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History (Andreï Markov)

An example of statistical investigation in
the text of "Eugene Onegin" illustrating
coupling of "tests" in chains.
(1913) In Proceedings of Academic
Scientific St. Petersburg, VI, pages
153-162.

1856-1922
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Graphs and Paths
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Random Walks

Path in a graph:
Xn n-th visited node
path : i0, i1, · · · , in
normalized weight : arc (i, j) −→ pi,j

concatenation : . −→ ×
P(i0, i1, · · · , in) = pi0,i1 pi1,i2 · · · pin−1,in

disjoint union : ∪ −→ +
P(i0 ; in) =

∑
i1,··· ,in−1

pi0,i1 pi1,i2 · · · pin−1,in

automaton : state/transitions randomized (language)
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Dynamical Systems

Diaconis-Freedman 99

Evolution Operator

Initial value : X0

Recurrence equation : Xn+1 = Φ(Xn, ξn+1)

Innovation at step n + 1 : ξn+1

Finite set of innovations : {φ1, φ2, · · · , φK}

Random function (chosen with a given
probability)

Randomized Iterated Systems
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Measure Approach

Ehrenfest’s Urn (1907)

Paul Ehrenfest (1880-1933)

Distribution of K particles

Initial State X0 = 0
State = nb of particles in 0
Dynamic : uniform choice of a particle and jump
to the other side

πn(i) = P(Xn = i|X0 = 0)

= πn−1(i − 1).
K − i + 1

K

+πn−1(i + 1).
i + 1

K

πn = πn−1.P

Iterated product of matrices
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Algorithmic Interpretation

int minimum (T,K)
min= +∞
cpt=0;
for (k=0; k < K; k++) do

if (T[i]< min) then
min = T[k];
process(min);
cpt++;

end if
end for
return(cpt)

Worst case K ;
Best case 1;
on average ?

Number of processing min

State : Xn = rank of the nth processing

P(Xn+1 = j|Xn = i,Xn−1 = ik−1, · · · ,X0 = i0)
= P(Xn+1 = j|Xn = i)

P(Xn+1 = j|Xn = i) =

{
1

K−i+1 si j < i;
0 sinon.

All the information of for the step n + 1 is
contained in the state at step n

τ = min{n; Xn = 1}

Correlation of length 1
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Formal definition

Let {Xn}n∈N a random sequence of variables in a discrete state-space X

{Xn}n∈N is a Markov chain with initial law π(0) iff
X0 ∼ π(0) and

for all n ∈ N and for all (j, i, in−1, · · · , i0) ∈ X n+2

P(Xn+1 = j|Xn = i,Xn−1 = in−1, · · · ,X0 = i0) = P(Xn+1 = j|Xn = i).

{Xn}n∈N is a homogeneous Markov chain iff

for all n ∈ N and for all (j, i) ∈ X 2

P(Xn+1 = j|Xn = i) = P(X1 = j|X0 = i) def
= pi,j .

(invariance during time of probability transition)
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Algebraic representation

P = ((pi,j )) is the transition matrix of the chain
P is a stochastic matrix

pi,j > 0;
∑

j

pi,j = 1.

Linear recurrence equation πi (n) = P(Xn = i)

πn = πn−1P.

Equation of Chapman-Kolmogorov (homogeneous): Pn = ((p(n)
i,j ))

p(n)
i,j = P(Xn = j|X0 = i); Pn+m = Pn.Pm;

P(Xn+m = j|X0 = i) =
∑

k

P(Xn+m = j|Xm = k)P(Xm = k |X0 = i);

=
∑

k

P(Xn = j|X0 = k)P(Xm = k |X0 = i).

Interpretation: decomposition of the set of paths with length n + m from i to j .
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Problems

Finite horizon

- Estimation of π(n)
- Estimation of stopping times

τA = inf{n > 0; Xn ∈ A}

- · · ·

Infinite horizon

- Convergence properties
- Estimation of the asymptotics
- Estimation speed of convergence
- · · ·
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Applications in computer science

Applications in most of scientific domains ...
In computer science :

Markov chain : an algorithmic tool

- Numerical methods (Monte-Carlo methods)
- Randomized algorithms (ex: TCP, searching, pageRank...)
- Learning machines (hidden Markov chains)
-· · ·

Markov chains : a modeling tool

- Performance evaluation (quantification and dimensionning)
- Stochastic control
- Program verification
-· · ·
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Nicholas Metropolis (1915-1999)

Metropolis contributed several original ideas to
mathematics and physics. Perhaps the most widely
known is the Monte Carlo method. Also, in 1953
Metropolis co-authored the first paper on a technique that
was central to the method known now as simulated
annealing. He also developed an algorithm (the
Metropolis algorithm or Metropolis-Hastings algorithm) for
generating samples from the Boltzmann distribution, later
generalized by W.K. Hastings.

