Discrete Random Simulation Flipping a coin or more

Jean-Marc.Vincent@univ-grenoble-alpes.fr

University de Grenoble-Alpes, UFR IM²AG MOSIG 1 Mathematics for Computer Science

DISCRETE : Discrete Random Variable

STORY OF DICE

Coins, dice wheels, ... : a physical mechanism

Sequence of observations : $x_1, x_2, x_3, \cdots, x_n, \cdots$ in $\{1, 2, \cdots, K\}$

Probabilistic model

The sequence of observations is modeled by a sequence of

- random variables,
- independent,
- identically distributed,
- with a uniform distribution on the set $\{1, 2, \dots, K\}$ denoted by $\{X_n\}_{n \in \mathbb{N}}$

Notations and properties

For all n and for all sequence in $\{x_1, \dots, x_n\}$ in $\{1, 2, \dots, K\}^n$

$$\begin{split} \mathbb{P}(X_1 = x_1, \cdots, X_n = x_n) &= \mathbb{P}(X_1 = x_1) \cdots \mathbb{P}(X_n = x_n) \text{ independence;} \\ &= \mathbb{P}(X = x_1) \cdots \mathbb{P}(X = x_n) \text{ same distribution;} \\ &= \frac{1}{K} \cdots \frac{1}{K} = \frac{1}{K^n} \text{ uniform law.} \end{split}$$

DICE STORY (CONT.)

$\textbf{Coin}\mapsto \textbf{Dice-8}$

From throws of coins simulate a 8 faces dice :

DICE STORY (CONT.)

$\textbf{Coin}\mapsto \textbf{Dice-8}$

From throws of coins simulate a 8 faces dice :

Dice-8()

```
Data: Function "Coin()" uniform generator in \{0, 1\}
Result: A sequence modeled by a sequence of i.i.d. variables uniform on \{1, \dots, 8\}
```

```
\begin{array}{l} A_0 = \text{Coin} () \\ A_1 = \text{Coin} () \\ A_2 = \text{Coin} () \\ S = A_0 + 2 * A_1 + 4 * A_2 + 1 \\ \text{return } S \end{array}
```


TALES OF DICE : PROOF OF THE ALGORITHMS

Specification :

a sequence of calls of **Dice-8()** function is modeled by a sequence of random variables independent and identically distributed (i.i.d.) with uniform probability law on $\{1, \dots, 8\}$.

TALES OF DICE : PROOF OF THE ALGORITHMS

Specification :

a sequence of calls of **Dice-8()** function is modeled by a sequence of random variables independent and identically distributed (i.i.d.) with uniform probability law on $\{1, \cdots, 8\}$. **Hypothesis**:

 $C_0, C_1, \dots, C_n, \dots$ sequence of calls to **Coin()** i.i.d. sequence uniform on $\{0, 1\}$

TALES OF DICE : PROOF OF THE ALGORITHMS

Specification :

a sequence of calls of **Dice-8()** function is modeled by a sequence of random variables independent and identically distributed (i.i.d.) with uniform probability law on $\{1, \cdots, 8\}$. **Hypothesis**:

 $C_0, C_1, \cdots, C_n, \cdots$ sequence of calls to **Coin()** i.i.d. sequence uniform on $\{0, 1\}$ **Preuve** :

Denote by $S_0, S_1, \cdots, S_n, \cdots$ the sequence of random variables modeling the results obtained by the successive calls to **Dice-8()**.

Let $n \in \mathbb{N}$ and $(x_0, x_1, \cdots, x_n) \in \{1, \cdots, 8\}^{n+1}$. We should show that

$$\mathbb{P}(S_0 = x_0, \cdots, S_n = x_n) = \frac{1}{8^{n+1}} \qquad \mathsf{cqfd}.$$

TALES OF DICE : PROOF OF THE ALGORITHMS (2)

