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Warm up

Sum of odd numbers

The problem

Definition:
Sum of the first n odd numbers

Sn =
n−1∑
k=0

(2k + 1) = ?
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Warm up

Sum of odd numbers

Method 1: Fubini’s principle

The bullets depict the consecutive odd numbers. The arrangement
of the bullets gives two ways for counting.

Result: Sn = n2
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Warm up

Sum of odd numbers

Method 2: shifted Gauss trick

Δn + Δn-1 = 1 + 2 + 3 + … +  n  
    + 1 + 2 + … + n-1  

= 1 + 3 + 5 + … +  (2n-1) !
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Warm up

Sum of odd numbers

Method 3: an other pictorial proof

We can also imagine a construction which uses four copies of Sn
that exactly correspond to a 2n by 2n square as depicted below.

2n#1%

2n#1%

Therefore, 4Sn = (2n)2 and Sn = n2.
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Sum of cubes

The problem

Definition:
Sum of the first n cubes

Cn =
n∑

k=1

k3 = ?
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Sum of cubes

Hints

Determine the asymptotic behavior of the summation

Apply the undetermined coefficient method

Compute on the first ranks and prove the expected result by
induction on n
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Sum of cubes

Determine the asymptotic behavior

A similar analysis to the sum of squares leads us to:

Cn = Θ

(
n4

4

)
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Sum of cubes

A first brute force method

Similarly to the problem of computing the sum of squares, we
may use the method of undetermined coefficients:

Let us write Cn = α0 + α1n + α2n
2 + α3n

3 ++α4n
4

This method requires to solve a 5 by 5 system of linear equations
(that can be simplified into a 4 by 4 system since α0 = 0).

Let us take the time to observe the sum more carefully...
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Sum of cubes

Computing Cn on the first ranks

C1 = 1 = 1
C2 = 1 + 8 = 9
C3 = 9 + 27 = 36
C4 = 36 + 64 = 100
C5 = 100 + 125 = 225
...

...
...
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Sum of cubes

Computing Cn on the first ranks

C1 = 1 = 1 ∆1 = 1
C2 = 1 + 8 = 9 ∆2 = 3
C3 = 9 + 27 = 36 ∆3 = 6
C4 = 36 + 64 = 100 ∆4 = 10
C5 = 100 + 125 = 225 ∆5 = 15
...

...
...

...
...

Observation: Cn = ∆2
n (prove with induction)
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Sum of cubes

An alternative method
Is there a relation between the sum of odds and the sum of cubes?

Reminder:

Sn = n2 and Cn = ∆2
n

Proposition:

For all n,
n∑

k=1

k3 = ∆2
n =

∆n∑
k=1

(2k − 1) (1)

Note:
The left-hand of equation (1) follows from our previous induction
proof, and the right-hand follows from the sum of the first odd
integers when we sum up to ∆n instead of summing up to n.
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From sum of odds to sum of cubes

The core problem: sum of cubes from sum of odds

We take the odd integers in order and arrange them into groups
whose successive sizes increase by 1 at each step, as follows:

group 1 (size 1): 1,
group 2 (size 2): 3, 5,
group 3 (size 3): 7, 9, 11,
group 4 (size 4): 13, 15, 17, 19

...
...

(2)
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From sum of odds to sum of cubes

Observation of Table (2)

We observe first that1 each row (ith group) adds up to i3

group 1 (size 1): 1, : sum = 13

group 2 (size 2): 3, 5, : sum = 23

group 3 (size 3): 7, 9, 11, : sum = 33

group 4 (size 4): 13, 15, 17, 19 : sum = 43

1at least within the illustrated portion of the table
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From sum of odds to sum of cubes

Proof

group 1: 1,
group 2: 3, 5,
group 3: 7, 9, 11,
group 4: 13, 15, 17, 19

By construction, the ith group of odd integers in the table consists
of the i consecutive odd numbers beginning with the (∆i−1 + 1)th
odd number, namely, 2∆i−1 + 1.