Simulated annealing

Convergence to a global minimum by a stochastic
gradient scheme.

Xn+1 = Xn − ~gradΦ(Xn)∆n(Random).

∆n(random)
n→∞−→ 0.
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Modeling and Analysis of Computer Systems

Complex system

System

Basic model assumptions

System :
- automaton (discrete state space)
- discrete or continuous time
Environment : non deterministic
- time homogeneous
- stochastically regular

Problem

Understand “typical” states
- steady-state estimation
- ergodic simulation
- state space exploring techniques
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States classification

Graph analysis Irreducible class
Strongly connected components
i and j are in the same component if there
exist a path from i to j and a path from j to i
with a positive probability
Leaves of the tree of strongly connected
components are irreducible classes
States in irreducible classes are called
recurrent
Other states are called transient

Periodicity

An irreducible class is aperiodic if the gcd
of length of all cycles is 1

A Markov chain is irreducible if there is only one class.
Each state is reachable from any other state with a positive probability path.
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States classification

Graph analysis
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States classification : matrix form

12

Absorbing state

Irreducible classIrreducible class

Periodic class

Transient classes
1

2

3

4

5

6

7

8 9

10 11

*

1

2

3

4

5

6

7

8

9

10

11

12

1 2 3 4 5 6 7 8 9 10 11 12

* * *

* *

** *

*

* *

*

*

* *

* *

*

*

1
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Automaton Flip-flop

ON-OFF system

Two states model :
- communication line
- processor activity
- ...

1-p
p

1 2

q

1-q

Parameters :
- proportion of transitions : p, q
- mean sojourn time in state 1 : 1

p

- mean sojourn time in state 2 : 1
q

Trajectory

Xn state of the automaton at time n.

Transient distribution

πn(1) = P(Xn = 1);

πn(2) = P(Xn = 2)

Problem

Estimation of πn : state prevision, resource utilization
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Mathematical model

Transition probabilities

P =

[
1− p p

q 1− q

]
P(Xn+1 = 1|Xn = 1) = 1− p;
P(Xn+1 = 2|Xn = 1) = p;
P(Xn+1 = 1|Xn = 2) = q;
P(Xn+1 = 2|Xn = 2) = 1− q.{
πn+1(1) = πn(1)(1− p) + πn(2)q;
πn+1(2) = πn(1)p + πn(2)(1− q);

πn+1 = πnP
Linear iterations
Spectrum of P (eigenvalues)
Sp = {1, 1− p − q}

System resolution
|1 − p − q| < 1 Non pathologic case πn(1) =

q
p+q +

(
π0(1) −

q
p+q

)
(1 − p − q)n ;

πn(2) =
p

p+q +
(
π0(2) −

p
p+q

)
(1 − p − q)n ;

1 − p − q = 1 p = q = 0 Reducible behavior

1 − p − q = −1 p = q = 1 Periodic behavior
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Mathematical model

Transition probabilities

P =

[
1− p p

q 1− q

]
P(Xn+1 = 1|Xn = 1) = 1− p;
P(Xn+1 = 2|Xn = 1) = p;
P(Xn+1 = 1|Xn = 2) = q;
P(Xn+1 = 2|Xn = 2) = 1− q.{
πn+1(1) = πn(1)(1− p) + πn(2)q;
πn+1(2) = πn(1)p + πn(2)(1− q);

πn+1 = πnP
Linear iterations
Spectrum of P (eigenvalues)
Sp = {1, 1− p − q}

System resolution
|1 − p − q| < 1 Non pathologic case πn(1) =

q
p+q +

(
π0(1) −

q
p+q

)
(1 − p − q)n ;

πn(2) =
p

p+q +
(
π0(2) −

p
p+q

)
(1 − p − q)n ;

1 − p − q = 1 p = q = 0 Reducible behavior

11

1 2

1 − p − q = −1 p = q = 1 Periodic behavior

1

1 2

1
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Recurrent behavior

Numerical example

p = 1
4 , q = 1

3

 10

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8
 0

Rapid convergence
(exponential rate)

Steady state behavior{
π∞(1) = q

p+q ;

π∞(2) = p
p+q .

