
True, if q = a1
False, otherwise

2: for i = 1 to n do
3: for q = 1 to t do
4: S[i, q] = S[i− 1, q] or S[i− 1, q − ai]

An algorithm for SubsetSum

I Dynamic Programming

I consider the integers sorted in non-decreasing order:
a1 ≤ a2 ≤ . . . ≤ an

I S[i, q] =

 True, if there is a SubsetSum among the i first
integers which sums up exactly to q

False, otherwise

Algorithm

1: Initialization:
– S[i, 0] = True, for any i ≥ 1

– S[1, q] =

{
True, if q = a1
False, otherwise

2: for i = 1 to n do
3: for q = 1 to t do
4: S[i, q] = S[i− 1, q] or S[i− 1, q − ai]

An algorithm for SubsetSum

I Dynamic Programming

I consider the integers sorted in non-decreasing order:
a1 ≤ a2 ≤ . . . ≤ an

I S[i, q] =

 True, if there is a SubsetSum among the i first
integers which sums up exactly to q

False, otherwise

Algorithm

1: Initialization:
– S[i, 0] = True, for any i ≥ 1

– S[1, q] =

{
True, if q = a1
False, otherwise

2: for i = 1 to n do
3: for q = 1 to t do
4: S[i, q] = S[i− 1, q] or S[i− 1, q − ai]

An algorithm for SubsetSum

I Dynamic Programming

I consider the integers sorted in non-decreasing order:
a1 ≤ a2 ≤ . . . ≤ an

I S[i, q] =

 True, if there is a SubsetSum among the i first
integers which sums up exactly to q

False, otherwise

Algorithm

1: Initialization:
– S[i, 0] = True, for any i ≥ 1

– S[1, q] =

{
True, if q = a1
False, otherwise

2: for i = 1 to n do
3: for q = 1 to t do
4: S[i, q] = S[i− 1, q] or S[i− 1, q − ai]

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T
2 T
3 T
4 T
5 T

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T
2 T
3 T
4 T
5 T

S[i, 0] = True, for any i ≥ 1

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T
3 T
4 T
5 T

S[1, q] =

{
True, if q = a1
False, otherwise

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T
3 T
4 T
5 T

S[i, q] = S[i− 1, q] or S[i− 1, q − ai]
S[2, 2] = S[1, 2] or S[1,−1]

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T
3 T
4 T
5 T

S[i, q] = S[i− 1, q] or S[i− 1, q − ai]
S[2, 3] = S[1, 3] or S[1, 0]

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T F T
3 T
4 T
5 T

S[i, q] = S[i− 1, q] or S[i− 1, q − ai]
S[2, 5] = S[1, 5] or S[1, 2]

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T F T F F F F F F
3 T
4 T
5 T

S[i, q] = S[i− 1, q] or S[i− 1, q − ai]

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T F T F F F F F F
3 T F T T T
4 T
5 T

S[i, q] = S[i− 1, q] or S[i− 1, q − ai]
S[3, 4] = S[2, 4] or S[2, 0]

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T F T F F F F F F
3 T F T T T T T
4 T
5 T

S[i, q] = S[i− 1, q] or S[i− 1, q − ai]
S[3, 6] = S[2, 6] or S[2, 2]

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T F T F F F F F F
3 T F T T T T T T F T F F
4 T
5 T

S[i, q] = S[i− 1, q] or S[i− 1, q − ai]

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T F T F F F F F F
3 T F T T T T T T F T F F
4 T F T T T T T T T T T T
5 T

S[i, q] = S[i− 1, q] or S[i− 1, q − ai]

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T F T F F F F F F
3 T F T T T T T T F T F F
4 T F T T T T T T T T T T
5 T F T T T T T T T T T T

I there is a TRUE in column q = 11, hence 〈A, t〉 ∈ SubsetSum

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T F T F F F F F F
3 T F T T T T T T F T F F
4 T F T T T T T T T T T T
5 T F T T T T T T T T T T

I how to construct the set B ?

I S[5, 11] = S[4, 11] or S[4, 3]

I S[4, 11]: a5 6∈ B
I S[4, 3]: a5 ∈ B

I S[4, 3] = S[3, 3] or S[3,−3], so a4 6∈ B

I S[3, 3] = S[2, 3] or S[2,−1], so a3 6∈ B

I S[2, 3] = S[1, 3] or S[1, 0], so a2 ∈ B, a1 6∈ B

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T F T F F F F F F
3 T F T T T T T T F T F F
4 T F T T T T T T T T T T
5 T F T T T T T T T T T T

I how to construct the set B ?