We have

$$\mathbb{P}(S_0 = x_0, \cdots, S_n = x_n)$$

$$= \mathbb{P}(S_0 = x_0) \cdots \mathbb{P}(S_n = x_n)$$

because S_k depends only on $C_{3k}, C_{3k+1}, C_{3k+2}$ and C_i are independent;
the S_0, \cdots, S_n, \cdots are indépendent;
$$= \mathbb{P}(S_0 = x_0) \cdots \mathbb{P}(S_0 = x_n)$$
 because $(C_{3k}, C_{3k+1}, C_{3k+2})$ have the same law

TALES OF DICE : PROOF OF THE ALGORITHMS (2)

We have

 $\mathbb{P}(S_0 = x_0, \cdots, S_n = x_n)$

$$= \mathbb{P}(S_0 = x_0) \cdots \mathbb{P}(S_n = x_n)$$

because S_k depends only on $C_{3k}, C_{3k+1}, C_{3k+2}$ and C_i are independent;
the S_0, \cdots, S_n, \cdots are indépendent;
$$= \mathbb{P}(S_0 = x_0) \cdots \mathbb{P}(S_0 = x_n)$$
because $(C_{3k}, C_{3k+1}, C_{3k+2})$ have the same law

But for *i* dans $\{1, \dots, 8\}$, i - 1 has a unique binary decomposition $i - 1 =_2 a_2 a_1 a_0$.

$$\begin{split} \mathbb{P}(S_0 = i) &= \mathbb{P}(C_0 = a_0, C_1 = a_1, C_2 = a_2) \\ &= \mathbb{P}(C_0 = a_0) \mathbb{P}(C_1 = a_1) \mathbb{P}(C_2 = a_2) \text{ calls to Coin() are independent;} \\ &= \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{8} \text{ have the same law on } \{0, 1\}. \end{split}$$

then

$$\mathbb{P}(S_0 = x_0, \cdots, S_n = x_n) = \frac{1}{8^{n+1}} \quad \text{cqfd.}$$

TALES OF DICE (3)

$Coin\mapsto Dice\text{-}2^k$

From one coin design a random generator of a 2^k -sided dice.

TALES OF DICE (3)

$Coin \mapsto Dice\text{-}2^k$

From one coin design a random generator of a 2^k-sided dice.

Dice(k)

```
Data: A function "Coin()" random generator on \{0, 1\}

Result: A sequence of iid numbers uniformly distributed on \{1, \dots, 2^k\}

S=0

for i = 1 to k

\lfloor S=Coin() +2.S // cf Hörner's Scheme

S = S + 1
```

return S

Preuve: Same proof as for **Dice-8**, based on the unicity of the binary decomposition of an integer in $\{0, \dots, 2^k - 1\}$ by a *k* bits vector.

BINARY REPRESENTATION :

 $5 =_2 101, \ 2 =_2 010, \ 42 =_2 101010 \cdots$

TALES OF DICE (4)

 $\textbf{Coin}\mapsto \textbf{Dice-}6$

From a coin design a 6-sided dice.

TALES OF DICE (4)

$\textbf{Coin}\mapsto \textbf{Dice-}6$

From a coin design a 6-sided dice.

Dice-6()

```
Data: A function Dice-8() random generator on \{1, \dots, 8\}
Result: A sequence of i.i.d. random numbers uniformly distributed on \{1, \dots, 6\}
```

repeat

X = Dice-8()until $X \leq 6$ return X

Proof: later

Principe

Principe

Principe

Principe

Principe

Principe

Principe

Generate uniformly on \mathcal{A} accept if the point is in \mathcal{B} .

Algorithm

Generation-unif(\mathcal{B})

Data: Uniform generator on A Result:

Uniform generator on $\ensuremath{\mathcal{B}}$

 $\begin{array}{l} \operatorname{repeat} \\ \mid \ X = \operatorname{Generator-unif}(\mathcal{A}) \\ \operatorname{until} X \in \mathcal{B} \\ \operatorname{return} X \end{array}$

Génère-unif(B)

Data:

Uniform generator on \mathcal{A} **Result:** Uniform generator on \mathcal{B}

N = 0

 $\begin{array}{c} \text{repeat} \\ X = & \text{Generator-unif}(\mathcal{A}) \\ N = N + 1 \\ \text{until } X \in \mathcal{B} \\ \text{return } X, N \end{array}$

