The goal here is to show how to extend the abstract Turing Machine to a higher level concept, closer to our computers.
Random Access Turing Machines

- Random Access Memory
 - access any position of the tape in a single step
Random Access Turing Machines

- Random Access Memory
 - access any position of the tape in a single step

- we also need:
 - finite number of registers → manipulate addresses of the tape
 - program counter → current instruction to execute

- program: a set of instructions

```
\begin{array}{c}
R3 \\
R2 \\
R1 \\
R0 \\
\end{array}
```

```
\begin{array}{ccccccc}
\end{array}
```

```
\begin{array}{c}
\kappa \\
\end{array}
```
Random Access Turing Machines: Instructions set

<table>
<thead>
<tr>
<th>instruction</th>
<th>operand</th>
<th>semantics</th>
</tr>
</thead>
<tbody>
<tr>
<td>read</td>
<td>j</td>
<td>$R_0 \leftarrow T[R_j]$</td>
</tr>
<tr>
<td>write</td>
<td>j</td>
<td>$T[R_j] \leftarrow R_0$</td>
</tr>
<tr>
<td>store</td>
<td>j</td>
<td>$R_j \leftarrow R_0$</td>
</tr>
<tr>
<td>load</td>
<td>j</td>
<td>$R_0 \leftarrow R_j$</td>
</tr>
<tr>
<td>load</td>
<td>$= c$</td>
<td>$R_0 = c$</td>
</tr>
<tr>
<td>add</td>
<td>j</td>
<td>$R_0 \leftarrow R_0 + R_j$</td>
</tr>
<tr>
<td>add</td>
<td>$= c$</td>
<td>$R_0 \leftarrow R_0 + c$</td>
</tr>
<tr>
<td>sub</td>
<td>j</td>
<td>$R_0 \leftarrow \max{R_0 - R_j, 0}$</td>
</tr>
<tr>
<td>sub</td>
<td>$= c$</td>
<td>$R_0 \leftarrow \max{R_0 - c, 0}$</td>
</tr>
<tr>
<td>half</td>
<td></td>
<td>$R_0 \leftarrow \lfloor \frac{R_0}{2} \rfloor$</td>
</tr>
<tr>
<td>jump</td>
<td>s</td>
<td>$\kappa \leftarrow s$</td>
</tr>
<tr>
<td>jpos</td>
<td>s</td>
<td>if $R_0 > 0$ then $\kappa \leftarrow s$</td>
</tr>
<tr>
<td>jzero</td>
<td>s</td>
<td>if $R_0 = 0$ then $\kappa \leftarrow s$</td>
</tr>
<tr>
<td>halt</td>
<td></td>
<td>$\kappa = 0$</td>
</tr>
</tbody>
</table>

▶ register R_0: accumulator
A Random Access Turing Machine is a pair $M = (k, \Pi)$, where

- $k > 0$ is the finite number of registers, and
- $\Pi = (\pi_1, \pi_2, \ldots, \pi_p)$ is a finite sequence of instructions (program).
A Random Access Turing Machine is a pair $M = (k, \Pi)$, where

- $k > 0$ is the finite number of registers, and
- $\Pi = (\pi_1, \pi_2, \ldots, \pi_p)$ is a finite sequence of instructions (program).

Notations

- the last instruction π_p is always a *halt* instruction
- $(\kappa; R_0, R_1, \ldots, R_{k-1}; T)$: a *configuration*, where
 - κ: program counter
 - R_j, $0 \leq j < k$: the current value of register j
 - T: the contents of the tape
 (each $T[i]$ contains a non-negative integer, i.e. $T[i] \in \mathbb{N}$)
- **halted configuration**: $\kappa = 0$
Example 1 – write the configurations

1: load 1
2: add 2
3: sub =1
4: store 1
5: halt

(1; 0, 5, 3; ∅)
Example 1 – write the configurations

1: load 1
2: add 2
3: sub = 1
4: store 1
5: halt

(1; 0, 5, 3; ∅)

(1; 0, 5, 3; ∅) ⊢ (2; 5, 5, 3; ∅) ⊢ (3; 8, 5, 3; ∅) ⊢ (4; 7, 5, 3; ∅)

⊢ (5; 7, 7, 3; ∅) ⊢ (0; 7, 7, 3; ∅)
Example 1 – write the configurations

1: load 1
2: add 2
3: sub = 1
4: store 1
5: halt

(1; 0, 5, 3; ∅)

(1; 0, 5, 3; ∅) ⊢ (2; 5, 5, 3; ∅) ⊢ (3; 8, 5, 3; ∅) ⊢ (4; 7, 5, 3; ∅)

⊕ (5; 7, 7, 3; ∅) ⊢ (0; 7, 7, 3; ∅)

\[R_1 \leftarrow R_2 + R_1 - 1 \]
Example 2

1: load 1
2: jzero 6
3: sub =3
4: store 1
5: jump 2
6: halt

(1; 0, 7; ∅)

