
UNIFORM DISCRETE COMBINATORIAL OBJECTS

Discrete Random Simulation
Flipping a coin or more

Jean-Marc.Vincent@univ-grenoble-alpes.fr

University de Grenoble-Alpes, UFR IM2AG
MOSIG 1 Mathematics for Computer Science

November 2024

1 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

1 UNIFORM : Uniform Random Variable

2 DISCRETE : Discrete Random Variable

3 UNIFORM : Combinatorial Objects

2 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

STORY OF DICE

Coins, dice wheels, ... : a physical mechanism

Sequence of observations : x1, x2, x3, · · · , xn, · · · in {1, 2, · · · ,K}

Probabilistic model

The sequence of observations is modeled by a sequence of
I random variables,
I independent,
I identically distributed,
I with a uniform distribution on the set {1, 2, · · · ,K} denoted by {Xn}n∈N

Notations and properties

For all n and for all sequence in {x1, · · · , xn} in {1, 2, · · · ,K}n

P(X1 = x1, · · · ,Xn = xn) = P(X1 = x1). · · · .P(Xn = xn) independence;

= P(X = x1). · · · .P(X = xn) same distribution;

=
1
K
· · ·

1
K

=
1

Kn uniform law.

3 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

DICE STORY (CONT.)

Coin 7→ Dice-8

From throws of coins simulate a 8 faces dice :

Dice-8()

Data: Function "Coin()" uniform generator in {0, 1}
Result: A sequence modeled by a sequence of i.i.d. variables uniform on {1, · · · , 8}
A0 =Coin()
A1 =Coin()
A2 =Coin()
S = A0 + 2 ∗ A1 + 4 ∗ A2 + 1
return S

4 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

DICE STORY (CONT.)

Coin 7→ Dice-8

From throws of coins simulate a 8 faces dice :

Dice-8()

Data: Function "Coin()" uniform generator in {0, 1}
Result: A sequence modeled by a sequence of i.i.d. variables uniform on {1, · · · , 8}
A0 =Coin()
A1 =Coin()
A2 =Coin()
S = A0 + 2 ∗ A1 + 4 ∗ A2 + 1
return S

4 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TALES OF DICE : PROOF OF THE ALGORITHMS

Speci�cation :
a sequence of calls of Dice-8() function is modeled by a sequence of random variables
independent and identically distributed (i.i.d.) with uniform probability law on {1, · · · , 8}.

Hypothesis :
C0,C1, · · · ,Cn, · · · sequence of calls to Coin() i.i.d. sequence uniform on {0, 1}
Preuve :
Denote by S0, S1, · · · , Sn, · · · the sequence of random variables modeling the results
obtained by the successive calls to Dice-8() .
Let n ∈ N and (x0, x1, · · · , xn) ∈ {1, · · · , 8}n+1. We should show that

P(S0 = x0, · · · , Sn = xn) =
1

8n+1
cqfd.

5 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TALES OF DICE : PROOF OF THE ALGORITHMS

Speci�cation :
a sequence of calls of Dice-8() function is modeled by a sequence of random variables
independent and identically distributed (i.i.d.) with uniform probability law on {1, · · · , 8}.
Hypothesis :
C0,C1, · · · ,Cn, · · · sequence of calls to Coin() i.i.d. sequence uniform on {0, 1}

Preuve :
Denote by S0, S1, · · · , Sn, · · · the sequence of random variables modeling the results
obtained by the successive calls to Dice-8() .
Let n ∈ N and (x0, x1, · · · , xn) ∈ {1, · · · , 8}n+1. We should show that

P(S0 = x0, · · · , Sn = xn) =
1

8n+1
cqfd.

5 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TALES OF DICE : PROOF OF THE ALGORITHMS

Speci�cation :
a sequence of calls of Dice-8() function is modeled by a sequence of random variables
independent and identically distributed (i.i.d.) with uniform probability law on {1, · · · , 8}.
Hypothesis :
C0,C1, · · · ,Cn, · · · sequence of calls to Coin() i.i.d. sequence uniform on {0, 1}
Preuve :
Denote by S0, S1, · · · , Sn, · · · the sequence of random variables modeling the results
obtained by the successive calls to Dice-8() .
Let n ∈ N and (x0, x1, · · · , xn) ∈ {1, · · · , 8}n+1. We should show that

P(S0 = x0, · · · , Sn = xn) =
1

8n+1
cqfd.