I S[5, 11] = S[4, 11] or S[4, 3]

I S[4, 11]: a5 6∈ B
I S[4, 3]: a5 ∈ B

I S[4, 3] = S[3, 3] or S[3,−3], so a4 6∈ B

I S[3, 3] = S[2, 3] or S[2,−1], so a3 6∈ B

I S[2, 3] = S[1, 3] or S[1, 0], so a2 ∈ B, a1 6∈ B

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T F T F F F F F F
3 T F T T T T T T F T F F
4 T F T T T T T T T T T T
5 T F T T T T T T T T T T

I how to construct the set B ?

I S[5, 11] = S[4, 11] or S[4, 3]

I S[4, 11]: a5 6∈ B
I S[4, 3]: a5 ∈ B

I S[4, 3] = S[3, 3] or S[3,−3], so a4 6∈ B

I S[3, 3] = S[2, 3] or S[2,−1], so a3 6∈ B

I S[2, 3] = S[1, 3] or S[1, 0], so a2 ∈ B, a1 6∈ B

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T F T F F F F F F
3 T F T T T T T T F T F F
4 T F T T T T T T T T T T
5 T F T T T T T T T T T T

I how to construct the set B ?

I S[5, 11] = S[4, 11] or S[4, 3]

I S[4, 11]: a5 6∈ B
I S[4, 3]: a5 ∈ B

I S[4, 3] = S[3, 3] or S[3,−3], so a4 6∈ B

I S[3, 3] = S[2, 3] or S[2,−1], so a3 6∈ B

I S[2, 3] = S[1, 3] or S[1, 0], so a2 ∈ B, a1 6∈ B

An algorithm for SubsetSum

I Example: A = {2, 3, 4, 6, 8} and t = 11

q
0 1 2 3 4 5 6 7 8 9 10 11

i

1 T F T F F F F F F F F F
2 T F T T F T F F F F F F
3 T F T T T T T T F T F F
4 T F T T T T T T T T T T
5 T F T T T T T T T T T T

I how to construct the set B ?

I S[5, 11] = S[4, 11] or S[4, 3]

I S[4, 11]: a5 6∈ B
I S[4, 3]: a5 ∈ B

I S[4, 3] = S[3, 3] or S[3,−3], so a4 6∈ B

I S[3, 3] = S[2, 3] or S[2,−1], so a3 6∈ B

I S[2, 3] = S[1, 3] or S[1, 0], so a2 ∈ B, a1 6∈ B

Dynamic Programming for SubsetSum

I Complexity in O(n · t)

I Is this polynomial?

I NO! if yes, then P = NP

I input: I = 〈A, t〉
I size of the input:

|I| = log2 t +
∑
ai∈A

log2 ai = O(log2 t)

I complexity of the algorithm:

O(n · t) = O(n · 2|I|)

I that is, exponential to the size of the input !

Dynamic Programming for SubsetSum

I Complexity in O(n · t)
I Is this polynomial?

I NO! if yes, then P = NP

I input: I = 〈A, t〉
I size of the input:

|I| = log2 t +
∑
ai∈A

log2 ai = O(log2 t)

I complexity of the algorithm:

O(n · t) = O(n · 2|I|)

I that is, exponential to the size of the input !

Dynamic Programming for SubsetSum

I Complexity in O(n · t)
I Is this polynomial?

I NO! if yes, then P = NP

I input: I = 〈A, t〉
I size of the input:

|I| = log2 t +
∑
ai∈A

log2 ai

= O(log2 t)

I complexity of the algorithm:

O(n · t) = O(n · 2|I|)

I that is, exponential to the size of the input !

Dynamic Programming for SubsetSum

I Complexity in O(n · t)
I Is this polynomial?

I NO! if yes, then P = NP

I input: I = 〈A, t〉
I size of the input:

|I| = log2 t +
∑
ai∈A

log2 ai = O(log2 t)

I complexity of the algorithm:

O(n · t) = O(n · 2|I|)

I that is, exponential to the size of the input !

Dynamic Programming for SubsetSum

I Complexity in O(n · t)
I Is this polynomial?

