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Recall about the satisfiability problem

I X = {x1, x2, . . . , xn}: set of variables

I C = {C1, C2, . . . , Cm}: set of clauses

I F = C1 ∧ C2 ∧ . . . ∧ Cm

SAT= {〈F〉 | F is a satisfiable Boolean formula }



kSAT

I kSAT: each clause has exactly k literals
I example of 2SAT: (x1 ∨ x̄2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x̄3)
I example of 3SAT: (x1 ∨ x̄2 ∨ x4) ∧ (x2 ∨ x3 ∨ x̄4)

I 2SAT ∈ P

I 3SAT ∈ NP
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2SAT ∈ P

The idea is to transform the problem in a path algorithm in graph.

I Construct the graph G as follows
I add a vertex for each literal x ∈ X ∪ X̄
I for each clause x ∨ y, add the arcs (x̄, y) and (ȳ, x)

correspond to implications x̄⇒ y and ȳ ⇒ x



2SAT ∈ P

F = (x1 ∨ x̄2) ∧ (x̄1 ∨ x̄3) ∧ (x1 ∨ x2) ∧ (x̄3 ∨ x4) ∧ (x̄1 ∨ x4)

x1 x̄1

x2

x̄2

x3 x̄3

x4

x̄4

We want (x̄1 ∨ x4) = TRUE

I arc (x1, x4) means:
– if x1 = T then x4 should be T
– if x4 = F then x1 should be F

I arc (x̄4, x̄1) means:
– if x̄4 = T then x̄1 should be T
– if x̄1 = F then x̄4 should be F



2SAT ∈ P

Lemma

If there is a path from x to y in G, then there is also a path from ȳ to x̄.

Proof:

I By construction:
I we add an arc (a, b) if (ā ∨ b) exists in F
I but if (ā ∨ b) exists in F , then we add also the arc (b̄, ā)

I Apply the argument for all arcs in the path from x to y



2SAT ∈ P

Lemma

If there is a variable x such that G has both a path from x to x̄ and a
path from x̄ to x, then F is not satisfiable.

F = (x1 ∨ x̄2)∧ (x2 ∨ x̄3)∧ (x3 ∨ x̄4)∧ (x4 ∨ x̄1)∧ (x̄4 ∨ x̄1)∧ (x2 ∨ x3)

x1 x̄1

x2

x̄2

x3 x̄3

x4

x̄4

If x1 = TRUE, then
x4 should be TRUE, and then
(x̄4 ∨ x̄1) is not satisfiable

If x1 = FALSE, then
x2 should be FALSE, and then
x̄3 should be FALSE, and then
(x2 ∨ x3) is not satisfiable



2SAT ∈ P

Lemma

If there is a variable x such that G has both a path from x to x̄ and a
path from x̄ to x, then F is not satisfiable.

Proof:

I assume that F is satisfiable (for contradiction)

I case 1: x = TRUE

x . . . a b . . . x̄

T T F F

There should be an arc (a, b) with a = T and b = F.
That is, (ā ∨ b) is not satisfiable.
Hence, x cannot be TRUE.

I case 2: x = FALSE
Same arguments give that x cannot be FALSE.

I Then, F is not satisfiable, a contradiction.
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That is, (ā ∨ b) is not satisfiable.
Hence, x cannot be TRUE.

I case 2: x = FALSE
Same arguments give that x cannot be FALSE.

I Then, F is not satisfiable, a contradiction.



2SAT ∈ P

Lemma

If there is a variable x such that G has both a path from x to x̄ and a
path from x̄ to x, then F is not satisfiable.

Proof:

I assume that F is satisfiable (for contradiction)

I case 1: x = TRUE

x . . . a b . . . x̄

T T F F

There should be an arc (a, b) with a = T and b = F.
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2SAT ∈ P

Algorithm

1. while there are non-assigned variables do

2. Select a literal a for which there is not a path from a to ā.

3. Set a = TRUE.

4. Assign TRUE to all reachable literals from a.

5. Eliminate all assigned variables from G.



2SAT ∈ P
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2SAT ∈ P

Lemma (Correctness of the algorithm)

Consider a literal a selected in Line 2 of the algorithm. There is no path
from a to both b and b̄.