5 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TALES OF DICE : PROOF OF THE ALGORITHMS (2)

We have

P(S0 = x0, · · · , Sn = xn)

= P(S0 = x0) · · ·P(Sn = xn)

because Sk depends only on C3k,C3k+1,C3k+2 and Ci are independent;

the S0, · · · , Sn, · · · are indépendent;

= P(S0 = x0) · · ·P(S0 = xn) because (C3k,C3k+1,C3k+2) have the same law

But for i dans {1, · · · , 8}, i− 1 has a unique binary decomposition i− 1 =2 a2a1a0.

P(S0 = i) = P(C0 = a0,C1 = a1,C2 = a2)

= P(C0 = a0)P(C1 = a1)P(C2 = a2) calls to Coin() are independent;

=
1
2

1
2

1
2
=

1
8
have the same law on {0, 1}.

then

P(S0 = x0, · · · , Sn = xn) =
1

8n+1
cqfd.

6 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TALES OF DICE : PROOF OF THE ALGORITHMS (2)

We have

P(S0 = x0, · · · , Sn = xn)

= P(S0 = x0) · · ·P(Sn = xn)

because Sk depends only on C3k,C3k+1,C3k+2 and Ci are independent;

the S0, · · · , Sn, · · · are indépendent;

= P(S0 = x0) · · ·P(S0 = xn) because (C3k,C3k+1,C3k+2) have the same law

But for i dans {1, · · · , 8}, i− 1 has a unique binary decomposition i− 1 =2 a2a1a0.

P(S0 = i) = P(C0 = a0,C1 = a1,C2 = a2)

= P(C0 = a0)P(C1 = a1)P(C2 = a2) calls to Coin() are independent;

=
1
2

1
2

1
2
=

1
8
have the same law on {0, 1}.

then

P(S0 = x0, · · · , Sn = xn) =
1

8n+1
cqfd.

6 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TALES OF DICE (3)

Coin 7→ Dice-2k

From one coin design a random generator of a 2k-sided dice.

Dice(k)

Data: A function "Coin()" random generator on {0, 1}
Result: A sequence of iid numbers uniformly distributed on {1, · · · , 2k}
S=0
for i = 1 to k

S=Coin() +2.S // cf Hörner’s Scheme

S = S + 1
return S

Preuve: Same proof as for Dice-8, based on the unicity of the binary decomposition of an
integer in {0, · · · , 2k − 1} by a k bits vector.

7 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TALES OF DICE (3)

Coin 7→ Dice-2k

From one coin design a random generator of a 2k-sided dice.

Dice(k)

Data: A function "Coin()" random generator on {0, 1}
Result: A sequence of iid numbers uniformly distributed on {1, · · · , 2k}
S=0
for i = 1 to k

S=Coin() +2.S // cf Hörner’s Scheme

S = S + 1
return S

Preuve: Same proof as for Dice-8, based on the unicity of the binary decomposition of an
integer in {0, · · · , 2k − 1} by a k bits vector.

7 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

BINARY REPRESENTATION :

7

0 1

0 1

0 1

2 3

0 1

4 5

0 1

6

0 1 0 1

0 1

5 =2 101, 2 =2 010, 42 =2 101010 · · ·

8 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TALES OF DICE (4)

Coin 7→ Dice-6

From a coin design a 6-sided dice.

Dice-6()

Data: A function Dice-8() random generator on {1, · · · , 8}
Result: A sequence of i.i.d. random numbers uniformly distributed on {1, · · · , 6}
repeat

X =Dice-8()
until X 6 6
return X

Proof: later

9 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TALES OF DICE (4)

Coin 7→ Dice-6

From a coin design a 6-sided dice.

Dice-6()

Data: A function Dice-8() random generator on {1, · · · , 8}
Result: A sequence of i.i.d. random numbers uniformly distributed on {1, · · · , 6}
repeat

X =Dice-8()
until X 6 6
return X

Proof: later

9 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is in B.

A

B

Algorithm

Generation-unif(B)
Data:
Uniform generator on A

Result:
Uniform generator on B

repeat
X =Generator-unif(A)

until X ∈ B
return X

10 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is in B.

