Fundamental Computer Science
Lecture 4: Complexity
NP-completeness

Denis Trystram
MoSIG1 and M1Info – University Grenoble-Alpes

March, 2021
Definition of time complexity classes
 - \mathcal{P}: problems solvable in $O(n^k)$ time
 - \mathcal{NP}: problems verifiable in $O(n^k)$ time
 - space complexity

Prove that a problem belongs to \mathcal{NP}
 - provide a polynomial-time verifier

Reduction from problem A to problem B ($A \leq_P B$)
1. transform an instance I_A of A to an instance I_B of B
2. show that the reduction is of polynomial size
3. prove that:
 "there is a solution for the problem A on the instance I_A
 if and only if
 there is a solution for the problem B on the instance $I_B"
Agenda

- Definition of the class NP-complete
- The SAT problem
- Cook-Levin theorem
- Use reductions to prove NP-completeness
- A detailed example: Vertex Cover
- Variants of SAT
Let C be a set of languages.

Definition

A language B is C-complete if

- $B \in C$, and
- every language A in C is polynomially reducible to B.
NP-completeness

Definition

A language B is **NP-complete** if

- $B \in \mathcal{NP}$, and
- every language A in \mathcal{NP} is polynomially reducible to B.

Theorem

If B is NP-complete and $B \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$

Proof:

Direct from the definition of reducibility
NP-completeness

Definition
A language B is **NP-complete** if
- $B \in \mathcal{NP}$, and
- every language A in \mathcal{NP} is polynomially reducible to B.

Theorem

If B is NP-complete and $B \in \mathcal{P}$, then $\mathcal{P} = \mathcal{NP}$

Proof:
- Direct from the definition of reducibility
NP-COMPLETENESS

Definition

A language B is NP-complete if

$B \in \mathcal{NP}$, and

every language $A \in \mathcal{NP}$ is polynomially reducible to B.

Theorem

If B is NP-complete and $B \leq_p C$ for $C \in \mathcal{NP}$, then C is NP-complete

Proof:

- initially, $C \in \mathcal{NP}$
- we need to show: every $A \in \mathcal{NP}$ polynomially reduces to C
 - every language $\in \mathcal{NP}$ polynomially reduces to B
 - B polynomially reduces to C
The next step

Prove that there are some problems in \texttt{NP-complete}

Stephen Cook proved in 1971 that \texttt{SAT} \in \texttt{NP-complete}
Recall on Logic: Boolean formulas

- x_i: a Boolean variable, values TRUE or FALSE
- \overline{x}_i: negation of x_i – logical NOT
- x_i, \overline{x}_i: literals
Recall on Logic: Boolean formulas

- x_i: a Boolean variable, values TRUE or FALSE
- \bar{x}_i: negation of x_i – logical NOT
- x_i, \bar{x}_i: literals
- \lor: logical OR
- \land: logical AND
Recall on Logic: Boolean formulas

- x_i: a Boolean variable, values TRUE or FALSE
- $\overline{x_i}$: negation of x_i – logical NOT
- $x_i, \overline{x_i}$: literals
- \lor: logical OR
- \land: logical AND
- $(x_1 \lor \overline{x_3} \lor x_4)$: clause, a set of literals in disjunction

Every formula can be written in CNF, thus, focus on CNF formulas.
Recall on Logic: Boolean formulas

- x_i: a Boolean variable, values TRUE or FALSE
- \overline{x}_i: negation of x_i – logical NOT
- x_i, \overline{x}_i: literals
- \lor: logical OR
- \land: logical AND
- $(x_1 \lor \overline{x}_3 \lor x_4)$: clause, a set of literals in disjunction
- $\mathcal{F} = (x_1 \lor x_2 \lor \overline{x}_3) \land (\overline{x}_4) \land (x_1 \lor x_4)$: a Boolean formula in Conjunctive Normal Form (CNF), a set of clauses in conjunction
 - every formula can be written in CNF (thus, focus on CNF formulas)
Recall on Logic: Boolean formulas

- \(x_i \): a Boolean variable, values TRUE or FALSE
- \(\bar{x}_i \): negation of \(x_i \) – logical NOT
- \(x_i, \bar{x}_i \): literals
- \(\lor \): logical OR
- \(\land \): logical AND
- \((x_1 \lor \bar{x}_3 \lor x_4) \): clause, a set of literals in disjunction
- \(\mathcal{F} = (x_1 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_4) \land (x_1 \lor x_4) \): a Boolean formula in Conjunctive Normal Form (CNF), a set of clauses in conjunction
 - every formula can be written in CNF (thus, focus on CNF formulas)
- assignment: give TRUE or FALSE value to variables
Recall on Logic: Boolean formulas

- \(x_i \): a Boolean variable, values TRUE or FALSE
- \(\bar{x}_i \): negation of \(x_i \) – logical NOT
- \(x_i, \bar{x}_i \): literals
- \(\lor \): logical OR
- \(\land \): logical AND
- \((x_1 \lor \bar{x}_3 \lor x_4) \): clause, a set of literals in disjunction
- \(F = (x_1 \lor x_2 \lor \bar{x}_3) \land (\bar{x}_4) \land (x_1 \lor x_4) \): a Boolean formula in Conjunctive Normal Form (CNF), a set of clauses in conjunction
 - every formula can be written in CNF (thus, focus on CNF formulas)
- assignment: give TRUE or FALSE value to variables
- a formula is satisfiable if there is an assignment evaluating to TRUE
 - i.e, \((x_1, x_2, x_3, x_4) = (T, T, T, F)\) for the above formula \(F \)
The satisfiability problem SAT

- $X = \{x_1, x_2, \ldots, x_n\}$: set of variables
- $C = \{C_1, C_2, \ldots, C_m\}$: set of clauses
- $F = C_1 \land C_2 \land \ldots \land C_m$

$\text{SAT} = \{\langle F \rangle \mid F \text{ is a satisfiable Boolean formula} \}$

The problem version of SAT:

- SAT
- **Instance.** m clauses C_i expressed using n literals
- **Question.** Is the formula $F = C_1 \land C_2 \land \ldots \land C_m$ satisfiable?
Example: Vertex Cover

We will show in a separate lesson that $\text{VC} \in \text{NP-complete}$