Proof

Calls to **Generation-unif**(\mathcal{B}): $X_1, X_2, \cdots, X_n, \cdots$

$$\mathbb{P}(X \in \mathcal{C}, N = k)$$

$$= \mathbb{P}(X_1 \notin \mathcal{B}, \cdots, X_{k-1} \notin \mathcal{B}, X_k \in \mathcal{C})$$

$$= \mathbb{P}(X_1 \notin \mathcal{B}) \cdots \mathbb{P}(X_{k-1} \notin \mathcal{B}) \mathbb{P}(X_k \in \mathcal{C})$$

$$= \left(1 - \frac{|\mathcal{B}|}{|\mathcal{A}|}\right)^{k-1} \frac{|\mathcal{C}|}{|\mathcal{A}|}$$

$$\mathbb{P}(X \in \mathcal{C}) = \sum_{k=1}^{+\infty} \mathbb{P}(X \in \mathcal{C}, N = k)$$
$$= \sum_{k=1}^{+\infty} \left(1 - \frac{|\mathcal{B}|}{|\mathcal{A}|}\right)^{k-1} \frac{|\mathcal{C}|}{|\mathcal{A}|} = \frac{|\mathcal{C}|}{|\mathcal{B}|}$$

Consequently the law is **uniform** on \mathcal{B}

Génère-unif(B)

Data:

Uniform generator on $\boldsymbol{\mathcal{A}}$ Result:

Uniform generator on $\ensuremath{\mathcal{B}}$

N = 0

$\begin{array}{c} \text{repeat} \\ X = & \text{Generator-unif}(\mathcal{A}) \\ N = N + 1 \\ \text{until } X \in \mathcal{B} \\ \text{return } X, N \end{array}$

Complexity

 ${\cal N}$ Number of iterations

$$\mathbb{P}(N = k) = \mathbb{P}(X \in \mathcal{B}, N = k)$$
$$= \left(1 - \frac{|\mathcal{B}|}{|\mathcal{A}|}\right)^{k-1} \frac{|\mathcal{B}|}{|\mathcal{A}|}$$

Geometric probability distribution with parameter $p_a = \frac{|\mathcal{B}|}{|\mathcal{A}|}$ (probability of acceptance). Expected number of iterations

$$\mathbb{E}N = \sum_{k=1}^{+\infty} k(1-p_a)^{k-1} p_a$$

= $\frac{1}{(1-(1-p_a))^2} p_a = \frac{1}{p_a}$.
Var $N = \frac{1-p_a}{p_a^2}$

IM²AG

UNIFORM : Uniform Random Variable

DISCRETE : Discrete Random Variable

GENERATING RANDOM OBJECTS

Denote by X the generated object $\in \{1, \cdots, n\}$ Distribution (proportion of observations, input of the load injector)

 $p_k = \mathbb{P}(X = k).$

GENERATING RANDOM OBJECTS

Denote by X the generated object $\in \{1, \cdots, n\}$ Distribution (proportion of observations, input of the load injector)

$$p_k = \mathbb{P}(X = k).$$

Remarks :

$$0 \leq p_i \leq 1; \quad \sum_k p_k = 1.$$

GENERATING RANDOM OBJECTS

Denote by X the generated object $\in \{1, \cdots, n\}$ Distribution (proportion of observations, input of the load injector)

$$p_k = \mathbb{P}(X = k).$$

Remarks :

$$0\leqslant p_i\leqslant 1;\quad \sum_k p_k=1.$$

For integer valued random variables $X \in \mathbb{N}$:

$$\mathbb{E} X = \sum_k k.\mathbb{P}(X=k) = \sum_k kp_k.\mathsf{Expectation}$$

Variance and standard deviation

$$\mathbb{V}arX = \sum_{k} (k - \mathbb{E}X)^2 \mathbb{P}(X = k) = \mathbb{E}(X - \mathbb{E}X)^2 = \mathbb{E}X^2 - (\mathbb{E}X)^2.$$
$$\sigma(X) = \sqrt{\mathbb{V}arX}.$$

Random bit generator (see previous lecture)

double drand48(void) (48 bits encoded in 8 bytes)

The rand48() family of functions generates pseudo-random numbers using a linear congruential algorithm working on integers 48 bits in size. The particular formula employed is $r(n+1) = (a * r(n) + c) \mod m$ where the default values are for the multiplicand a = 0xfdeece66d = 25214903917 and the addend c = 0xb = 11. The modulo is always fixed at m = 2 ** 48. r(0) is called the seed of the random number generator.