A

B

U1

Algorithm

Generation-unif(B)
Data:
Uniform generator on A

Result:
Uniform generator on B

repeat
X =Generator-unif(A)

until X ∈ B
return X

10 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is in B.

A

B

U1

Algorithm

Generation-unif(B)
Data:
Uniform generator on A

Result:
Uniform generator on B

repeat
X =Generator-unif(A)

until X ∈ B
return X

10 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is in B.

A

B

U1
U2

Algorithm

Generation-unif(B)
Data:
Uniform generator on A

Result:
Uniform generator on B

repeat
X =Generator-unif(A)

until X ∈ B
return X

10 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is in B.

A

B

U1
U2

Algorithm

Generation-unif(B)
Data:
Uniform generator on A

Result:
Uniform generator on B

repeat
X =Generator-unif(A)

until X ∈ B
return X

10 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is in B.

A

B

U1
U2

accept

U3

Algorithm

Generation-unif(B)
Data:
Uniform generator on A

Result:
Uniform generator on B

repeat
X =Generator-unif(A)

until X ∈ B
return X

10 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION METHODS BASED ON REJECTION

Principe

Generate uniformly on A accept if the point is in B.

A

B

U1
U2

accept

U3

Algorithm

Generation-unif(B)
Data:
Uniform generator on A

Result:
Uniform generator on B

repeat
X =Generator-unif(A)

until X ∈ B
return X

10 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION METHODS BASED ON REJECTION: PROOF

Génère-unif(B)
Data:
Uniform generator on A

Result:
Uniform generator on B

N = 0
repeat

X =Generator-unif(A)
N = N + 1

until X ∈ B
return X, N

Proof

Calls to Generation-unif(B): X1,X2, · · · ,Xn, · · ·

P(X ∈ C,N = k)

= P(X1 /∈ B, · · · ,Xk−1 /∈ B,Xk ∈ C)
= P(X1 /∈ B) · · ·P(Xk−1 /∈ B)P(Xk ∈ C)

=

(
1−
|B|
|A|

)k−1 |C|
|A|

P(X ∈ C) =

+∞∑
k=1

P(X ∈ C,N = k)

=

+∞∑
k=1

(
1−
|B|
|A|

)k−1 |C|
|A|

=
|C|
|B|

Consequently the law is uniform on B

11 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION METHODS BASED ON REJECTION

Génère-unif(B)
Data:
Uniform generator on A

Result:
Uniform generator on B

N = 0
repeat

X =Generator-unif(A)
N = N + 1

until X ∈ B
return X, N

Complexity

N Number of iterations

P(N = k) = P(X ∈ B,N = k)

=

(
1−
|B|
|A|

)k−1 |B|
|A|

Geometric probability distribution with parameter
pa =

|B|
|A| (probability of acceptance).

Expected number of iterations

EN =

+∞∑
k=1

k(1− pa)
k−1pa

=
1

(1− (1− pa))2
pa =

1
pa
.

Var N =
1− pa

p2
a

12 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

1 UNIFORM : Uniform Random Variable

2 DISCRETE : Discrete Random Variable

3 UNIFORM : Combinatorial Objects

13 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATING RANDOM OBJECTS

Denote by X the generated object ∈ {1, · · · , n}
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

For integer valued random variables X ∈ N :

EX =
∑

k

k.P(X = k) =
∑

k

kpk.Expectation

Variance and standard deviation

VarX =
∑

k

(k− EX)2P(X = k) = E(X − EX)2 = EX2 − (EX)2.

σ(X) =
√
VarX.

14 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATING RANDOM OBJECTS

Denote by X the generated object ∈ {1, · · · , n}
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

For integer valued random variables X ∈ N :

EX =
∑

k

k.P(X = k) =
∑

k

kpk.Expectation

Variance and standard deviation

VarX =
∑

k

(k− EX)2P(X = k) = E(X − EX)2 = EX2 − (EX)2.

σ(X) =
√
VarX.

14 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATING RANDOM OBJECTS

Denote by X the generated object ∈ {1, · · · , n}
Distribution (proportion of observations, input of the load injector)

pk = P(X = k).

Remarks :

0 6 pi 6 1;
∑

k

pk = 1.

For integer valued random variables X ∈ N :

EX =
∑

k

k.P(X = k) =
∑

k

kpk.Expectation

Variance and standard deviation

VarX =
∑

k

(k− EX)2P(X = k) = E(X − EX)2 = EX2 − (EX)2.

