
Fundamental Computer Science
Sequence 1: Turing Machines

MoSIG-M1Info, 2021

February 1, 2021



Aim and content

We present in detail the classical computational model of Turing
Machine.

The objective is to understand the basic mechanisms and to learn the
underlying formalism.



Description of the Turing Machine

I memory: an infinite tape
I initially, it contains the input string
I move the head left or right
I read and/or write to current cell

I control (transition table)
I finite number of states
I one current state

I At each step:
– move from state to state
– read/write or move Left/Right in the tape









Turing machine: formal definition

A Turing Machine (M) is a six-tuple (K,Σ,Γ, δ, s,H), where

I K is a finite set of states

I Σ is the input alphabet not containing the blank symbol t
I Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ

I s ∈ K: the initial state

I H ⊆ K: the set of halting states

I δ: the transition function from (K \H)× Γ to K × (Γ ∪ {←,→})

In general, δ(q, a) = (p, b) means that when M is in the state q and
reads a in the tape, it goes to the state p and

– if b ∈ Σ, writes b in the place of a
– if b ∈ {←,→}, moves the head either Left or Right

q p
a : b



Turing machine: formal definition

A Turing Machine (M) is a six-tuple (K,Σ,Γ, δ, s,H), where

I K is a finite set of states

I Σ is the input alphabet not containing the blank symbol t
I Γ is the tape alphabet, where t ∈ Γ and Σ ⊆ Γ

I s ∈ K: the initial state

I H ⊆ K: the set of halting states

I δ: the transition function from (K \H)× Γ to K × (Γ ∪ {←,→})

In general, δ(q, a) = (p, b) means that when M is in the state q and
reads a in the tape, it goes to the state p and

– if b ∈ Σ, writes b in the place of a
– if b ∈ {←,→}, moves the head either Left or Right

q p
a : b



A first example (2 representations)

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)



A first example (2 representations)

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa)

`M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)



A first example (2 representations)

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa)

`M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)



A first example (2 representations)

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)



A first example (2 representations)

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta)

`M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)



A first example (2 representations)

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)



A first example (2 representations)

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t)

`M (q0,t t tt)

`M (h,t t tt)



A first example (2 representations)

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)



A first example (2 representations)

Consider the Turing Machine M = (K,Σ,Γ, δ, s,H) where

K = {q0, q1, h}, Σ = {a}, Γ = {a,t}, s = q0, H = {h},
and δ is given by the table. How does M proceed?

q σ δ(q, σ)
q0 a (q1,t)
q0 t (h,t)
q1 a (q0, a)
q1 t (q0,→) q0

q1

h

a : t

t : t

a : a
t :→

(q0, aaa) `M (q1,taa) `M (q0,taa)

`M (q1,tta) `M (q0,t t a)

`M (q1,t t t) `M (q0,t t tt)

`M (h,t t tt)



Formalize the notation

Definition

A configuration of a Turing Machine M = (K,Σ,Γ, δ, s,H) is a
member of K × Γ∗ × Γ∗((Γ \ {t}) ∪ {ε}).

I informally: a triplet describing
I the current state
I the contents of the tape at the left of the head (including head’s

position)
I the contents of the tape at the right of the head

I example: (q1,ta, a) or simply (q1,taa) or simply (q1, aa)

Initial configuration: (s, aw) where M = (K,Σ,Γ, δ, s,H) is a Turing
Machine, a ∈ Σ, w ∈ Σ∗ and aw is the input string

Halted configuration: a configuration whose state belongs to H

I example: (h,t t tt, ε) or simply (h,t t tt) or simply (h,t)



Formalize the notation

Definition

A configuration of a Turing Machine M = (K,Σ,Γ, δ, s,H) is a
member of K × Γ∗ × Γ∗((Γ \ {t}) ∪ {ε}).

I informally: a triplet describing
I the current state
I the contents of the tape at the left of the head (including head’s

position)
I the contents of the tape at the right of the head

I example: (q1,ta, a) or simply (q1,taa) or simply (q1, aa)

Initial configuration: (s, aw) where M = (K,Σ,Γ, δ, s,H) is a Turing
Machine, a ∈ Σ, w ∈ Σ∗ and aw is the input string

Halted configuration: a configuration whose state belongs to H

I example: (h,t t tt, ε) or simply (h,t t tt) or simply (h,t)



Formalize the notation

Definition

A configuration of a Turing Machine M = (K,Σ,Γ, δ, s,H) is a
member of K × Γ∗ × Γ∗((Γ \ {t}) ∪ {ε}).