I NO! if yes, then P = NP

I input: I = 〈A, t〉
I size of the input:

|I| = log2 t +
∑
ai∈A

log2 ai = O(log2 t)

I complexity of the algorithm:

O(n · t) = O(n · 2|I|)

I that is, exponential to the size of the input !

Dynamic Programming for SubsetSum

I Complexity in O(n · t)
I Is this polynomial?

I NO! if yes, then P = NP

I input: I = 〈A, t〉
I size of the input:

|I| = log2 t +
∑
ai∈A

log2 ai = O(log2 t)

I complexity of the algorithm:

O(n · t) = O(n · 2|I|)

I that is, exponential to the size of the input !

Pseudo-polynomial algorithms

I |I|1: the encoding of the input in unary

I example: SubsetSum

|I|1 = t +
∑
ai∈A

ai

then the complexity of the algorithm is polynomial:

O(n · t) = O(n · |I|1)

I Definition: we call an algorithm pseudo-polynomial if its
complexity is polynomial to the size of the input, when this is
encoded in unary.

I Definition: NP-complete problems that admit a
pseudo-polynomial algorithm are called weakly NP-complete.

I Definition: we call a problem strong or unary NP-complete if it
remains NP-complete even when the input is encoded in unary.

Pseudo-polynomial algorithms

I |I|1: the encoding of the input in unary

I example: SubsetSum

|I|1 = t +
∑
ai∈A

ai

then the complexity of the algorithm is polynomial:

O(n · t) = O(n · |I|1)

I Definition: we call an algorithm pseudo-polynomial if its
complexity is polynomial to the size of the input, when this is
encoded in unary.

I Definition: NP-complete problems that admit a
pseudo-polynomial algorithm are called weakly NP-complete.

I Definition: we call a problem strong or unary NP-complete if it
remains NP-complete even when the input is encoded in unary.

Pseudo-polynomial algorithms

I |I|1: the encoding of the input in unary

I example: SubsetSum

|I|1 = t +
∑
ai∈A

ai

then the complexity of the algorithm is polynomial:

O(n · t) = O(n · |I|1)

I Definition: we call an algorithm pseudo-polynomial if its
complexity is polynomial to the size of the input, when this is
encoded in unary.

I Definition: NP-complete problems that admit a
pseudo-polynomial algorithm are called weakly NP-complete.

I Definition: we call a problem strong or unary NP-complete if it
remains NP-complete even when the input is encoded in unary.

Pseudo-polynomial algorithms

I |I|1: the encoding of the input in unary

I example: SubsetSum

|I|1 = t +
∑
ai∈A

ai

then the complexity of the algorithm is polynomial:

O(n · t) = O(n · |I|1)

I Definition: we call an algorithm pseudo-polynomial if its
complexity is polynomial to the size of the input, when this is
encoded in unary.

I Definition: NP-complete problems that admit a
pseudo-polynomial algorithm are called weakly NP-complete.

I Definition: we call a problem strong or unary NP-complete if it
remains NP-complete even when the input is encoded in unary.

Pseudo-polynomial algorithms

I |I|1: the encoding of the input in unary

I example: SubsetSum

|I|1 = t +
∑
ai∈A

ai

then the complexity of the algorithm is polynomial:

O(n · t) = O(n · |I|1)

I Definition: we call an algorithm pseudo-polynomial if its
complexity is polynomial to the size of the input, when this is
encoded in unary.

I Definition: NP-complete problems that admit a
pseudo-polynomial algorithm are called weakly NP-complete.

I Definition: we call a problem strong or unary NP-complete if it
remains NP-complete even when the input is encoded in unary.

Pseudo-polynomial algorithms

I |I|1: the encoding of the input in unary

I example: SubsetSum

|I|1 = t +
∑
ai∈A

ai

then the complexity of the algorithm is polynomial:

O(n · t) = O(n · |I|1)

I Definition: we call an algorithm pseudo-polynomial if its
complexity is polynomial to the size of the input, when this is
encoded in unary.

I Definition: NP-complete problems that admit a
pseudo-polynomial algorithm are called weakly NP-complete.

I Definition: we call a problem strong or unary NP-complete if it
remains NP-complete even when the input is encoded in unary.

Observations

I where is the problem with the reduction of SubsetSum if the input
is encoded in unary?

