Lecture 3 – Maths for Computer Science Solving recurrences and Fibonacci numbers

Denis TRYSTRAM Lecture notes MoSIG1

Nov. 2022

Various problems

Fibonacci sequence F(n+1) = F(n) + F(n-1) with F(0) = 1 and F(1) = 1

Lucas' numbers Same as Fibonacci with a different seed. L(n+1) = L(n) + L(n-1) with L(0) = 1 and L(1) = 3

Derangements

$$d(n+1) = n(d(n-1) + d(n-2))$$
 with $d(0) = 1$ and $d(1) = 2$

Stern sequence

s(2n) = s(n) and s(2n+1) = s(n) + s(n+1) with d(0) = 0 and d(1) = 1

Fibonacci numbers are everywhere

Definition of Fibonacci numbers

- Fibonacci numbers are the number of pairs of rabbits that can be produced at the successive generations.
- Starting by a single pair of rabbits and assuming that each pair produces a new pair of rabbits at each generation during only two generations.

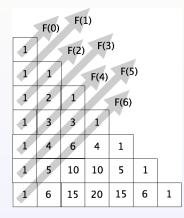
Definition:

Given the two numbers F(0) = 1 and F(1) = 1

the Fibonacci numbers are obtained by the following expression: F(n+1) = F(n) + F(n-1)

Link with the Pascal's triangle

Could you prove the following property?



Cassini's identity

. . .

Proposition:

$$F(n-1).F(n+1) = F(n)^2 + (-1)^{n+1}$$
 for $n \ge 1$

Let check the expression on the first ranks:

$$n = 1, F(0).F(2) = F(1)^{2} + 1 = 2$$

$$n = 2, F(1).F(3) = F(2)^{2} - 1 = 3$$

$$n = 3, F(2).F(4) = F(3)^{2} + 1 = 10$$

$$n = 4, F(3).F(5) = F(4)^{2} - 1 = 24$$

Proof (by induction)

- The basis case n = 1 holds since $F(0).F(2) = F(1)^2 + 1 = 2$.
- The **induction step** is proved assuming the Cassini's identity holds at rank *n*.

Apply the definition of F(n+2):

$$F(n).F(n+2) = F(n)(F(n+1)+F(n)) = F(n)^2 + F(n).F(n+1)$$

Proof (by induction)

- The basis case n = 1 holds since $F(0).F(2) = F(1)^2 + 1 = 2$.
- The **induction step** is proved assuming the Cassini's identity holds at rank *n*.

Apply the definition of F(n + 2): $F(n).F(n+2) = F(n)(F(n+1)+F(n)) = F(n)^2+F(n).F(n+1)$ Replace the last term using the recurrence hypothesis: $F(n)^2 = F(n-1).F(n+1) - (-1)^{n+1}$ $= F(n-1).F(n+1) + (-1)^{n+2}$

Proof (by induction)

- The basis case n = 1 holds since $F(0).F(2) = F(1)^2 + 1 = 2$.
- The **induction step** is proved assuming the Cassini's identity holds at rank *n*.

Apply the definition of F(n+2):

 $F(n).F(n+2) = F(n)(F(n+1)+F(n)) = F(n)^2 + F(n).F(n+1)$

Replace the last term using the recurrence hypothesis:

$$F(n)^{2} = F(n-1).F(n+1) - (-1)^{n+2}$$

= F(n-1).F(n+1) + (-1)^{n+2}

Thus,

$$F(n).F(n+2) = F(n).F(n+1) + F(n-1).F(n+1) + (-1)^{n+2}$$

= $F(n+1)(F(n) + F(n-1)) + (-1)^{n+2}$

Proof (by induction)

- The basis case n = 1 holds since $F(0).F(2) = F(1)^2 + 1 = 2$.
- The **induction step** is proved assuming the Cassini's identity holds at rank *n*.