The sequence of returned values from a sequence of calls to the random function is modeled by a sequence of real independent random variables uniformly distributed on the real interval $\left[0,1\right)$

Probabilistic Model

 $\{U_n\}_{n \in \mathbb{N}}$ sequence of i.i.d real random variables

For all $n \in \mathbb{N}$, for all the intervals $[a_i, b_i)$ with $0 \leq i \leq n$ and $0 \leq a_i < b_i \leq 1$,

 $\mathbb{P}\left(U_0\in[a_0,b_0),\cdots,U_n\in[a_n,b_n)\right)=(b_0-a_0)\times\cdots\times(b_n-a_n).$

THE RANDOM FUNCTION

THE RANDOM FUNCTION

Problem

All the difficulty is to find a function (an algorithm) that maps the $\left[0,1\right[$ in a set with a right probability.

UNIFORM DISCRETE RANDOM VARIABLES

Roll a n-sided dice

u=Random ()

Return [n * u]

than $u \times n$

Data: n : Number of possible outcomes **Result:** a single outcome in $\{1, \dots, n\}$

// smallest integer greater

Dice (n)

Example : flip a coin

```
Coin ()

u=Random ()

if u < \frac{1}{2}

\lfloor Return 0 // or returns Head

else

\lfloor Return 1 // or returns Tail
```

Bernoulli scheme

The problem

Given a discrete distribution

$$p = (p_1, p_2, \cdots, p_n), \quad 0 \le p_i \le 1 \quad \sum_{i=1}^n p_i = 1;$$

Design an algorithm that generates pseudo random numbers according probability *p*. **Prove** such an algorithm and evaluate its (average) **complexity**

PROBABILITIES ON A FINITE SET

Pre-computation

$$p_k = \frac{m_k}{m}$$
 where $\sum_k m_k = m$.

Create a table T with size m. Fill T such that m_k cells contains k. Computation cost : m steps Memory cost : m

Pre-computation

$$p_k = rac{m_k}{m}$$
 where $\sum_k m_k = m$.

Create a table T with size m. Fill T such that m_k cells contains k. Computation cost : m steps Memory cost : m

Table construction

```
Build_Table (p)

Data: p a rational distribution p_i = \frac{m_i}{m}

Result: Tabulation of distribution p

I=1

for i = 1, i \leq n, i + +

for j = 1, j \leq m_i j + +

\begin{bmatrix} T[i]=i \\ i++ \end{bmatrix}
```


Pre-computation

$$p_k = rac{m_k}{m}$$
 where $\sum_k m_k = m.$

Create a table T with size m. Fill T such that m_k cells contains k. Computation cost : m steps Memory cost : m

Table construction

```
Build_Table (p)

Data: p a rational distribution p_i = \frac{m_i}{m}

Result: Tabulation of distribution p

I=1

for i = 1, i \leq n, i + +

for j = 1, j \leq m_i j + +

T[i]=i

I++
```

Generation

Generate uniformly on the set $\{1, \cdots, m\}$ Returns the value in the table Computation cost : $\mathcal{O}(1)$ step Memory cost : $\mathcal{O}(m)$

Pre-computation

$$p_k = \frac{m_k}{m}$$
 where $\sum_k m_k = m$.