I each created integer has at most n+m digits (including t)
→ integers in the interval [0, 10n+m]
→ unary representation: 10n+m symbols per integer

I the size of the created input is not polynomial with respect to the
size of the initial input

I are there numerical problems that are strongly NP-complete?
I YES
I 3-Partition, Bin-Packing, . . .

I Attention! if A ≤P B and A is weakly NP-complete, then we
only prove that B is weakly NP-complete

Observations

I where is the problem with the reduction of SubsetSum if the input
is encoded in unary?

I each created integer has at most n+m digits (including t)
→ integers in the interval [0, 10n+m]
→ unary representation: 10n+m symbols per integer

I the size of the created input is not polynomial with respect to the
size of the initial input

I are there numerical problems that are strongly NP-complete?
I YES
I 3-Partition, Bin-Packing, . . .

I Attention! if A ≤P B and A is weakly NP-complete, then we
only prove that B is weakly NP-complete

Observations

I where is the problem with the reduction of SubsetSum if the input
is encoded in unary?

I each created integer has at most n+m digits (including t)
→ integers in the interval [0, 10n+m]
→ unary representation: 10n+m symbols per integer

I the size of the created input is not polynomial with respect to the
size of the initial input

I are there numerical problems that are strongly NP-complete?

I YES
I 3-Partition, Bin-Packing, . . .

I Attention! if A ≤P B and A is weakly NP-complete, then we
only prove that B is weakly NP-complete

Observations

I where is the problem with the reduction of SubsetSum if the input
is encoded in unary?

I each created integer has at most n+m digits (including t)
→ integers in the interval [0, 10n+m]
→ unary representation: 10n+m symbols per integer

I the size of the created input is not polynomial with respect to the
size of the initial input

I are there numerical problems that are strongly NP-complete?
I YES
I 3-Partition, Bin-Packing, . . .

I Attention! if A ≤P B and A is weakly NP-complete, then we
only prove that B is weakly NP-complete

Observations

I where is the problem with the reduction of SubsetSum if the input
is encoded in unary?

I each created integer has at most n+m digits (including t)
→ integers in the interval [0, 10n+m]
→ unary representation: 10n+m symbols per integer

I the size of the created input is not polynomial with respect to the
size of the initial input

I are there numerical problems that are strongly NP-complete?
I YES
I 3-Partition, Bin-Packing, . . .

I Attention! if A ≤P B and A is weakly NP-complete, then we
only prove that B is weakly NP-complete

Exercise: 3-Partition problem

3-Partition

Input: a set of positive integers S = {s1, s2, . . . , s3n},
where

∑
si∈S = n · t and t

4 ≤ si ≤ t
2 for each si ∈ A

Question: can S be partitioned into n disjoint sets S1, S2, . . . , Sn

such that
∑

si∈Sj
si = t, for 1 ≤ j ≤ n ?

Example
S = {4, 4, 4, 5, 5, 5, 6, 7, 8} with the target: t = 16

Exercise: 3-Partition problem

3-Partition

Input: a set of positive integers S = {s1, s2, . . . , s3n},
where

∑
si∈S = n · t and t

4 ≤ si ≤ t
2 for each si ∈ A

Question: can S be partitioned into n disjoint sets S1, S2, . . . , Sn

such that
∑

si∈Sj
si = t, for 1 ≤ j ≤ n ?

Example
S = {4, 4, 4, 5, 5, 5, 6, 7, 8} with the target: t = 16

I observation: each Sj should have exactly 3 integers.
Here is a solution:

4

4

8

5

5

6
4

5

7

t = 16

I Show that 3-Partition is NP-complete in the strong sense

NP-hardness

A problem A is NP-hard if any problem B ∈ NP is polynomially time
reducible to A.

I A is not necessarily in NP !

I A is not necessarily a decision problem

I it is enough to show that there is a B ∈ NP such that B ≤P A

NP

P NP-complete

NP-hard

NP-hardness

A problem A is NP-hard if any problem B ∈ NP is polynomially time
reducible to A.

I A is not necessarily in NP !

I A is not necessarily a decision problem

I it is enough to show that there is a B ∈ NP such that B ≤P A

NP

P NP-complete

NP-hard

NP-hardness

A problem A is NP-hard if any problem B ∈ NP is polynomially time
reducible to A.

I A is not necessarily in NP !

I A is not necessarily a decision problem

I it is enough to show that there is a B ∈ NP such that B ≤P A

NP

P NP-complete

NP-hard

