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Various problems

Fibonacci sequence

F (n + 1) = F (n) + F (n − 1) with F (0) = 1 and F (1) = 1

Lucas’ numbers
Same as Fibonacci with a different seed.
L(n + 1) = L(n) + L(n − 1) with L(0) = 1 and L(1) = 3

Derangements

d(n + 1) = n (d(n − 1) + d(n − 2)) with d(0) = 1 and d(1) = 2

Stern sequence

s(2n) = s(n) and s(2n + 1) = s(n) + s(n + 1) with d(0) = 0 and
d(1) = 1

2 / 39



Lecture 3 – Maths for Computer Science Solving recurrences and Fibonacci numbers

Fibonacci numbers are everywhere
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More about Fibonacci numbers

Definition of Fibonacci numbers

Fibonacci numbers are the number of pairs of rabbits that can
be produced at the successive generations.

Starting by a single pair of rabbits and assuming that each
pair produces a new pair of rabbits at each generation during
only two generations.

Definition:
Given the two numbers F (0) = 1 and F (1) = 1
the Fibonacci numbers are obtained by the following expression:
F (n + 1) = F (n) + F (n − 1)
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More about Fibonacci numbers

Link with the Pascal’s triangle

Could you prove the following property?
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More about Fibonacci numbers

Cassini’s identity

Proposition:

F (n − 1).F (n + 1) = F (n)2 + (−1)n+1 for n ≥ 1

Let check the expression on the first ranks:

n = 1, F (0).F (2) = F (1)2 + 1 = 2

n = 2, F (1).F (3) = F (2)2 − 1 = 3

n = 3, F (2).F (4) = F (3)2 + 1 = 10

n = 4, F (3).F (5) = F (4)2 − 1 = 24

...
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More about Fibonacci numbers

Proof (by induction)

The basis case n = 1 holds since F (0).F (2) = F (1)2 + 1 = 2.

The induction step is proved assuming the Cassini’s identity
holds at rank n.
Apply the definition of F (n + 2):
F (n).F (n+2) = F (n)(F (n+1)+F (n)) = F (n)2+F (n).F (n+1)

Replace the last term using the recurrence hypothesis:
F (n)2 = F (n − 1).F (n + 1)− (−1)n+1

= F (n − 1).F (n + 1) + (−1)n+2

Thus,
F (n).F (n+ 2) = F (n).F (n+ 1) +F (n−1).F (n+ 1) + (−1)n+2

= F (n + 1)(F (n) + F (n − 1)) + (−1)n+2

Apply again the definition of Fibonacci sequence
F (n) + F (n − 1) = F (n + 1), we obtain:
F (n).F (n + 2) = F (n + 1)2 + (−1)n+2
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More about Fibonacci numbers

A Paradox (favorite puzzle of Lewis Carroll)
Consider a chess board (8 by 8 square) and cut it into 4 pieces,
then reassemble them into a rectangle.

The surface of the square is F (n)2 while the rectangle is
F (n + 1).F (n − 1).
The Cassini identity is applied for n = 5, F (5) = 8.

On one side, the surface is 8× 8 = 64

On the other side 13× 5 = 65

What’s wrong?
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More about Fibonacci numbers

Explanation

The paradox comes from the representation of the ”diagonal” of
the rectangle which does not coincide with the hypothenuse of the
right triangles of sides F (n + 1) and F (n − 1).
In other words, it always remains (for any n) an empty space
(corresponding to the unit size of the basic square of the chess
board).

The greater n, the better the paradox because the deformation of
the surface of this basic square becomes more tiny.
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More about Fibonacci numbers

Computing F (n) fast

F (n) can be computed in log2(n) steps.

Proposition.

For all integers n:
(a) F (2n) = (F (n))2 + (F (n − 1))2

(b) F (2n + 1) = F (n)× (2F (n − 1) + F (n))
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More about Fibonacci numbers

Details (a) – Proof by induction
The base case n = 1 is true because

F (2) = (F (1))2 + (F (0))2 = 2

F (3) = F (1)× (2F (0) + F (1)) = 3

Assume that the property holds for n, for both F (2n) and
F (2n + 1).

F (2(n + 1)) = F (2n + 1) + F (2n)

= (F (n))2 + (F (n − 1))2 + F (n)× (2F (n − 1) + F (n))

= (F (n))2 + (F (n − 1))2 + 2(F (n)× F (n − 1)) + (F (n))2

= (F (n) + F (n − 1))2 + (F (n))2

= (F (n + 1))2 + (F (n))2
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More about Fibonacci numbers

Details (b)

We again start by applying the defining recurrence of the Fibonacci
numbers on F (2(n + 1) + 1)

= F (2(n + 1)) + F (2n + 1)

= (F (n + 1))2 + F (n)2 + F (n)× (2F (n − 1) + F (n))

= (F (n + 1))2 + 2(F (n − 1) + F (n))× F (n)

= (F (n + 1))2 + 2F (n + 1)× F (n)
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More about Fibonacci numbers

Pictorially
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More about Fibonacci numbers

Pictorially (from one node)
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Lucas’ numbers

Definition of Lucas’ numbers

A natural question is:

what happens if we change the first ranks of the sequence keeping
the same recurrence pattern?