σ(X) =
√
VarX.

14 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

THE RANDOM FUNCTION

Random bit generator (see previous lecture)

double drand48(void) (48 bits encoded in 8 bytes) (manpage)

The rand48() family of functions generates pseudo-random numbers using a linear
congruential algorithm working on integers 48 bits in size. The particular formula employed
is r(n+1) = (a * r(n) + c) mod m where the default values are for the multiplicand a =
0xfdeece66d = 25214903917 and the addend c = 0xb = 11. The modulo is always �xed at m
= 2 ** 48. r(0) is called the seed of the random number generator.

The sequence of returned values from a sequence of calls to the random function is
modeled by a sequence of real independent random variables uniformly
distributed on the real interval [0, 1)

Probabilistic Model

{Un}n∈N sequence of i.i.d real random variables

For all n ∈ N, for all the intervals [ai, bi) with 0 6 i 6 n and 0 6 ai < bi 6 1,

P (U0 ∈ [a0, b0), · · · ,Un ∈ [an, bn)) = (b0 − a0)× · · · × (bn − an).

15 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

THE RANDOM FUNCTION

0 1

Problem

All the di�culty is to �nd a function (an algorithm) that maps the [0, 1[in a set with a right
probability.

16 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

THE RANDOM FUNCTION

U1

0 1

Problem

All the di�culty is to �nd a function (an algorithm) that maps the [0, 1[in a set with a right
probability.

16 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

THE RANDOM FUNCTION

U2U1

0 1

Problem

All the di�culty is to �nd a function (an algorithm) that maps the [0, 1[in a set with a right
probability.

16 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

THE RANDOM FUNCTION

U3U2U1

0 1

Problem

All the di�culty is to �nd a function (an algorithm) that maps the [0, 1[in a set with a right
probability.

16 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

THE RANDOM FUNCTION

U4 U3U2U1

0 1

Problem

All the di�culty is to �nd a function (an algorithm) that maps the [0, 1[in a set with a right
probability.

16 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

THE RANDOM FUNCTION

U5U4 U3U2U1

0 1

Problem

All the di�culty is to �nd a function (an algorithm) that maps the [0, 1[in a set with a right
probability.

16 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

THE RANDOM FUNCTION

10 ba

Problem

All the di�culty is to �nd a function (an algorithm) that maps the [0, 1[in a set with a right
probability.

16 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

THE RANDOM FUNCTION

0 1
P(U ∈ [a, b[) = (b− a)

a b

Problem

All the di�culty is to �nd a function (an algorithm) that maps the [0, 1[in a set with a right
probability.

16 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

THE RANDOM FUNCTION

0 1
P(U ∈ [a, b[) = (b− a)

a b

Problem

All the di�culty is to �nd a function (an algorithm) that maps the [0, 1[in a set with a right
probability.

16 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

UNIFORM DISCRETE RANDOM VARIABLES

Example : flip a coin

Coin ()
u=Random ()
if u < 1

2
Return 0 // or returns Head

else
Return 1 // or returns Tail

Bernoulli scheme

Roll a n-sided dice

Dice (n)
Data: n : Number of possible outcomes
Result: a single outcome in {1, · · · , n}
u=Random ()
Return dn ∗ ue
// smallest integer greater

than u× n

The problem

Given a discrete distribution

p = (p1, p2, · · · , pn), 0 6 pi 6 1
n∑

i=1

pi = 1;

Design an algorithm that generates pseudo random numbers according probability p.
Prove such an algorithm and evaluate its (average) complexity

17 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

PROBABILITIES ON A FINITE SET

1/20 4/20 6/20 1/20 2/20 1/202/203/20

18 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TABULATION METHOD

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k.
Computation cost : m steps
Memory cost : m

Table construction

Build_Table (p)
Data: p a rational distribution pi =

mi
m

Result: Tabulation of distribution p
l=1
for i = 1, i 6 n, i ++

for j = 1, j 6 mi j ++
T[l]=i
l++

Generation

Generate uniformly on the set
{1, · · · ,m}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

Generation (T)
Data: T Tabulation of distribution p
Result: A random number following distribution p
u=Random ()
l = dm ∗ ue
Return T[l]

