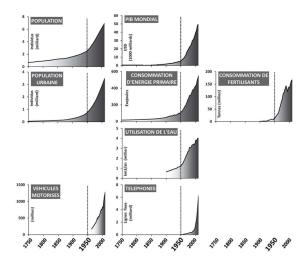
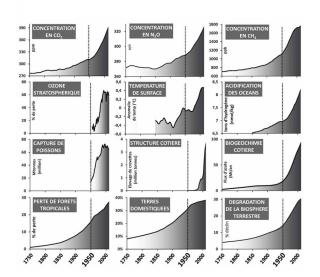
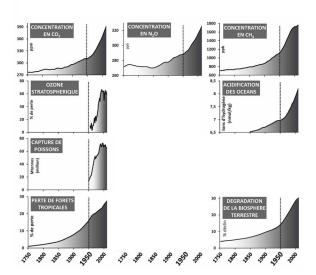

Environmental issues of Al Preliminaries

Denis Trystram
Summer School / MIAI
Denis.Trystram@univ-grenoble-alpes.fr

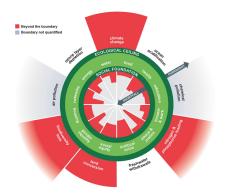

july 9, 2024


The big acceleration Socio-economic factors

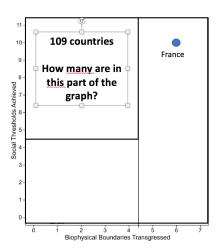

The big acceleration Socio-economic factors – details

The big acceleration Earth system

The big acceleration Earth system – details

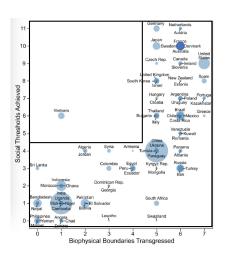

Earth limits

▶ There are not only Carbon emissions!



The Donut theory

- 9 earth limits
- ▶ 11 social objectives
- ► The safe and just space for humanity lies between the environmental ceiling and the social floor (Kate Raworth, 2017)


O'Neill et al. A good life for all within planetary boundaries. Nat Sustain (2018).

▶ Only 1!

Table 1. Country performance with respect to per capita biophysical boundaries

Biophysical Indicator	Ν	Planetary Boundary	Per Capita Boundary	Countries Within Boundary (%)
Phosphorus	144	6.2 Tg P y ⁻¹	0.89 kg P y ⁻¹	44
Nitrogen	144	62 Tg N y ⁻¹	8.9 kg N y ⁻¹	45
Blue Water	141	4000 km ³ y ⁻¹	574 m ³ y ⁻¹	84
eHANPP	150	18.2 Gt C y ⁻¹	2.62 t C y ⁻¹	44
Ecological Footprint	149		1.72 gha y ⁻¹	43
Material Footprint	144		7.2 t y ⁻¹	44

First Message

The big acceleration (from 1950) is:

- Consequence of human activities
- A race to Performance

What is the cause-and-effect relationship with global warming?

Energetic transition

An historical perspective: Jean-Baptiste Fressoz

- ▶ The steam engine in the late 18th century (coal)
- ► The oil revolution → What was the real advantages?

The energy paradox

All activities need energy¹.

Energy is always a superposition of the successive energy types!

Two examples

▶ In 1900, England was gobbling up 4.5 million m^3 of wood a year for use as props in mine galleries. In the 1750s, the English burned 3.6 million m^3 . So, just to extract coal, the English used more wood in 1900 than they

had burnt in 1750!

The energy paradox

All activities need energy¹.

Energy is always a superposition of the successive energy types!

Two examples

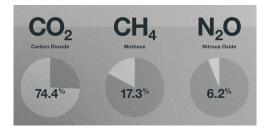
- ▶ In 1900, England was gobbling up 4.5 million m^3 of wood a year for use as props in mine galleries. In the 1750s, the English burned 3.6 million m^3 . So, just to extract coal, the English used more wood in 1900 than they had burnt in 1750!
- ▶ Oil is used to run cars. Back in the 1930s, it took around 7 tons of coal to make a car, i.e. as much coal by weight as the oil it burned during its lifetime.

¹this will be developed later

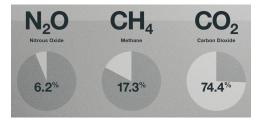
Focus on electricity

- The electricity fairy The digital world is mostly based on electricity.
- ► According to AIE, the proportion of decarbonized electricity will reach 42% in 2030.

GHG and Carbon cycle

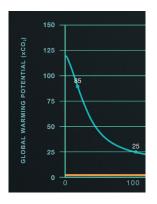

A gas in the atmosphere that intercepts infrared radiation emitted by the earth's surface.

They naturally exist


the Earth system was perfectly well-balanced for years. (750 GTons/year emitted and absorbed by carbon sinks).

- we know: H_2O and CO_2
- we know less CH_4 , N_2O and O_3
- ▶ The 3 CO_2 CH_4 and N_2O cover more than 96 % of the seven GES of the Kyoto protocol.

Proportion in the atmosphere



But the warming potentials are reversed

GHGs remain in the atmosphere for a long time: over 100 years for ${\it CO}_2$!