π∞ unique probability vector solution

π∞ = π∞P.

If π0 = π∞ then πn = π∞ for all n
stationary behavior
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Convergence In Law

Let {Xn}n∈N a homogeneous, irreducible and aperiodic Markov chain taking
values in a discrete state X then

The following limits exist (and do not depend on i)

lim
n→+∞

P(Xn = j|X0 = i) = πj ;

π is the unique probability vector invariant by P

πP = π;

The convergence is rapid (geometric); there is C > 0 and 0 < α < 1 such that

||P(Xn = j|X0 = i)− πj || 6 C.αn.

Denote

Xn
L−→ X∞;

with X∞ with law π
π is the steady-state probability associated to the chain

21 / 44Markov Chains and Computer Science



Markov Chain Formalisation Long run behavior Cache modeling Synthesis

Interpretation

Equilibrium equation

j,j

j

i1

i2

i3

i4

k1

k2

k3

p

p

p

p

p

p

p

p

i1,j

i2,j

i3,j

i4,j

j,k1

j,k2

j,k3

Probability to enter j =probability to exit j
balance equation∑

i 6=j

πipi,j =
∑
k 6=j

πjpj,k = πj

∑
k 6=j

pj,k = πj (1− pj,j )

π
def
= steady-state.

If π0 = π the process is stationary (πn = π)
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Proof 1 : Finite state space algebraic approach

Positive matrix P > 0

contraction maxi p(n)
i,j −mini p(n)

i,j

Perron-Froebenius P > 0

P is positive and stochastic then the spectral radius ρ = 1 is an eigenvalue
with multiplicity 1, the corresponding eigenvector is positive and the other
eigenvalues have module < 1.

Case P > 0

Aperiodique and irreducible⇒ there is k such that Pk > 0 and apply the
above result.
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Proof 1 : details P > 0

Soit x et y = Px , ω = mini,j pi,j

x = max
i

xi , x = min
i

xi .

yi =
∑

j

pi,jxj

Property of centroid :

(1− ω)x + ωx 6 yi 6 (1− ω)x + ωx

0 6 y − y 6 (1− 2ω)(x − x)

Pnx −→ s(x)(1, 1, · · · , 1)t

Then Pn converges to a matrix where all lines are identical.

24 / 44Markov Chains and Computer Science



Markov Chain Formalisation Long run behavior Cache modeling Synthesis

Proof 2 : Return time

τ+i = inf{n > 1; Xn = i|X0 = i}.

then 1
Eτ+i

is an invariant probability (Kac’s lemma)

1914-1984
Proof :

1 Eτ+i <∞
2 Study on a regeneration interval (Strong Markov property)
3 Uniqueness by harmonic functions
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Proof 3 : Coupling

Let {Xn}n∈N a homogeneous aperiodic and irreducible Markov chain with
initial law π(0) and steady-state probability π.
Let

{
X̃n

}
n∈N

another Markov chain π̃(0) with the same transition matrix as

{Xn}
{Xn} et

{
X̃n

}
independent

- Zn = (Xn, X̃n) is a homogeneous Markov chain
- if {Xn} is aperiodic and irreducible, so it is for Zn

Let τ be the hitting time of the diagonal, τ <∞ P-a.s. then

|P(Xn = i)− P(X̃n = i)| < 2P(τ > n)

|P(Xn = i)− π(i)| < 2P(τ > n) −→ 0.
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Ergodic Theorem

Let {Xn}n∈N a homogeneous aperiodic and irreducible Markov chain on X
with steady-state probability π then
- for all function f satisfying Eπ|f | < +∞

1
N

N∑
n=1

f (Xn)
P−p.s.−→ Eπf .

generalization of the strong law of large numbers
- If Eπf = 0 then there exist σ such that

1
σ
√

N

N∑
n=1

f (Xn)
L−→ N (0, 1).

generalization of the central limit theorem
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Fundamental question

Given a function f (cost, reward, performance,...) estimate

Eπf

and give the quality of this estimation.
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Solving methods

Solving π = πP

Analytical/approximation methods

Formal methods N 6 50
Maple, Sage,...