19 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TABULATION METHOD

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k.
Computation cost : m steps
Memory cost : m

Table construction

Build_Table (p)
Data: p a rational distribution pi =

mi
m

Result: Tabulation of distribution p
l=1
for i = 1, i 6 n, i ++

for j = 1, j 6 mi j ++
T[l]=i
l++

Generation

Generate uniformly on the set
{1, · · · ,m}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

Generation (T)
Data: T Tabulation of distribution p
Result: A random number following distribution p
u=Random ()
l = dm ∗ ue
Return T[l]

19 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TABULATION METHOD

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k.
Computation cost : m steps
Memory cost : m

Table construction

Build_Table (p)
Data: p a rational distribution pi =

mi
m

Result: Tabulation of distribution p
l=1
for i = 1, i 6 n, i ++

for j = 1, j 6 mi j ++
T[l]=i
l++

Generation

Generate uniformly on the set
{1, · · · ,m}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

Generation (T)
Data: T Tabulation of distribution p
Result: A random number following distribution p
u=Random ()
l = dm ∗ ue
Return T[l]

19 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

TABULATION METHOD

Pre-computation

pk =
mk

m
where

∑
k

mk = m.

Create a table T with size m.
Fill T such that mk cells contains k.
Computation cost : m steps
Memory cost : m

Table construction

Build_Table (p)
Data: p a rational distribution pi =

mi
m

Result: Tabulation of distribution p
l=1
for i = 1, i 6 n, i ++

for j = 1, j 6 mi j ++
T[l]=i
l++

Generation

Generate uniformly on the set
{1, · · · ,m}
Returns the value in the table
Computation cost : O(1) step
Memory cost : O(m)

Generation algorithm

Generation (T)
Data: T Tabulation of distribution p
Result: A random number following distribution p
u=Random ()
l = dm ∗ ue
Return T[l]

19 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

PROBABILITIES ON A FINITE SET

1/20 4/20 6/20 1/20 2/20 1/202/203/20

Histogram : Flat representation

Cost(average number of comparisons) : Ĉ(P) =
K∑

k=1

k.pk = 4.35

20 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

PROBABILITIES ON A FINITE SET

1/20 4/20 6/20 1/20 2/20 1/202/203/20

Histogram : Flat representation

Random()

1/20 2/20 4/20 6/20 1/20 2/20 1/20

1/20 4/20 6/20 10/20 16/20 17/20 19/20 20/20

3/20

Cost(average number of comparisons) : Ĉ(P) =
K∑

k=1

k.pk = 4.35

20 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

INVERSE OF PROBABILITY DISTRIBUTION FUNCTION
P(X 6 x)

0

1

1 2 3 K − 1 K

Cumulative distribution function

x
p1

p2

p3

· · ·

Generation

Divide [0, 1[in intervals with length pk
Find the interval in which Random falls
Returns the index of the interval
Computation cost : O(EX) steps
Memory cost : O(1)

Inverse function algorithm

Generation (p)
Data: A distribution p
Result: A random number following distri-

bution p
u =Random ()
S = 0
k = 0
while u > s

k = k + 1
s = s + pk

Return k

21 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

INVERSE OF PROBABILITY DISTRIBUTION FUNCTION
P(X 6 x)

0

1

1 2 3 K − 1 K

Cumulative distribution function

x
p1

p2

p3

· · ·

Generation

Divide [0, 1[in intervals with length pk
Find the interval in which Random falls
Returns the index of the interval
Computation cost : O(EX) steps
Memory cost : O(1)

Inverse function algorithm

Generation (p)
Data: A distribution p
Result: A random number following distri-

bution p
u =Random ()
S = 0
k = 0
while u > s

k = k + 1
s = s + pk

Return k
21 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

SEARCHING OPTIMIZATION

Optimization methods

I pre-compute the pdf in a table
I rank objects by decreasing probability

Random()

2/20 1/20

13/20 15/20 17/20 18/20

4/20 1/20

19/20 20/2010/206/20

2/206/20 3/20 1/20

I use a dichotomy algorithm
I use a tree searching algorithm (optimality = Hu�mann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually O(K) could be huge
-

22 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

SEARCHING OPTIMIZATION

Optimization methods

I pre-compute the pdf in a table
I rank objects by decreasing probability

Random()