Since consecutive odd numbers differ by 2, this means that the ith
group (for i > 1) consists of the following i odd integers:

2∆i−1 + 1, 2∆i−1 + 3, 2∆i−1 + 5, . . . , 2∆i−1 + (2i − 1)
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From sum of odds to sum of cubes

The ith group:

2∆i−1 + 1, 2∆i−1 + 3, 2∆i−1 + 5, . . . , 2∆i−1 + (2i − 1)

The sum of the integers in the ith group (σi ) equals:

σi =

2i∆i−1 +
(
1 + 3 + · · ·+ (2i − 1)

)
= 2i∆i−1 + (the sum of the first i odd numbers)

= 2i∆i−1 + i2

By direct calculation, then,

σi = 2i · i(i − 1)

2
+ i2 = (i3 − i2) + i2 = i3
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From sum of odds to sum of cubes

The proof is now completed by concatenating the rows (summing
all the groups) of Table (2) and observing the pattern that
emerges:

(1) + (3 + 5) + (7 + 9 + 11) + · · · = 13 + 23 + 33 + · · ·
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Pictorial proof

Pictorial proof

We now present the relation between sums of perfect cubes and
squares of triangular numbers.

This illustration provides a non-textual way to understand this
result, and it provides a fertile setting for seeking other facts of
this type.

Definition:
For all n,

13 + 23 + · · ·+ n3 = ∆2
n
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Pictorial proof

Proof

We develop an induction that reflects the structure of Table (2).

Base case.
13 = 1 = ∆2

1

While this first (and obvious) case is enough for the induction, it
does not tell us much about the structure of the problem.
Therefore, we consider also the next step n = 2:

13 + 23 = 9 = ∆2
2
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Pictorial proof

Illustration.
13 + 23 = 9 = ∆2

2

Figure: (Left) the set of group 1 is {1} and the set of group 2 is {3, 5}.
(Right) how to form a 3× 3 square by pictorially summing the numbers
1, 3, and 5.

Observe that we can fit the shapes from the left side of the figure
together to form the ∆2 ×∆2 square.
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Pictorial proof

Inductive hypothesis. Assume that the target equality holds for
all k < n; i.e.,

13 + 23 + · · ·+ k3 = ∆2
k

If we go one step further, to incorporate group 3, i.e., the set
{7, 9, 11}, into our pictorial summation process, then we discover
that mimicking the previous process is a bit more complicated here.

More complicated manipulation required to form the ∆3 ×∆3

square is a consequence of the odd cardinality of the group-3 set.

We must extend our induction for the cases of odd and even k .
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Pictorial proof

Inductive extension for odd k.

∆2
k = ∆2

k−1 + k3

We write k3 as k × k2, and we distribute k × k square blocks
around the ∆k−1 ×∆k−1 square, as shown below for the case
k = 3.

Because k is odd, the small squares pack perfectly since (k − 1) is
even, hence divisible by 2.
The depicted case depicts pictorially the definition of triangular
numbers: k · 1

2(k − 1) = ∆k−1.
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Pictorial proof

Inductive extension for even k.
The basic reasoning here mirrors that for odd k , with one small
difference.
Now, as we assemble small squares around the large square, two
subsquares overlap, as depicted below.
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Pictorial proof

We must manipulate the overlapped region in order to get a tight
packing around the large square.

Happily, when there is a small overlapping square region, there is
also an identically shaped empty square region, as suggested by
these two figures.
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Pictorial proof

Conclusion.
Because (k − 2) is even, the like-configured square blocks can be
allocated to two sides of the initial ∆k−1 ×∆k−1 square (namely,
its right side and its bottom).
The overlap has the shape of a square that measures
1
2 (∆k −∆k−1) on a side.
One also sees in the figure an empty square in the extreme bottom
right of the composite ∆k ×∆k square, which matches the
overlapped square identically. This situation is the pictorial version
of the equation

∆2
k − ∆2

k−1 =
1

4
k2

(
(k + 1)2 − (k − 1)2

)
= k3

We have thus extended the inductive hypothesis for both odd and
even k , whence the result.
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