Create a table T with size m. Fill T such that m_k cells contains k. Computation cost : m steps Memory cost : m

Table construction

```
Build_Table (p)

Data: p a rational distribution p_i = \frac{m_i}{m}

Result: Tabulation of distribution p

I=1

for i = 1, i \leq n, i + +

for j = 1, j \leq m_i j + +

T[i]=i

I++
```

Generation

Generate uniformly on the set $\{1, \cdots, m\}$ Returns the value in the table Computation cost : $\mathcal{O}(1)$ step Memory cost : $\mathcal{O}(m)$

Generation algorithm

```
 \begin{array}{l} \mbox{Generation} (T) \\ \mbox{Data: } T \mbox{ Tabulation of distribution } p \\ \mbox{Result: A random number following distribution } p \\ \mbox{u=Random ()} \\ \mbox{l} = [m*u] \\ \mbox{Return } T[l] \end{array}
```

PROBABILITIES ON A FINITE SET

PROBABILITIES ON A FINITE SET

Histogram : Flat representation

INVERSE OF PROBABILITY DISTRIBUTION FUNCTION

Generation

Divide [0, 1[in intervals with length p_k Find the interval in which *Random* falls Returns the index of the interval Computation cost : $\mathcal{O}(\mathbb{E}X)$ steps Memory cost : $\mathcal{O}(1)$

INVERSE OF PROBABILITY DISTRIBUTION FUNCTION

Generation

Divide [0, 1[in intervals with length p_k Find the interval in which *Random* falls Returns the index of the interval Computation cost : $\mathcal{O}(\mathbb{E}X)$ steps Memory cost : $\mathcal{O}(1)$

Inverse function algorithm

```
Generation (p)

Data: A distribution p

Result: A random number following distribution p

u = \text{Random ()}

S = 0

k = 0

while u > s

\left\lfloor \begin{array}{c} k = k + 1 \\ s = s + p_k \end{array} \right\rfloor

Return k
```

SEARCHING OPTIMIZATION

Optimization methods

- pre-compute the pdf in a table
- rank objects by decreasing probability

- use a dichotomy algorithm
- use a tree searching algorithm (optimality = Huffmann coding tree)

SEARCHING OPTIMIZATION

Optimization methods

- pre-compute the pdf in a table
- rank objects by decreasing probability

use a dichotomy algorithm

use a tree searching algorithm (optimality = Huffmann coding tree)

Comments

-

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually $\mathcal{O}(K)$ could be huge

OPTIMALITY

OPTIMALITY

OPTIMALITY

Number of comparisons

Binary Search Tree Structure

$$\mathbb{E}N = \sum_{k=1}^{K} p_k l_k = 3,75, \text{ Entropy} = \sum_{k=1}^{K} p_k (-\log_2 p_k) = 3.70$$


```
Generation_Reject(p)

Data: A distribution p

Result: A random number following distribution p

N = 0

repeat

u = \text{Random } ()

k = [n * u]

v = Random() * p_{max}

N + +

until v \leq p_k

Return k, N
```

Proof

Same proof as for the uniform case

Complexity

Average number of iterations :

$$p_a = rac{1}{n.p_{max}}$$
 and $\mathbb{E}N = np_{max}$

COMBINATORIAL OBJECTS

ALIASING METHOD : ALIAS TABLE

```
Table Alias(p)
  Data: A distribution p
  Result: A vector of thresholds [s_1, \dots, s_n] and
               a vector of aliases [a_1, \cdots, a_n]
  L = \emptyset U = \emptyset
  for k = 1 to n
       switch p_k do
             case p_k < \frac{1}{n} do L = L \cup \{k\}
             case p_k > \frac{1}{n} do U = U \cup \{k\}
  while L \neq \emptyset
       i = Extract(L) k = Extract(U)
       s_i = p_i a_i = k
       p_k = p_k - \left(\frac{1}{n} - p_i\right)
       switch p_k do
             case < \frac{1}{n} do L = L \cup \{k\}
            \mathsf{case} > rac{1}{n} \mathsf{ do } U = U \cup \{k\}
```


ALIASING METHOD : GENERATION

Complexity

Computation time :

- $\mathcal{O}(n)$ computation of thresholds and aliases
- $\mathcal{O}(1)$ generation

Memory :

- thresholds $\mathcal{O}(n)$ (same cost as p)
- alias $\mathcal{O}(n)$ (aliases)

EXERCISES (1)

A typical law

Design at least 4 algorithms that simulate a pseudo-random variable according the empirical law :

С	A	В	C	D	Ε	F	G	H
$\mathbb{P}(X=c)$	0.10	0.20	0.05	0.05	0.05	0.15	0.35	0.05

Compute the average cost of the generation for each algorithm.