2/20 1/20

13/20 15/20 17/20 18/20

4/20 1/20

19/20 20/2010/206/20

2/206/20 3/20 1/20

I use a dichotomy algorithm
I use a tree searching algorithm (optimality = Hu�mann coding tree)

Comments

- Depends on the usage of the generator (repeated use or not)
- pre-computation usually O(K) could be huge
-

22 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

OPTIMALITY

1/201/20 3/20 2/20 4/20 6/20 1/20 2/20

Number of comparisons

Binary Search Tree Structure

EN =

K∑
k=1

pk.lk = 3, 75, Entropy =

K∑
k=1

pk(− log2 pk) = 3.70

23 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

OPTIMALITY

1/20

10/20

11/20

14/20

8/20

4/20

2/20

1/20

6/20

3/20

4/20

2/20

2/20 1/201/20

2/20 1/201/206/204/202/203/201/20

Number of comparisons

Binary Search Tree Structure

EN =

K∑
k=1

pk.lk = 3, 75, Entropy =

K∑
k=1

pk(− log2 pk) = 3.70

23 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

OPTIMALITY

1/20

10/20

11/20

14/20

8/20

4/20

2/20

1/20

6/20

3/20

4/20

2/20

2/20 1/201/20

2/20 1/201/206/204/202/203/201/20

Number of comparisons

Binary Search Tree Structure

EN =
K∑

k=1

pk.lk = 3, 75, Entropy =
K∑

k=1

pk(− log2 pk) = 3.70

23 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

REJECTION BASED METHODS

3/20 2/20 4/20 6/20 1/20 2/20 1/201/20

24 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

REJECTION BASED METHODS

6/20

2/203/20 2/20 4/20 6/201/20 1/20 1/20

24 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

REJECTION BASED METHODS

6/20

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Alea(8)

24 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

REJECTION BASED METHODS

6/20

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

Alea(8)

Random()*6/20

24 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

REJECTION BASED METHODS

Generation_Reject(p)

Data: A distribution p
Result: A random number following distribution p

N = 0
repeat

u =Random ()
k = dn ∗ ue
v = Random() ∗ pmax
N ++

until v 6 pk
Return k, N

Proof

Same proof as for the uniform case

Complexity

Average number of iterations :

pa =
1

n.pmax
and EN = npmax

25 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

ALIASING METHOD

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

1/8

26 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

ALIASING METHOD

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

1/8

26 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

ALIASING METHOD

1/20 3/20 2/20 4/20 6/20 1/20 2/20 1/20

1/8

26 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

ALIASING METHOD

1/8

26 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

ALIASING METHOD

1/8

26 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

ALIASING METHOD

1/8

26 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

ALIASING METHOD

1/8

26 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

ALIASING METHOD : ALIAS TABLE

Table_Alias(p)

Data: A distribution p
Result: A vector of thresholds [s1, · · · , sn] and

a vector of aliases [a1, · · · , an]

L = ∅ U = ∅
for k = 1 to n

switch pk do
case pk <

1
n do L = L ∪ {k}

case pk >
1
n do U = U ∪ {k}

while L 6= ∅
i = Extract(L) k = Extract(U)
si = pi ai = k
pk = pk − (1

n − pi)

switch pk do
case < 1

n do L = L ∪ {k}

case > 1
n do U = U ∪ {k}

27 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

ALIASING METHOD : GENERATION

Generation_Alias(s, a)

Data: A vector of thresholds [s1, · · · , sn] and
a vector of aliases [a1, · · · , an] according a distribution p

Result: A random number following distribution p

u =Random ()
k = dn ∗ ue
if Random() 1

n < sk
Return k

else
Return ak

Complexity

Computation time :
- O(n) computation of thresholds and aliases
- O(1) generation
Memory :
- thresholds O(n) (same cost as p)
- alias O(n) (aliases)

28 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

EXERCISES (1)

A typical law

Design at least 4 algorithms that simulate a pseudo-random variable according the empirical
law :

c A B C D E F G H
P(X = c) 0.10 0.20 0.05 0.05 0.05 0.15 0.35 0.05

Compute the average cost of the generation for each algorithm.

The power of 2

Design an algorithm that simulate a pseudo-random variable according the empirical law :

c A B C D E F G H I J
P(X = c) 1

4
1
8

1
16

1
32

1
8

1
32

1
8

1
16

1
16

1
8

Compute the average cost of the generation algorithm. What could you conclude ?