Proof:

I Assume there are paths from a to b and from a to b̄.

I Then, there are paths from b̄ to ā and from b to ā (by the first
lemma)

I Thus, there are paths from a to ā (passing through b) and from ā to
a (passing through b̄)

I a cannot be selected by the algorithm, a contradiction.
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3SAT ∈ NP-complete

3SAT ∈ NP
I given an assignment of variables, scan all clauses to check if they

evaluate to TRUE

SAT ≤P 3SAT

I given any formula F of SAT, we construct a formula τ(F) of
3SAT

I replace each clause (a1 ∨ a2 ∨ . . . ∨ a`) in F

I if ` = 2, add an extra variable z:
(a1 ∨ a2) = (a1 ∨ a2 ∨ z) ∧ (a1 ∨ a2 ∨ z̄)
Similarly for ` = 1 by adding two variables

I if ` > 3, add `− 3 variables zi and replace the clause by the `− 2
following clauses

(a1∨a2∨ z1)∧ (z̄1∨a3∨ z2)∧ (z̄2∨a4∨ z3)∧ . . .∧ (z̄`−3∨a`−1∨a`)
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Proof (1)

F is satisfiable iff τ(F) is satisfiable

(⇒)

I assume that F is satisfiable

I then some ai is TRUE for all clauses

I use the same assignment for the common variables of F and τ(F)

I set zj = TRUE for 1 ≤ j ≤ i− 2

I set zj = FALSE for i− 1 ≤ j ≤ `− 3

I all the clauses of τ(F) are satisfied



Proof (2)

F is satisfiable iff F ′ = τ(F) is satisfiable

(⇐)

I assume that F ′ is satisfiable

I at least one of the literals ai should be TRUE for each clause

I if not, then z1 should be TRUE which implies that z2 should be
TRUE, etc.

I hence, the clause (z̄`−3 ∨ a`−1 ∨ a`) is not satisfiable,
contradiction

I then there is an assignment that satisfies F



Exercise 3SAT-NAE

SAT not all equal.
Prove that 3SAT-NAE ∈ NP-complete, where

SAT-NAE= {〈F〉 | F is a satisfiable with at least one true literal and at
least one false literal in each clause}

Tip for the reduction:

I Show first that: 3SAT ≤P 4SAT-NAE (add an extra boolean
variable in each clause)

I 4SAT-NAE ≤P 3SAT-NAE (break each 4-clause into 2
3-clauses)



MAX-2SAT ∈ NP-complete

MAX-2SAT = {〈F , k〉 | F is a formula with k TRUE clauses}

MAX-2SAT ∈ NP
I given an assignment of variables, scan all clauses to check if there

are at least k of them evaluated to TRUE

3SAT ≤P MAX-2SAT

1. given any formula F of 3SAT, we construct a formula F ′ of
MAX-2SAT

I replace each clause (x ∨ y ∨ z) by the 10 following clauses

(x)∧(y)∧(z)∧(x̄∨ȳ)∧(ȳ∨z̄)∧(z̄∨x̄)∧(w)∧(w̄∨x)∧(w̄∨y)∧(w̄∨z)

I k = 7m (m is the number of clauses)

2. F ′ has O(n+m) variables and O(m) clauses
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MAX-2SAT ∈ NP-complete

3SAT ≤P MAX-2SAT

Recall replace each clause (x ∨ y ∨ z) by

(x)∧(y)∧(z)∧(x̄∨ȳ)∧(ȳ∨z̄)∧(z̄∨x̄)∧(w)∧(w̄∨x)∧(w̄∨y)∧(w̄∨z)

3. F is satisfiable iff F ′ has at least k satisfied clauses
I assume that F is satisfiable
I if x = T, y = F and z = F, then set w = F: 7 satisfied clauses
I if x = T, y = T and z = F, then set w = F: 7 satisfied clauses
I if x = T, y = T and z = T, then set w = T: 7 satisfied clauses
I in all cases, there are 7 satisfied clauses in F ′ for each clause of F

I contrapositive: assume that F is not satisfiable
I there is one clause for which x = y = z = F
I then, in F ′ we correspondingly have:

– 4 satisfied clauses if w = T
– 6 satisfied clauses if w = F

I hence, in F ′ there are less than k clauses that are satisfied
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