Apply the definition of F(n+2):

 $F(n).F(n+2) = F(n)(F(n+1)+F(n)) = F(n)^2 + F(n).F(n+1)$

Replace the last term using the recurrence hypothesis:

$$F(n)^{2} = F(n-1).F(n+1) - (-1)^{n+2}$$

= F(n-1).F(n+1) + (-1)^{n+2}

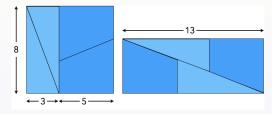
Thus,

$$F(n).F(n+2) = F(n).F(n+1) + F(n-1).F(n+1) + (-1)^{n+2}$$

= $F(n+1)(F(n) + F(n-1)) + (-1)^{n+2}$
Apply again the definition of Fibonacci sequence
 $F(n) + F(n-1) = F(n+1)$, we obtain:
 $F(n).F(n+2) = F(n+1)^2 + (-1)^{n+2}$

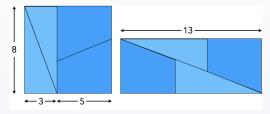
A Paradox (favorite puzzle of Lewis Carroll)

Consider a chess board (8 by 8 square) and cut it into 4 pieces, then reassemble them into a rectangle.



A Paradox (favorite puzzle of Lewis Carroll)

Consider a chess board (8 by 8 square) and cut it into 4 pieces, then reassemble them into a rectangle.



The surface of the square is $F(n)^2$ while the rectangle is F(n+1).F(n-1).

The Cassini identity is applied for n = 5, F(5) = 8.

- On one side, the surface is $8 \times 8 = 64$
- On the other side $13 \times 5 = 65$

What's wrong?

Explanation

The paradox comes from the representation of the "diagonal" of the rectangle which does not coincide with the hypothenuse of the right triangles of sides F(n + 1) and F(n - 1). In other words, it always remains (for any *n*) an empty space (corresponding to the unit size of the basic square of the chess board).

The greater n, the better the paradox because the *deformation* of the surface of this basic square becomes more tiny.

Computing F(n) fast

F(n) can be computed in $log_2(n)$ steps.

Proposition.

For all integers *n*: (a) $F(2n) = (F(n))^2 + (F(n-1))^2$ (b) $F(2n+1) = F(n) \times (2F(n-1)+F(n))$

Details (a) - Proof by induction

The base case n = 1 is true because

$$F(2) = (F(1))^2 + (F(0))^2 = 2$$

$$F(3) = F(1) \times (2F(0) + F(1)) = 3$$

Assume that the property holds for *n*, for both F(2n) and F(2n+1).

$$F(2(n+1)) = F(2n+1) + F(2n)$$

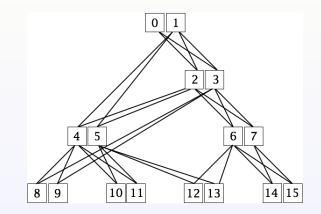
= $(F(n))^2 + (F(n-1))^2 + F(n) \times (2F(n-1) + F(n))$
= $(F(n))^2 + (F(n-1))^2 + 2(F(n) \times F(n-1)) + (F(n))^2$
= $(F(n) + F(n-1))^2 + (F(n))^2$
= $(F(n+1))^2 + (F(n))^2$

We again start by applying the defining recurrence of the Fibonacci numbers on F(2(n+1)+1)

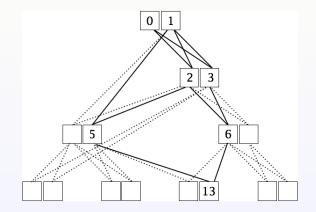
$$= F(2(n+1)) + F(2n+1)$$

= $(F(n+1))^2 + F(n)^2 + F(n) \times (2F(n-1) + F(n))$
= $(F(n+1))^2 + 2(F(n-1) + F(n)) \times F(n)$
= $(F(n+1))^2 + 2F(n+1) \times F(n)$

Pictorially



Pictorially (from one node)



Definition of Lucas' numbers

A natural question is:

what happens if we change the first ranks of the sequence keeping the same recurrence pattern?

Definition of Lucas' numbers

A natural question is:

what happens if we change the first ranks of the sequence keeping the same recurrence pattern?

It has been studied by the french mathematician Edouard Lucas, starting at $2 \mbox{ and } 1$.

For some reasons that will be clarified later, the sequence is shifted backwards (we take the convention L(-1) = 2).