29 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

APPLICATION EXERCISE
On web servers it has been shown experimentally that hits on pages follow a Zipf’s law. This
law appears also in documents popularity in P2P systems, words occurrences in texts,...
Consider a web server with N pages. Pages are ranked by their popularity and let pi be the
probability of requesting page i. We have

p1 > p2 > · · · > pN

For the Zipf’s law we have pi =
1

HN

1
i . This means that the second web page occurs

approximately 1/2 as often as the �rst, and the third page 1/3 as often as the �rst, and so on.
HN is the Nth harmonic number :

HN = 1 +
1
2
+

1
3
+ · · ·+

1
N

which could be approximated by log N + γ + o(1
N) with γ = 0.5772156649 the Euler

constant.
I If N is small, classical techniques could be used. But what happens when N is large (10.000 or

100.000) ?
I Propose an algorithm that generates, approximatively, with the Zipf’s law from a generator of real

numbers on [0, 1[.
I Generalize this algorithm for “heavy-tail” laws (Benford’s laws, Pareto’s laws) with probability

pi =
1

HN,α

1
iα
,

with α some “sharpness” coe�cient and the normalization coe�cient HN,α =
(∑N

1
1

iα

)−1
.

30 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

CLASSICAL LAWS EXERCISES

Binomial law

Propose several algorithms that simulate a variable X following the binomial distribution
Bin(n, k)

P(X = k) =
(

n
k

)
pk(1− p)n−k

Does the optimal method depends on the parameter values ?

Geometric distribution

Propose several algorithms that simulate a variable following the geometric distribution G(p)

P(X = k) = (1− p)pk−1

Does the optimal method depends on the parameter values ?

Poisson distribution

Propose several algorithms that simulate a variable following the Poisson distribution P(λ)

P(X = k) = e−λ
λk

k!

Does the optimal method depends on the parameter values ?

31 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

1 UNIFORM : Uniform Random Variable

2 DISCRETE : Discrete Random Variable

3 UNIFORM : Combinatorial Objects

32 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION OF COMPLEX CONFIGURATIONS

Examples

I sequences of requests on a web server
I path in a graph
I interconnexion graph
I memory con�guration
I mine �eld
I ...

33 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

MINE FIELD

Write an algorithm that generates a random mine �eld with exactly k(= 10) mines in a n
�eld. Example for n = 9× 9

34 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

MINE FIELD (2)

Uniform generation of a mine field with exactly exactement k mines

Method 1 : There are exactly
(n

k

)
di�erent mine �eld, number them, generate

uniformly an index of a mine �eld in {1, · · · ,
(n

k

)
}

Method 2 : Generate uniformly a permutation of {1, · · · , n} and take the �rst k
elements as mine positions

Method 2bis : Generate in sequence uniformly the mines on the available positions.

Method 3 : While the number of mines is not su�cient pick uniformly a position in
{1, ..., n} and put a mine if the position is free

Method 4 : We put successively a mine in position i with probability k−ki
n−i+1 , where ki

is the number of mines in positions {1, · · · , i− 1}.

Generation of mean field with average density d = k
n de mines

Method 5 : Flip a biaised coin with probability d in each position to put mines.

Mehode 5b : Same method but reject the mine �eld if the average density is out of
[d− ε, d + ε].

35 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

PATHS GENERATION

In a "feed-forward" communication network generate uniformly a route between 2 given
nodes

Manhattan Topology General topology

36 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

PATHS GENERATION

In a "feed-forward" communication network generate uniformly a route between 2 given
nodes

Manhattan Topology

B

A

General topology

36 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

PATHS GENERATION

In a "feed-forward" communication network generate uniformly a route between 2 given
nodes

Manhattan Topology

B

A

General topology

BA

36 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GRAPH GENERATION

Typical graph

Generate a random graph uniformly (directed or non-directed)
I without constraints
I with a given number of edges
I with a �xed degree
I connected
I imagine your own constraints

37 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

DOMINOES

The dominoes game is a set of all the tiles marked by 2 marks, these marks are in
{0, · · · , n}. Then a domino is de�ned by a couple (i, j) with 0 6 i 6 j 6 6.
I Number of dominoes : Compute K6 the number of tiles of a classical game with n = 6. Deduce