The power of 2

Design an algorithm that simulate a pseudo-random variable according the empirical law :

С	A	B	C	$\mid D$	E	F	G	H	Ι	J
$\mathbb{P}(X=c)$	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{32}$	$\frac{1}{8}$	$\frac{1}{16}$	$\frac{1}{16}$	$\frac{1}{8}$

Compute the average cost of the generation algorithm. What could you conclude ?

APPLICATION EXERCISE

On web servers it has been shown experimentally that hits on pages follow a Zipf's law. This law appears also in documents popularity in P2P systems, words occurrences in texts,... Consider a web server with N pages. Pages are ranked by their popularity and let p_i be the probability of requesting page i. We have

$$p_1 \ge p_2 \ge \cdots \ge p_N$$

For the Zipf's law we have $p_i = \frac{1}{H_N} \frac{1}{i}$. This means that the second web page occurs approximately 1/2 as often as the first, and the third page 1/3 as often as the first, and so on. H_N is the N^{th} harmonic number :

$$H_N = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N}$$

which could be approximated by $\log N + \gamma + o(\frac{1}{N})$ with $\gamma = 0.5772156649$ the Euler constant.

- ▶ If N is small, classical techniques could be used. But what happens when N is large (10.000 or 100.000) ?
- Propose an algorithm that generates, approximatively, with the Zipf's law from a generator of real numbers on [0, 1].
- Generalize this algorithm for "heavy-tail" laws (Benford's laws, Pareto's laws) with probability

$$p_i = \frac{1}{H_{N,\alpha}} \frac{1}{i^{\alpha}},$$

with α some "sharpness" coefficient and the normalization coefficient $H_{N,\alpha} = \left(\sum_{1}^{N} \frac{1}{i^{\alpha}}\right)^{-1}$.

CLASSICAL LAWS EXERCISES

Binomial law

Propose several algorithms that simulate a variable X following the binomial distribution $\mathcal{B}in(n,k)$

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Does the optimal method depends on the parameter values ?

Geometric distribution

Propose several algorithms that simulate a variable following the geometric distribution $\mathcal{G}(p)$

$$\mathbb{P}(X=k) = (1-p)p^{k-1}$$

Does the optimal method depends on the parameter values ?

Poisson distribution

Propose several algorithms that simulate a variable following the Poisson distribution $\mathcal{P}(\lambda)$

$$\mathbb{P}(X=k) = e^{-\lambda} \frac{\lambda^k}{k!}$$

Does the optimal method depends on the parameter values ?

UNIFORM : Uniform Random Variable

DISCRETE : Discrete Random Variable

3 UNIFORM : Combinatorial Objects

GENERATION OF COMPLEX CONFIGURATIONS

Examples

- sequences of requests on a web server
- ▶ path in a graph
- ▶ interconnexion graph
- memory configuration
- mine field
- ▶ ...

MINE FIELD

Write an algorithm that generates a random mine field with exactly k(=10) mines in a n field. Example for $n=9\times9$

MINE FIELD (2)

Uniform generation of a mine field with exactly exactement k mines

- Method 1 : There are exactly $\binom{n}{k}$ different mine field, number them, generate uniformly an index of a mine field in $\{1, \dots, \binom{n}{k}\}$
- Method 2 : Generate uniformly a permutation of $\{1,\cdots,n\}$ and take the first k elements as mine positions
- Method 2bis : Generate in sequence uniformly the mines on the available positions.
 - Method 3 : While the number of mines is not sufficient pick uniformly a position in $\{1,...,n\}$ and put a mine if the position is free
 - Method 4 : We put successively a mine in position i with probability $\frac{k-k_i}{n-i+1}$, where k_i is the number of mines in positions $\{1, \dots, i-1\}$.

Generation of mean field with average density $d = \frac{k}{n}$ de mines

Method 5: Flip a biaised coin with probability d in each position to put mines. Mehode 5b : Same method but reject the mine field if the average density is out of $[d - \epsilon, d + \epsilon]$.