Definition of Lucas' numbers

Definition:

Given the two numbers L(0) = 1 and L(1) = 3

all the other Lucas' numbers are obtained by the same progression as Fibonacci:

•
$$L(n+1) = L(n) + L(n-1)$$

Definition of Lucas' numbers

Definition:

Given the two numbers L(0) = 1 and L(1) = 3

all the other Lucas' numbers are obtained by the same progression as Fibonacci:

$$L(n+1) = L(n) + L(n-1)$$

n	-1	0	1	2	3	4	5	6	7	8	9	10
F(n)		1	1	2	3	5	8	13	21	34	55	
L(n)	2	1	3	4	7	11	18	29	47	76	123	

• There are¹ strong links with Fibonacci numbers.

In particular, we established before that:

 $F(n+2) = 1 + \sum_{k=0}^{n} F(k).$

We have similarly:

 $L(n+2) = 1 + \sum_{k=-1}^{n} L(k)$ since the basic step of the induction is still valid². L(2) = L(-1) + L(0) + 1 = 2 + 1 + 1 = 4.

²It will be true for all the progressions where $u_1 = 1$

¹of course

. . .

A first Property

We can also easily show that the Lucas number of order n is the sum of two Fibonacci numbers:

Proposition.

$$L(n) = F(n-1) + F(n+1)$$
 for $n \ge 1$

Let *check* this property on the first ranks:

$$n = 2$$
, $L(2) = F(1) + F(3) = 1 + 3 = 4$
 $n = 3$, $L(3) = F(2) + F(4) = 2 + 5 = 7$
 $n = 4$, $L(4) = F(3) + F(5) = 3 + 8 = 11$
 $n = 5$, $L(5) = F(4) + F(6) = 5 + 13 = 18$

Proof by induction

- The **basis case** (for *n* = 1) is true since *L*(1) = 3 = *F*(2) + *F*(0) = 2 + 1.
- Induction step: Let assume the property holds at all ranks $k \le n$ and compute L(n+1): Apply the definition of Lucas' numbers: L(n+1) = L(n) + L(n-1)

Proof by induction

■ The **basis case** (for *n* = 1) is true since *L*(1) = 3 = *F*(2) + *F*(0) = 2 + 1.

Induction step: Let assume the property holds at all ranks
$$k \le n$$
 and compute $L(n + 1)$:
Apply the definition of Lucas' numbers:
 $L(n + 1) = L(n) + L(n - 1)$
Apply the induction hypothesis on both terms:
 $L(n + 1) = F(n + 1) + F(n - 1) + F(n) + F(n - 2)$

Proof by induction

■ The **basis case** (for *n* = 1) is true since *L*(1) = 3 = *F*(2) + *F*(0) = 2 + 1.

Induction step: Let assume the property holds at all ranks
$$k \le n$$
 and compute $L(n + 1)$:
Apply the definition of Lucas' numbers:
 $L(n + 1) = L(n) + L(n - 1)$
Apply the induction hypothesis on both terms:
 $L(n + 1) = F(n + 1) + F(n - 1) + F(n) + F(n - 2)$
Apply now the definition of Fibonacci numbers for
 $F(n + 1) + F(n) = F(n + 2)$ and $F(n - 1) + F(n - 2) = F(n)$

Proof by induction

■ The **basis case** (for *n* = 1) is true since *L*(1) = 3 = *F*(2) + *F*(0) = 2 + 1.

Induction step: Let assume the property holds at all ranks
$$k \le n$$
 and compute $L(n + 1)$:
Apply the definition of Lucas' numbers:
 $L(n + 1) = L(n) + L(n - 1)$
Apply the induction hypothesis on both terms:
 $L(n + 1) = F(n + 1) + F(n - 1) + F(n) + F(n - 2)$
Apply now the definition of Fibonacci numbers for
 $F(n + 1) + F(n) = F(n + 2)$ and $F(n - 1) + F(n - 2) = F(n)$
replace them in the previous expression:
 $L(n + 1) = F(n + 2) + F(n)$

which concludes the proof.

Extension 1

Notice that using a similar approach, we obtain L(n) = F(n+2) - F(n-2).

What happens if we generalize?

Extension 1

Notice that using a similar approach, we obtain L(n) = F(n+2) - F(n-2).

What happens if we generalize?

Proposition.

2.L(n) = F(n+3) + F(n-3)

Extension 1

Notice that using a similar approach, we obtain L(n) = F(n+2) - F(n-2).

What happens if we generalize?

Proposition.

$$2.L(n) = F(n+3) + F(n-3)$$

Proof.