Kn of a game with marks between 0 and n
I Generator of dominoes Write an algorithm that fe-generates uniformly a dominoe for a given n
I Cost of the generation Compute the complexity of the generation including pre-computation if

ever

38 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION OF BINARY RESEARCH TREE

Uniform recursive decomposition

Random_BST (n)

Data: n number of nodes
Result: a random tree

if n = 0
return empty_tree ()

else
q =Random (0, n− 1)
A1 =Random_BST (q)
A2 =Random_BST (n− 1− q)
return join (A1,A2)

Non uniform on binary trees

39 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION OF BINARY RESEARCH TREE

Uniform recursive decomposition

Random_BST (n)

Data: n number of nodes
Result: a random tree

if n = 0
return empty_tree ()

else
q =Random (0, n− 1)
A1 =Random_BST (q)
A2 =Random_BST (n− 1− q)
return join (A1,A2)

Non uniform on binary trees

39 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

GENERATION OF BINARY RESEARCH TREE

Uniform recursive decomposition

Random_BST (n)

Data: n number of nodes
Result: a random tree

if n = 0
return empty_tree ()

else
q =Random (0, n− 1)
A1 =Random_BST (q)
A2 =Random_BST (n− 1− q)
return join (A1,A2)

Non uniform on binary trees

1
24

1
8

1
24

1
24

1
8

1
12

1
24

1
24

1
8

1
24

1
24

1
8

1
12

1
24

1
6

1
6

1
6

1
6

1
3

1
2

1
2

1

39 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

UNIFORM GENERATION OF BINARY TREES

Catalan’s Numbers

Recurrence equation

C0 = C1 = 1;

CN =

n−1∑
q=0

CqCn−1−q.

Then

1 =

n−1∑
q=0

CqCn−1−q

Cn
=

n−1∑
q=0

pn,q.

Cn =
1

n + 1

(2n
n

)

Génération uniforme

Random_BT (n)

Data: n number of nodes
Result: a random tree

if n = 0
return empty_tree ()

else
q=Generate(pn,0, · · · , pn,n−1)
A1 =Random_BT (q)
A2 =Random_BT (n− 1− q)
return join (A1,A2)

pre-computation pn,q

pn,q =
CqCn−1−q

Cn
.

40 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

UNIFORM GENERATION OF BINARY TREES

Catalan’s Numbers

Recurrence equation

C0 = C1 = 1;

CN =

n−1∑
q=0

CqCn−1−q.

Then

1 =

n−1∑
q=0

CqCn−1−q

Cn
=

n−1∑
q=0

pn,q.

Cn =
1

n + 1

(2n
n

)

Génération uniforme

Random_BT (n)

Data: n number of nodes
Result: a random tree

if n = 0
return empty_tree ()

else
q=Generate(pn,0, · · · , pn,n−1)
A1 =Random_BT (q)
A2 =Random_BT (n− 1− q)
return join (A1,A2)

pre-computation pn,q

pn,q =
CqCn−1−q

Cn
.

40 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

LABELLED TREES

How many labelled trees with n nodes ?
Propose an algorithm that generates uniformly random trees.

Cayley’s formulae

Tn = nn−2.

Prüfer’s coding algorithm.

41 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

LABELLED TREES

How many labelled trees with n nodes ?
Propose an algorithm that generates uniformly random trees.
Cayley’s formulae

Tn = nn−2.

Prüfer’s coding algorithm.

41 / 42Discrete Random Simulation

UNIFORM DISCRETE COMBINATORIAL OBJECTS

SYNTHESIS

Simulation is a powerful tool for computation (randomized algorithms)

I Probabilistic speci�cation based on statistical properties (uniformity, independence, goodness of
�t,...)

I Proof of statistical properties
I Complexity (probabilistic), average computation time
I Complex objects : link between combinatorial decomposition and simulation algorithm

Based on a Random function (external)

I Primality testing (security)
I Time randomization (networking)
I Monte-Carlo method (scienti�c computations)
I Test covering (veri�cation)
I Statistical learning (Bayesian approach)
I Simulated Annealing (optimization, NP-complete problems)

42 / 42Discrete Random Simulation

	Uniform : Uniform Random Variable
	Discrete : Discrete Random Variable
	Uniform : Combinatorial Objects