I informally: a triplet describing
I the current state
I the contents of the tape at the left of the head (including head’s

position)
I the contents of the tape at the right of the head

I example: (q1,ta, a) or simply (q1,taa) or simply (q1, aa)

Initial configuration: (s, aw) where M = (K,Σ,Γ, δ, s,H) is a Turing
Machine, a ∈ Σ, w ∈ Σ∗ and aw is the input string

Halted configuration: a configuration whose state belongs to H

I example: (h,t t tt, ε) or simply (h,t t tt) or simply (h,t)



Formalize the notation

Definition

A configuration of a Turing Machine M = (K,Σ,Γ, δ, s,H) is a
member of K × Γ∗ × Γ∗((Γ \ {t}) ∪ {ε}).

I informally: a triplet describing
I the current state
I the contents of the tape at the left of the head (including head’s

position)
I the contents of the tape at the right of the head

I example: (q1,ta, a) or simply (q1,taa) or simply (q1, aa)

Initial configuration: (s, aw) where M = (K,Σ,Γ, δ, s,H) is a Turing
Machine, a ∈ Σ, w ∈ Σ∗ and aw is the input string

Halted configuration: a configuration whose state belongs to H

I example: (h,t t tt, ε) or simply (h,t t tt) or simply (h,t)



Formalize the notation

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 in a single step, then we write

C1 `M C2

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 using a sequence of configurations, then we
say that C1 yields C2 and we write

C1 `∗M C2

Definition

A computation of a Turing Machine M is a sequence of configurations
C0, C1, . . . , Cn, for some n ≥ 0, such that

C0 `M C1 `M C2 `M . . . `M Cn

The length of the computation is n (or it performs n steps).



Formalize the notation

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 in a single step, then we write

C1 `M C2

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 using a sequence of configurations, then we
say that C1 yields C2 and we write

C1 `∗M C2

Definition

A computation of a Turing Machine M is a sequence of configurations
C0, C1, . . . , Cn, for some n ≥ 0, such that

C0 `M C1 `M C2 `M . . . `M Cn

The length of the computation is n (or it performs n steps).



Formalize the notation

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 in a single step, then we write

C1 `M C2

Definition

Consider a Turing Machine M and two configurations C1 and C2 of M .
If M can go from C1 to C2 using a sequence of configurations, then we
say that C1 yields C2 and we write

C1 `∗M C2

Definition

A computation of a Turing Machine M is a sequence of configurations
C0, C1, . . . , Cn, for some n ≥ 0, such that

C0 `M C1 `M C2 `M . . . `M Cn

The length of the computation is n (or it performs n steps).



Turing Machines and automata

Turing Machines are (augmented) finite states automata.

Not detailed here
see the following link to get an idea of the powers.

http://www.jflap.org/

http://www.jflap.org/


Determinism or not?

Implicitly, the transition δ is deterministic.

Non-deterministic Turing Machine

What happens if several outputs are allowed at each step?

The choice is among k fixed possibilities, random, round-robin, etc.

This point is important and it will be detailed in a separate lecture.



Determinism or not?

Implicitly, the transition δ is deterministic.

Non-deterministic Turing Machine

What happens if several outputs are allowed at each step?

The choice is among k fixed possibilities, random, round-robin, etc.

This point is important and it will be detailed in a separate lecture.



Determinism or not?

Implicitly, the transition δ is deterministic.

Non-deterministic Turing Machine

What happens if several outputs are allowed at each step?

The choice is among k fixed possibilities, random, round-robin, etc.

This point is important and it will be detailed in a separate lecture.



A more general notation for Turing Machines

q0 q1

σ 6∈ a,←

a :→

Turing Machine La = (K,Σ,Γ, δ, s,H) where:
– K = {q0, q1}
– a ∈ Σ
– s = q0
– H = {q1}

I Define similar simple Turing Machines
I examples: L, R, La, Ra, L2, R2, a, t, etc.

I Combine simple machines to construct more complicated ones

M1 M2

M3

a
b

1. Run M1

2. If M1 finishes and the head reads a then run M2

starting from this a

3. Else run M3 starting from this b



A more general notation for Turing Machines

q0 q1

σ 6∈ a,←

a :→

Turing Machine La = (K,Σ,Γ, δ, s,H) where:
– K = {q0, q1}
– a ∈ Σ
– s = q0
– H = {q1}

I Define similar simple Turing Machines
I examples: L, R, La, Ra, L2, R2, a, t, etc.

I Combine simple machines to construct more complicated ones

M1 M2

M3

a
b

1. Run M1

2. If M1 finishes and the head reads a then run M2

starting from this a

3. Else run M3 starting from this b



A more general notation for Turing Machines

q0 q1

σ 6∈ a,←

a :→

Turing Machine La = (K,Σ,Γ, δ, s,H) where:
– K = {q0, q1}
– a ∈ Σ
– s = q0
– H = {q1}

I Define similar simple Turing Machines
I examples: L, R, La, Ra, L2, R2, a, t, etc.