We start from
$$L(n) = F(n+2) - F(n-2)$$

 $F(n+2) = F(n+3) - F(n+1)$ and
 $F(n-2) = F(n-1) - F(n-3)$
 $L(n) = F(n+3) - (F(n+1) + F(n-1)) + F(n-3)$
 $2.L(n) = F(n+3) + F(n-3)$

Extension 2

Go to the next step using the same technique:

$$2.L(n) = F(n+3) + F(n-3)$$

= F(n+4) - F(n+2) + F(n-2) - F(n-4)
$$3.L(n) = F(n+4) - F(n-4)$$

³The formal proof is let to the reader

Extension 2

Go to the next step using the same technique:

$$2.L(n) = F(n+3) + F(n-3)$$

= F(n+4) - F(n+2) + F(n-2) - F(n-4)
$$3.L(n) = F(n+4) - F(n-4)$$

One more step: $5.L(n) = F(n+5) + F(n-5)$

³The formal proof is let to the reader

Extension 2

Go to the next step using the same technique:

$$2.L(n) = F(n+3) + F(n-3)$$

= F(n+4) - F(n+2) + F(n-2) - F(n-4)
$$3.L(n) = F(n+4) - F(n-4)$$

One more step:
$$5.L(n) = F(n+5) + F(n-5)$$

Thus, we guess the following expression.

Proposition³.

$$F(k-1).L(n) = F(n+k) + (-1)^{k-1}F(n-k)$$
 for $k \le n$

³The formal proof is let to the reader

Two other propositions

Proposition. $F(n+1) = \frac{1}{2}(F(1).L(n) + F(n).L(1))$

The proof comes from direct arithmetic manipulations: 2.F(n+1) = F(n+1) + F(n+1) = F(n+1) + F(n) + F(n-1) = L(n) + F(n) = F(1).L(n) + F(n).L(1)

Two other propositions

Proposition. $F(n+1) = \frac{1}{2}(F(1).L(n) + F(n).L(1))$

The proof comes from direct arithmetic manipulations: 2.F(n+1) = F(n+1) + F(n+1) = F(n+1) + F(n) + F(n-1) = L(n) + F(n) = F(1).L(n) + F(n).L(1)

The previous property can be extended for any k > 1Let compute the expression of F(k).L(n) + F(n).L(k) Lucas' numbers

A final natural question

The golden ratio.

It is a well-known result that the ratio of two consecutive Fibonacci number tends to the Golden ratio: $\lim_{n\to\infty}\frac{F(n)}{F(n-1)}=\Phi$

As this result is obtained by solving the following equation $x^2 = x + 1$ (Φ is the positive root) and does not depend on the first rank, this holds also for the Lucas' numbers.

Lucas' numbers

A last result: the Zeckendorf's Theorem

Objective: Study the Fibonacci numbers as a numbering system.

Let us first introduce a notation: $j \gg k$ iff $j \ge k + 2$. The Zeckendorf's theorem states that:

every positive integer *n* has a unique decomposition of the form: $n = F_{k_1} + F_{k_2} + \ldots + F_{k_r}$ where $k_1 \gg k_2 \gg \ldots \gg k_r$ and $k_r \ge 2$

Here, we assume that the Fibonacci sequence starts at index 1 and not 0, moreover, the decompositions will never consider F(1) (since F(1) = F(2)).

Derangements

Derangements represent one of the simplest forms of *avoidance problems*.

• A professor views it as a win-win strategy for the students in her class to grade each others' essays on *The Essential Truth in the Universe*.

The essays thereby get graded faster.

- Moreover, each student gets a chance to see how another student has interpreted some basic component of the human experience.
- The only complication is: How should we allocate essays among the students?

The process must ensure that no student is assigned her own essay to critique.

This challenge is known as a *derangement problem*.

Derangements

■ A *derangement* of a (finite) set A is a *bijection* f : A ↔ A that has no *fixed point*.

In other words, for every $a \in A$, we must have $f(a) \neq a$.

Clearly, derangements always exist (for n > 1).

One can just label the elements of set A by the numbers 0, 1, ..., |A| - 1 and specify $f(a) = a + 1 \mod |A|$.

Playing with a simple example

However, derangements are not so common! In fact, the set $A = \{0, 1, 2\}$ admits six self-bijections, but only two are derangements. Which ones?