(1; 0, 7; ∅) ⊢ (2; 7, 7; ∅) ⊢ (3; 7, 7; ∅) ⊢ (4; 4, 7; ∅) ⊢ (5; 4, 4; ∅)

(2; 7, 7; ∅) ⊢ (3; 7, 7; ∅) ⊢ (4; 4, 7; ∅) ⊢ (5; 1, 1; ∅)

(2; 1, 1; ∅) ⊢ (3; 1, 1; ∅) ⊢ (4; 0, 1; ∅) ⊢ (5; 0, 0; ∅)

(2; 0, 0; ∅) ⊢ (6; 0, 0; ∅) ⊢ (0; 0, 0; ∅)

while $R_1 > 0$ do $R_1 \leftarrow R_1 - 3$
Exercise

- Write a program for a Random Access Turing Machine that multiplies two integers.

 HINT: assume that the initial configuration is \((1; 0, a_1, a_2, 0; \emptyset)\)
Theorem

Every Random Access Turing Machine $M = (\kappa, \Pi)$ has an equivalent single tape Turing Machine $M' = (K, \Sigma, \Gamma, \delta, s, H)$.

If M halts on input of size n after t steps, then M' halts on after $O(poly(t, n))$ steps.
Theorem

Every Random Access Turing Machine \(M = (\kappa, \Pi) \) has an equivalent single tape Turing Machine \(M' = (K, \Sigma, \Gamma, \delta, s, H) \).

If \(M \) halts on input of size \(n \) after \(t \) steps, then \(M' \) halts on after \(O(poly(t, n)) \) steps.

Proof (sketch):

- we pass through the multiple tape model
 - use \(k + 3 \) tapes
 - tape 1: the contents of the tape of \(M \)
 - tape 2: the program counter
 - tape 3: auxiliary
 - tape \(3 + j, 1 \leq j \leq k \): corresponds to \(R_j \)
 - add appropriate delimiters
 - simulate instructions
Proof (sketch):

- add 4
 1. copy the contents of tape 8 (R_4) on tape 3 (auxiliary)
 2. use the Turing Machine with two tapes seen in previous lecture to add the numbers in tapes 8 and 4 (R_0)
 3. store the result in tape 4
 4. increase the contents of tape 2 (program counter) by 1

- jpos 19
 1. scan tape 4 (R_0)
 2. if all cells are zero then increase the contents of tape 2 (program counter) by 1
 3. else replace the contents of tape 2 by 19
Proof (sketch):

- **add 4**
 1. copy the contents of tape 8 (R_4) on tape 3 (auxiliary)
 2. use the Turing Machine with two tapes seen in previous lecture to add the numbers in tapes 8 and 4 (R_0)
 3. store the result in tape 4
 4. increase the contents of tape 2 (program counter) by 1

- **write 2**
 1. move the head of tape 1 (tape of M) to the position (address) indicted by tape 6 (R_2)
 2. copy the contents of tape 4 (R_0) in the indicated position of tape 1
 3. increase the contents of tape 2 (program counter) by 1
Proof (sketch):

- **add 4**
 1. copy the contents of tape 8 (R_4) on tape 3 (auxiliary)
 2. use the Turing Machine with two tapes seen in previous lecture to add the numbers in tapes 8 and 4 (R_0)
 3. store the result in tape 4
 4. increase the contents of tape 2 (program counter) by 1

- **write 2**
 1. move the head of tape 1 (tape of M) to the position (address) indicted by tape 6 (R_2)
 2. copy the contents of tape 4 (R_0) in the indicated position of tape 1
 3. increase the contents of tape 2 (program counter) by 1

- **jpos 19**
 1. scan tape 4 (R_0)
 2. if all cells are zero then increase the contents of tape 2 (program counter) by 1
 3. else replace the contents of tape 2 by 19
Proof (sketch):

- the size of the contents of all tapes cannot be bigger than a polynomial to t and n
 - initially: n
 - at each step: the size of the contents is increased by at most a constant c (instruction add $= c$)
Proof (sketch):

- the size of the contents of all tapes cannot be bigger than a polynomial to t and n
 - initially: n
 - at each step: the size of the contents is increased by at most a constant c (instruction add = c)

- each instruction can be implemented in time polynomial in the size of the contents of all tapes
Proof (sketch):

▶ the size of the contents of all tapes cannot be bigger than a polynomial to t and n
 ▶ initially: n
 ▶ at each step: the size of the contents is increased by at most a constant c (instruction add $= c$)

▶ each instruction can be implemented in time polynomial in the size of the contents of all tapes

▶ Thus, complexity polynomial in t and n
Proof (sketch):

- the size of the contents of all tapes cannot be bigger than a polynomial to t and n
 - initially: n
 - at each step: the size of the contents is increased by at most a constant c (instruction add = c)
- each instruction can be implemented in time polynomial in the size of the contents of all tapes
- Thus, complexity polynomial in t and n

Random Access is not more powerful !!!