I Combine simple machines to construct more complicated ones

M1 M2

M3

a
b

1. Run M1

2. If M1 finishes and the head reads a then run M2

starting from this a

3. Else run M3 starting from this b



Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt



Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt



Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt



Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt



Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt



Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt



Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt



Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt



Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt



Example

What is the goal of the following Turing Machine?

> Lt R tR2
taL

2
ta

Rt

a 6= t

t

(tabct) `∗M (tabct) (Lt)

`M (tabct) (R)

`M (ttbct) (t)

`∗M (t t bc t t) (R2
t)

`M (t t bc t a) (a)

`∗M (ttbc t a) (L2
t)

`M (tabc t a) (a)

`M (tabc t a) (R)

Solution:
transforms twt to tw t wt



Behind the power...

Why do we need so formal descriptions?

I Precision avoids ambiguity

I The finest grain is required

I The hierarchical decomposition is useful



Generalize more the notation ...

High-level description

I give an algorithmic description of how the Turing Machine works in
finite and discrete steps

I what is allowed?

almost everything!

Example

M = “On input w:

1. scan the input from left to right to be sure that it is of the form a∗b∗c∗

and reject if not

2. find the leftmost a in the tape and if such an a does not exist, then

I scan the input for a c and if such a c exists then reject else accept

3. replace a by â

4. scan the input for the leftmost b and if such a b does not exist, then
restore all b’s (replace all b̂ by b) and goto 2

5. replace b by b̂

6. scan to the right for the first c and if such a c does not exist, then reject

7. replace c by ĉ and goto 4”



Generalize more the notation ...

High-level description

I give an algorithmic description of how the Turing Machine works in
finite and discrete steps

I what is allowed? almost everything!

Example

M = “On input w:

1. scan the input from left to right to be sure that it is of the form a∗b∗c∗

and reject if not

2. find the leftmost a in the tape and if such an a does not exist, then

I scan the input for a c and if such a c exists then reject else accept

3. replace a by â

4. scan the input for the leftmost b and if such a b does not exist, then
restore all b’s (replace all b̂ by b) and goto 2

5. replace b by b̂

6. scan to the right for the first c and if such a c does not exist, then reject

7. replace c by ĉ and goto 4”



Generalize more the notation ...

High-level description

I give an algorithmic description of how the Turing Machine works in
finite and discrete steps

I what is allowed? almost everything!

Example

M = “On input w:

1. scan the input from left to right to be sure that it is of the form a∗b∗c∗

and reject if not

2. find the leftmost a in the tape and if such an a does not exist, then

I scan the input for a c and if such a c exists then reject else accept

3. replace a by â

4. scan the input for the leftmost b and if such a b does not exist, then
restore all b’s (replace all b̂ by b) and goto 2

5. replace b by b̂

6. scan to the right for the first c and if such a c does not exist, then reject

7. replace c by ĉ and goto 4”



Generalize more the notation ...

High-level description

I give an algorithmic description of how the Turing Machine works in
finite and discrete steps

I what is allowed? almost everything!

Example L = {aibjck : i× j = k}
M = “On input w:

1. scan the input from left to right to be sure that it is of the form a∗b∗c∗

and reject if not

2. find the leftmost a in the tape and if such an a does not exist, then

I scan the input for a c and if such a c exists then reject else accept

3. replace a by â

4. scan the input for the leftmost b and if such a b does not exist, then
restore all b’s (replace all b̂ by b) and goto 2

5. replace b by b̂

6. scan to the right for the first c and if such a c does not exist, then reject

7. replace c by ĉ and goto 4”



Definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s,H) such that H = {y, n}.

Any halting configuration whose state component is y (for “yes”) is
called an accepting configuration, while a halting configuration whose
state component is n (for “no”) is called a rejecting configuration.

We say that M accepts a string w ∈ Σ∗ if starting from an initial
configuration yields an accepting configuration.
We say that M rejects a string w ∈ Σ∗ if starting from an initial
configuration yields an rejecting configuration.

We say that M decides a language L ⊆ Σ∗ if for any string w ∈ Σ∗: if
w ∈ L then M accepts w; and if w 6∈ L then M rejects w.

We say that M recognizes (or semidecides) a language L ⊆ Σ∗ if for
any string w ∈ Σ∗: w ∈ L if and only if M accepts w.



Definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s,H) such that H = {y, n}.

Any halting configuration whose state component is y (for “yes”) is
called an accepting configuration, while a halting configuration whose
state component is n (for “no”) is called a rejecting configuration.