It has been studied by the french mathematician Edouard Lucas,
starting at 2 and 1 .

For some reasons that will be clarified later, the sequence is shifted
backwards (we take the convention L(−1) = 2).
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Lucas’ numbers

Definition of Lucas’ numbers

Definition:
Given the two numbers L(0) = 1 and L(1) = 3
all the other Lucas’ numbers are obtained by the same progression
as Fibonacci:

L(n + 1) = L(n) + L(n − 1)

n -1 0 1 2 3 4 5 6 7 8 9 10

F(n) 1 1 2 3 5 8 13 21 34 55 ...

L(n) 2 1 3 4 7 11 18 29 47 76 123 ...
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Lucas’ numbers

There are1 strong links with Fibonacci numbers.

In particular, we established before that:

F (n + 2) = 1 +
∑n

k=0 F (k).

We have similarly:

L(n + 2) = 1 +
∑n

k=−1 L(k)
since the basic step of the induction is still valid2.
L(2) = L(−1) + L(0) + 1 = 2 + 1 + 1 = 4.

1of course
2It will be true for all the progressions where u1 = 1
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Lucas’ numbers

A first Property

We can also easily show that the Lucas number of order n is the
sum of two Fibonacci numbers:

Proposition.

L(n) = F (n − 1) + F (n + 1) for n ≥ 1

Let check this property on the first ranks:
n = 2, L(2) = F (1) + F (3) = 1 + 3 = 4

n = 3, L(3) = F (2) + F (4) = 2 + 5 = 7

n = 4, L(4) = F (3) + F (5) = 3 + 8 = 11

n = 5, L(5) = F (4) + F (6) = 5 + 13 = 18

...
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Lucas’ numbers

Proof by induction

The basis case (for n = 1) is true since
L(1) = 3 = F (2) + F (0) = 2 + 1.

Induction step: Let assume the property holds at all ranks
k ≤ n and compute L(n + 1):
Apply the definition of Lucas’ numbers:
L(n + 1) = L(n) + L(n − 1)

Apply the induction hypothesis on both terms:
L(n + 1) = F (n + 1) + F (n − 1) + F (n) + F (n − 2)
Apply now the definition of Fibonacci numbers for
F (n + 1) + F (n) = F (n + 2) and F (n− 1) + F (n− 2) = F (n)
replace them in the previous expression:
L(n + 1) = F (n + 2) + F (n)

which concludes the proof.
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Lucas’ numbers

Extension 1

Notice that using a similar approach, we obtain
L(n) = F (n + 2)− F (n − 2).

What happens if we generalize?

Proposition.

2.L(n) = F (n + 3) + F (n − 3)

Proof.
We start from L(n) = F (n + 2)− F (n − 2)
F (n + 2) = F (n + 3)− F (n + 1) and
F (n − 2) = F (n − 1)− F (n − 3)
L(n) = F (n + 3)− (F (n + 1) + F (n − 1)) + F (n − 3)
2.L(n) = F (n + 3) + F (n − 3)
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Lucas’ numbers

Extension 2

Go to the next step using the same technique:

2.L(n) = F (n + 3) + F (n − 3)
= F (n + 4)− F (n + 2) + F (n − 2)− F (n − 4)

3.L(n) = F (n + 4)− F (n − 4)

One more step: 5.L(n) = F (n + 5) + F (n − 5)

Thus, we guess the following expression.

Proposition3.

F (k − 1).L(n) = F (n + k) + (−1)k−1F (n − k) for k ≤ n

3The formal proof is let to the reader
21 / 39
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Lucas’ numbers

Two other propositions

Proposition.

F (n + 1) = 1
2(F (1).L(n) + F (n).L(1))

The proof comes from direct arithmetic manipulations:
2.F (n + 1) = F (n + 1) + F (n + 1)

= F (n + 1) + F (n) + F (n − 1)

= L(n) + F (n)

= F (1).L(n) + F (n).L(1)

The previous property can be extended for any k > 1
Let compute the expression of F (k).L(n) + F (n).L(k)
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Lucas’ numbers

A final natural question

The golden ratio.

