Proof of Zeckendorf's Theorem

Objective: Study the Fibonacci numbers as a *numbering system*.

Let us first introduce a notation: $j \gg k$ iff $j \ge k + 2$.

Zeckendorf's theorem

every positive integer *n* has a unique representation of the form: $n = F_{k_1} + F_{k_2} + \ldots + F_{k_r}$ where $k_1 \gg k_2 \gg \ldots \gg k_r$ and $k_r \ge 2$

Here, we assume that the Fibonacci sequence starts at index 1 and not 0, moreover, the decompositions will never consider F(1) (since F(1) = F(2)).

Use the Theorem as a numbering system

Any unique system of representation is a numbering system.

- The previous theorem ensures that any non-negative integer can be written as a sequence of bits b_i
- Detail the algorithm that adds a 1 to an integer (increment).