PATHS GENERATION

In a "feed-forward" communication network generate uniformly a route between 2 given nodes

PATHS GENERATION

In a "feed-forward" communication network generate uniformly a route between 2 given nodes

Manhattan Topology

PATHS GENERATION

In a "feed-forward" communication network generate uniformly a route between 2 given nodes

GRAPH GENERATION

Typical graph

Generate a random graph uniformly (directed or non-directed)

- without constraints
- with a given number of edges
- with a fixed degree
- ► connected
- ▶ imagine your own constraints

DOMINOES

The dominoes game is a set of all the tiles marked by 2 marks, these marks are in $\{0, \dots, n\}$. Then a domino is defined by a couple (i, j) with $0 \le i \le j \le 6$.

- **Number of dominoes** : Compute K_6 the number of tiles of a classical game with n = 6. Deduce K_n of a game with marks between 0 and n
- **Generator of dominoes** Write an algorithm that fe-generates uniformly a dominoe for a given *n*
- Cost of the generation Compute the complexity of the generation including pre-computation if ever

GENERATION OF BINARY RESEARCH TREE

GENERATION OF BINARY RESEARCH TREE

Uniform recursive decomposition

```
Random_BST (n)
Data: n number of nodes
Result: a random tree
if n = 0
L return empty_tree ()
else
q =Random (0, n - 1)
A1 =Random_BST (q)
A2 =Random_BST (n - 1 - q)
return join (A1, A2)
```


GENERATION OF BINARY RESEARCH TREE

Uniform recursive decomposition Non uniform on binary trees Random_BST (n) Data: n number of nodes Result: a random tree if n = 0_ return empty_tree () else q = Random(0, n-1) $A_1 = \text{Random}_BST(q)$ $A_2 = \text{Random}_\text{BST} (n - 1 - q)$ return join (A_1, A_2)

UNIFORM GENERATION OF BINARY TREES

Catalan's Numbers

Recurrence equation

$$C_0 = C_1 = 1;$$

 $C_N = \sum_{q=0}^{n-1} C_q C_{n-1-q}$

Then

$$1 = \sum_{q=0}^{n-1} \frac{C_q C_{n-1-q}}{C_n} = \sum_{q=0}^{n-1} p_{n,q}.$$
$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

UNIFORM GENERATION OF BINARY TREES

Catalan's Numbers

Recurrence equation

$$C_0 = C_1 = 1;$$

 $C_N = \sum_{q=0}^{n-1} C_q C_{n-1-q}.$

Then

$$1 = \sum_{q=0}^{n-1} \frac{C_q C_{n-1-q}}{C_n} = \sum_{q=0}^{n-1} p_{n,q}.$$

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

Génération uniforme

Random_BT (n)

Data: *n* number of nodes **Result:** a random tree

else

 $\begin{array}{l} \mathbf{q} = & \mathsf{Generate}(p_{n,0},\cdots,p_{n,n-1}) \\ A_1 = & \mathsf{Random}_\mathsf{BT}(q) \\ A_2 = & \mathsf{Random}_\mathsf{BT}(n-1-q) \\ & \mathsf{return join}(A_1,A_2) \end{array}$

pre-computation $p_{n,q}$

$$p_{n,q} = \frac{C_q C_{n-1-q}}{C_n}$$

LABELLED TREES

How many labelled trees with n nodes ? Propose an algorithm that generates uniformly random trees.

LABELLED TREES

How many labelled trees with n nodes ? Propose an algorithm that generates uniformly random trees. Cayley's formulae

$$T_n = n^{n-2}.$$

Prüfer's coding algorithm.

Synthesis

Simulation is a powerful tool for computation (randomized algorithms)

- Probabilistic specification based on statistical properties (uniformity, independence, goodness of fit,...)
- Proof of statistical properties
- Complexity (probabilistic), average computation time
- Complex objects : link between combinatorial decomposition and simulation algorithm

Based on a Random function (external)

- Primality testing (security)
- Time randomization (networking)
- Monte-Carlo method (scientific computations)
- Test covering (verification)
- Statistical learning (Bayesian approach)
- Simulated Annealing (optimization, NP-complete problems)