Playing with a simple example

However, derangements are not so common! In fact, the set $A = \{0, 1, 2\}$ admits six self-bijections, but only two are derangements. Which ones?

$$f(a) = a + 1 \mod 3$$
 : which maps $(0 \to 1), (1 \to 2), (2 \to 0)$

 $g(a) = a - 1 \mod 3$: which maps $(0 \rightarrow 2), (1 \rightarrow 0), (2 \rightarrow 1)$

How many derangements does an arbitrary *n*-element set A have? We denote this quantity by d(n).

Derangements

We compute d(n) for arbitrary integer n via the following recursion:

• For
$$n = 1$$
: $d(1) = 0$.

The unique bijection in this case consists only of a fixed point.

• For
$$n = 2$$
: $d(2) = 1$.

There are two bijections in this case

- the identity, which has two fixed points
- the swap, which is a derangement.

The inductive expression

For
$$n > 2$$
: $d(n) = (n-1)(d(n-1) + d(n-2))$:

To see this, note first that in any derangement, the first element of A, call it a, must map to some $b \neq a$.

- Note next that there are n-1 ways to choose b.
- There are d(n 2) derangements under which b maps to a.
 In those cases, we know everything about a and b, so we need worry only about the remaining elements of A.
 These n 2 elements can "derange" in all possible ways.
- There are *d*(*n*−1) derangements under which element *b* does not map to *a*.

An observation

The preceding reasoning verifies the following recurrence

$$d(n) = \begin{cases} 0 & \text{if } n = 1 \\ 1 & \text{if } n = 2 \\ n(d(n-1) + d(n-2)) & \text{if } n > 2 \end{cases}$$

Solving the recurrence

There are several ways to solve this recurrence.

• We can reduce the bilinearity by a linear recurrence:

$$d(n) = \begin{cases} 0 & \text{if } n = 1 \\ n.d(n-1) + (-1)^n & \text{if } n > 1 \end{cases}$$

Interestingly, as the number of objects in the set to be deranged grows without bound.

The proportion of bijections that are derangements tends to the limit 1/e, where *e* is the base of natural logarithms.

Stern's sequence

Definition

$$s(0) = 0$$
 and $s(1) = 1$
 $s(2n) = s(n)$ and $s(2n + 1) = s(n) + s(n + 1)$

Stern's sequence

Definition

$$s(0) = 0$$
 and $s(1) = 1$
 $s(2n) = s(n)$ and $s(2n + 1) = s(n) + s(n + 1)$

Interpretation:

- If *n* is even, we keep the value s(n/2)
- If it is odd, we split it into two parts that are as balanced as possible.

Get an insight

First elements

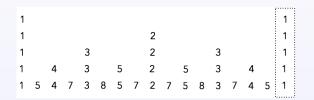
1 3 5 2 53 7385 7 2 7 5 83 7 4 5 1 6 1 2 1 2 3 4 3 4 5 4

Get an insight

First elements

1	1	2	1	3	2	3	1	4	3	5	2	5	3	4	1	5	4	7	3	8	5	7	2	7	5	8	3	7	4	5	1	6
1	1	2	1	3	2	3	1	4	3	5	2	5	3	4	1	5	4	7	3	8	5	7	2	7	5	8	3	7	4	5	1	6

• What is the *best* representation?



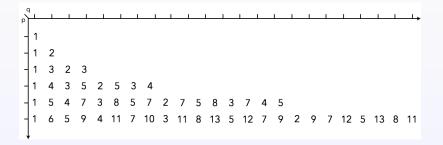
Sum of the elements in a row

Sum of the elements in a row

■ It is a power of 3.

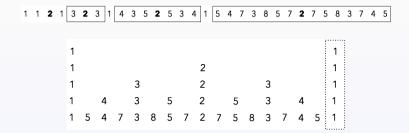
progression of the elements along a given column

- It is an arithmetic progression.
- Consider s(n) as s(p,q), for $p \ge 0$ and $1 \le q \le 2^p$



Another representation

Another representation



 They are arranged in a symmetric order and more precisely, like a palindrome.

Maximum number in each row

Maximum number in each row

They are the successive Fibonacci numbers

More properties

- Deriving the rationals
- Combinatorial proof
- Links with the Pascal's triangle