We say that M accepts a string w ∈ Σ∗ if starting from an initial
configuration yields an accepting configuration.
We say that M rejects a string w ∈ Σ∗ if starting from an initial
configuration yields an rejecting configuration.

We say that M decides a language L ⊆ Σ∗ if for any string w ∈ Σ∗: if
w ∈ L then M accepts w; and if w 6∈ L then M rejects w.

We say that M recognizes (or semidecides) a language L ⊆ Σ∗ if for
any string w ∈ Σ∗: w ∈ L if and only if M accepts w.



Definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s,H) such that H = {y, n}.

Any halting configuration whose state component is y (for “yes”) is
called an accepting configuration, while a halting configuration whose
state component is n (for “no”) is called a rejecting configuration.

We say that M accepts a string w ∈ Σ∗ if starting from an initial
configuration yields an accepting configuration.
We say that M rejects a string w ∈ Σ∗ if starting from an initial
configuration yields an rejecting configuration.

We say that M decides a language L ⊆ Σ∗ if for any string w ∈ Σ∗: if
w ∈ L then M accepts w; and if w 6∈ L then M rejects w.

We say that M recognizes (or semidecides) a language L ⊆ Σ∗ if for
any string w ∈ Σ∗: w ∈ L if and only if M accepts w.



Definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s,H) such that H = {y, n}.

Any halting configuration whose state component is y (for “yes”) is
called an accepting configuration, while a halting configuration whose
state component is n (for “no”) is called a rejecting configuration.

We say that M accepts a string w ∈ Σ∗ if starting from an initial
configuration yields an accepting configuration.
We say that M rejects a string w ∈ Σ∗ if starting from an initial
configuration yields an rejecting configuration.

We say that M decides a language L ⊆ Σ∗ if for any string w ∈ Σ∗: if
w ∈ L then M accepts w; and if w 6∈ L then M rejects w.

We say that M recognizes (or semidecides) a language L ⊆ Σ∗ if for
any string w ∈ Σ∗: w ∈ L if and only if M accepts w.



Definitions

A language L is called decidable (or Turing-decidable or recursive) if
there is a Turing Machine that decides it.

A language L is called Turing-recognizable (or recursively
enumerable) if there is a Turing Machine that recognizes it.



Definitions

A language L is called decidable (or Turing-decidable or recursive) if
there is a Turing Machine that decides it.

A language L is called Turing-recognizable (or recursively
enumerable) if there is a Turing Machine that recognizes it.



Basic theorems

Theorem

If a language L is decidable, then it is Turing-recognizable.

Theorem

If a language L is decidable, then its complement L̄ is also.

Proof.

δ′(q, a) =

 n if δ(q, a) = y
y if δ(q, a) = n
δ(q, a) otherwise



Basic theorems

Theorem

If a language L is decidable, then it is Turing-recognizable.

Theorem

If a language L is decidable, then its complement L̄ is also.

Proof.

δ′(q, a) =

 n if δ(q, a) = y
y if δ(q, a) = n
δ(q, a) otherwise



More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.



More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.



More definitions

Consider a Turing Machine M = (K,Σ,Γ, δ, s, {h}) and a string w ∈ Σ∗.
Suppose that M halts on input w and for some y ∈ Σ∗ we have

(s,tw) `∗M (h,ty)

Then, y is the output of M on input w and is denoted by M(w).

Consider a function f : Σ∗ → Σ∗. We say that M computes the
function f if M(w) = f(w) for all w ∈ Σ∗.

A function f is called decidable (or recursive) if there is a Turing
Machine that computes it.



Extension of the Turing Machine

The natural extension:

I write in the tape and move left or right at the same time

I modify the definition of the transition function

initial: from (K \H)× Γ to K × (Γ ∪ {←,→})

extended: from (K \H)× Γ to K × Γ× {←,→}

I if the extended Turing Machine halts on input w after t steps, then
the initial Turing Machine halts on input w after at most 2t steps



Extension of the Turing Machine

The natural extension:

I write in the tape and move left or right at the same time

I modify the definition of the transition function

initial: from (K \H)× Γ to K × (Γ ∪ {←,→})

extended: from (K \H)× Γ to K × Γ× {←,→}

I if the extended Turing Machine halts on input w after t steps, then
the initial Turing Machine halts on input w after at most 2t steps



Discussion

I We can even combine some extensions and still not get a stronger
(more powerful) model

I Observation: a computation in the prototype Turing Machine needs
a number of steps which is bounded by a polynomial of the size of
the input and of the number of steps in any of the extended model



Discussion

I We can even combine some extensions and still not get a stronger
(more powerful) model

I Observation: a computation in the prototype Turing Machine needs
a number of steps which is bounded by a polynomial of the size of
the input and of the number of steps in any of the extended model