Comparison on the basis of 100 years

- ▶ We need to determine a trade-off.
- ▶ CO₂ is taken as the reference.

How to estimate?

- ► The relative molecular weight of carbon in CO_2 is 12/(16+12+16), thus, roughly a quarter (precisely 0.27)
- ► The energy consumed is calculated in "carbon equivalent" of CO₂ resulting from the combustion: (TeqCO₂)

How to estimate?

- ► The relative molecular weight of carbon in CO_2 is 12/(16+12+16), thus, roughly a quarter (precisely 0.27)
- ► The energy consumed is calculated in "carbon equivalent" of CO₂ resulting from the combustion: (TeqCO₂)
- ▶ 1 ton of hydrocarbon corresponds roughly to 3 Teq CO₂
- ▶ Production of 1 kilo of vegetal: less than1 Keq CO₂ 1 kilo of beef: a hundred Keq CO₂

We measure any human activity using a basis: **kWh**.

This is the energy that corresponds to the consumption of 1000 Watts of electrical equipment for $1\ \text{hour}$.

In France, with a low energy mix, 1 kWh corresponds roughly to 45 $\ensuremath{\text{g}\textit{CO}_2}$

Every activity means energy

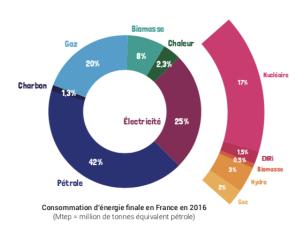
- ▶ A human being burns between 2,000 and 5,000 calories a day.
- ▶ That corresponds to a mecanic energy less than 0.5 kWh
- So, roughly speaking, half an hour from a standard electric heater.

Energetic slaves

Energetic slaves

► The average French person needs around 600 energy slaves a day to live.

Energy comes from a mix


- All human activity requires energy
- ightharpoonup Energy is a material flow that generates emissions \emph{CO}_2

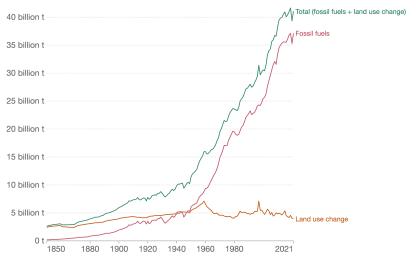
In the world

CO2 emissions by fuel type, World Annual carbon dioxide (CO₂) emissions from different fuel types, measured in tonnes per year. Other industry 35 billion t Flaring Cement 30 billion t Gas 25 billion t 20 billion t Oil 15 billion t 10 billion t Coal 5 billion t 1750 1800 1850 1900 1950 2020

Energy sources in France

From Energy to CO₂

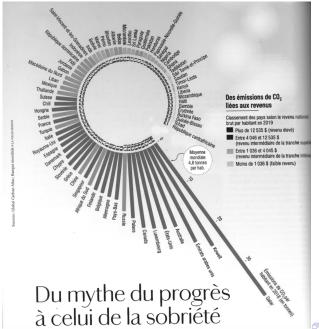
1 liter of oil corresponds roughly to 1 kWh



Some examples

- According to automakers, a standard new car consumes an average of 100 gEqCO₂ per kilometer.
- ▶ 1 hour of streaming a Netflix series in 4K and 4G corresponds to 2 kms by standard car.

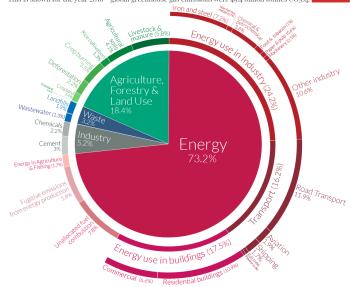
Global CO₂ emissions from fossil fuels and land use change, World



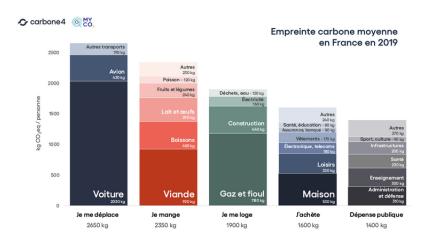
Source: Our World in Data based on the Global Carbon Project (2022) OurWorldInData.org/co2-and-other-greenhouse-gas-emissions • CC BY

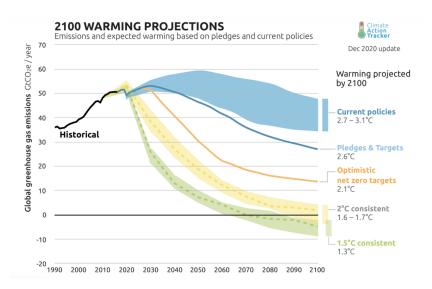
Attention: consider the real footprint!

Repartition amount countries



By sectors


Global greenhouse gas emissions by sector



Repartition in France (Users)

▶ Objective of accords de Paris (COP21) : 2 tons /capita

Trajectories

Message

- ▶ The problems are well identified
- ► There is still a long (and difficult) way to go
- ▶ Without forgetting the other planetary limits

Message

- It is important to associate a cost with an infrastructure or a use.
- ► Transforming a given activity into eq CO₂ is educational to raise awareness of impacts.
- Measuring in kWh is more universal.