It is a well-known result that the ratio of two consecutive
Fibonacci number tends to the Golden ratio:
limn→∞

F (n)
F (n−1) = Φ

As this result is obtained by solving the following equation
x2 = x + 1 (Φ is the positive root) and does not depend on the
first rank, this holds also for the Lucas’ numbers.
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Lucas’ numbers

A last result: the Zeckendorf’s Theorem

Objective: Study the Fibonacci numbers as a numbering system.

Let us first introduce a notation: j � k iff j ≥ k + 2.
The Zeckendorf’s theorem states that:

every positive integer n has a unique decomposition of the form:
n = Fk1 + Fk2 + ... + Fkr where k1 � k2 � ...� kr and kr ≥ 2

Here, we assume that the Fibonacci sequence starts at index 1 and
not 0, moreover, the decompositions will never consider F (1)
(since F (1) = F (2)).

24 / 39



Lecture 3 – Maths for Computer Science Solving recurrences and Fibonacci numbers

Derangements

Derangements
Derangements represent one of the simplest forms of avoidance
problems.

A professor views it as a win-win strategy for the students in
her class to grade each others’ essays on The Essential Truth
in the Universe.
The essays thereby get graded faster.
Moreover, each student gets a chance to see how another
student has interpreted some basic component of the human
experience.
The only complication is: How should we allocate essays
among the students?

The process must ensure that no student is assigned her own essay
to critique.

This challenge is known as a derangement problem.
25 / 39
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Derangements

Derangements

A derangement of a (finite) set A is a bijection f : A↔ A
that has no fixed point.

In other words, for every a ∈ A, we must have f (a) 6= a.

Clearly, derangements always exist (for n > 1).

One can just label the elements of set A by the numbers
0, 1, . . . , |A| − 1 and specify f (a) = a + 1 mod |A|.

26 / 39
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Derangements

Playing with a simple example

However, derangements are not so common! In fact, the set
A = {0, 1, 2} admits six self-bijections, but only two are
derangements. Which ones?

f (a) = a + 1 mod 3 : which maps (0→ 1), (1→ 2), (2→ 0)

g(a) = a− 1 mod 3 : which maps (0→ 2), (1→ 0), (2→ 1)

How many derangements does an arbitrary n-element set A
have? We denote this quantity by d(n).

27 / 39
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Derangements

Derangements

We compute d(n) for arbitrary integer n via the following
recursion:

For n = 1: d(1) = 0.

The unique bijection in this case consists only of a fixed point.

For n = 2: d(2) = 1.

There are two bijections in this case

the identity, which has two fixed points
the swap, which is a derangement.
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Derangements

The inductive expression

For n > 2: d(n) = (n − 1)(d(n − 1) + d(n − 2)):

To see this, note first that in any derangement, the first
element of A, call it a, must map to some b 6= a.

Note next that there are n − 1 ways to choose b.
There are d(n − 2) derangements under which b maps to a.
In those cases, we know everything about a and b, so we need
worry only about the remaining elements of A.
These n − 2 elements can “derange” in all possible ways.
There are d(n − 1) derangements under which element b does
not map to a.
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Derangements

An observation

The preceding reasoning verifies the following recurrence

d(n) =


0 if n = 1
1 if n = 2

n(d(n − 1) + d(n − 2)) if n > 2
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Derangements

Solving the recurrence

There are several ways to solve this recurrence.

We can reduce the bilinearity by a linear recurrence:

d(n) =

{
0 if n = 1

n.d(n − 1) + (−1)n if n > 1

Interestingly, as the number of objects in the set to be deranged
grows without bound.

The proportion of bijections that are derangements tends to the
limit 1/e, where e is the base of natural logarithms.
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Stern’s sequence

Stern’s sequence

Definition
s(0) = 0 and s(1) = 1
s(2n) = s(n) and s(2n + 1) = s(n) + s(n + 1)

Interpretation:

If n is even, we keep the value s(n/2)

If it is odd, we split it into two parts that are as balanced as
possible.
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Stern’s sequence

Get an insight

First elements

What is the best representation?
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Stern’s sequence

Sum of the elements in a row

It is a power of 3.
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Stern’s sequence

progression of the elements along a given column

It is an arithmetic progression.

Consider s(n) as s(p, q), for p ≥ 0 and 1 ≤ q ≤ 2p
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Stern’s sequence

Another representation
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Stern’s sequence

Terms in a row

They are arranged in a symmetric order and more precisely,
like a palindrome.
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Stern’s sequence

Maximum number in each row

They are the successive Fibonacci numbers
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Stern’s sequence

More properties

Deriving the rationals

Combinatorial proof

Links with the Pascal’s triangle

39 / 39


	More about Fibonacci numbers
	Lucas' numbers
	Derangements
	Stern's sequence