Direct numerical methods N 6 1000
Mathematica, Scilab,...

Iterative methods with preconditioning N 6 100, 000
Marca,...

Adapted methods (structured Markov chains) N 6 1, 000, 000
PEPS,...

Monte-Carlo simulation N > 107

Postprocessing of the stationary distribution

Computation of rewards (expected stationary functions)
Utilization, response time,...
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Ergodic Sampling(1)

Ergodic sampling algorithm

Representation : transition fonction

Xn+1 = Φ(Xn, en+1).

x ← x0

{choice of the initial state at time =0}
n = 0;
repeat

n ← n + 1;
e ← Random_event();
x ← Φ(x , e);
Store x
{computation of the next state Xn+1}

until some empirical criteria
return the trajectory

Problem : Stopping criteria
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Ergodic Sampling(2)

Start-up

Convergence to stationary behavior

lim
n→+∞

P(Xn = x) = πx .

Warm-up period : Avoid initial state dependence
Estimation error :

||P(Xn = x)− πx || 6 Cλn
2.

λ2 second greatest eigenvalue of the transition matrix
- bounds on C and λ2 (spectral gap)
- cut-off phenomena

λ2 and C non reachable in practice
(complexity equivalent to the computation of π)
some known results (Birth and Death processes)
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Ergodic Sampling(3)

Estimation quality

Ergodic theorem :

lim
n→+∞

1
n

n∑
i=1

f (Xi ) = Eπf .

Length of the sampling : Error control (CLT theorem)

Complexity

Complexity of the transition function evaluation (computation of Φ(x , .))
Related to the stabilization period + Estimation time
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Ergodic sampling(4)

Typical trajectory
States

0 time

Warm−up period Estimation period
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Replication Method

Typical trajectory
States

0 time
replication periods

Sample of independent states
Drawback : length of the replication period (dependence from initial state)
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Regeneration Method

Typical trajectory
States

0 time

start−up period

regeneration period

R1 R2 R3 ....

Sample of independent trajectories
Drawback : length of the regeneration period (choice of the regenerative
state)
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Outline

1 Markov Chain

2 Formalisation

3 Long run behavior

4 Cache modeling

5 Synthesis
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Cache modelling

Virtual memory

Paging in OS

PAGINATION

Carte CPU

CPU

MMU

MEMOIRE

BUS

CONTROLEUR

DISQUE

DISQUE

DE

- cache hierarchy (processor)
- data caches (databases)
- proxy-web (internet)
- routing tables (networking)
- ...
State of the system : Page position

Huge number of pages, small memory capacity

Move-to-front strategy

Least recently used (LRU)
Virtual memory

Memory Disque
Adress 1 2 3 4 5 6 7 8 State
Pages P3 P7 P2 P6 P5 P1 P8 P4 E
Pages P5 P3 P7 P2 P6 P1 P8 P4 E1

Move-ahead strategy

Ranking algorithm
Virtual memory

Memory Disk
Adress 1 2 3 4 5 6 7 8 State
Pages P3 P7 P2 P6 P5 P1 P8 P4 E
Pages P3 P7 P2 P5 P6 P1 P8 P4 E2

Problem

Performance : mean response time (memory access << disk access)
Choose the strategy that achieves the best long-term performance
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Modelling

State of the system

N = number of pages
State = permutation of
{1, · · · ,N}
Size of the state space = N!
=⇒ numerically untractable

Example : Linux system
- Size of page = 4kb
- Memory size = 1Gb
- Swap disk size = 1Gb
Size of the state space =
500000!
exercise : compute the order
of magnitude

Flow modelling

Requests are random
Request have the same probability distributions
Requests are stochastically independent
{Rn}n∈N random sequence of i.i.d. requests

State space reduction

PA = More frequent page
All other pages have the same frequency.

a = P(Rn = PA), b = P(Rn = Pi ),

a > b, a + (N − 1)b = 1.

{Xn}n∈N position of page PA at time n.
State space = {1, · · · ,N} (size reduction)
Markov chain (state dependent policy)
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Move to front analysis

Markov chain graph

31

a b 2b (N−2)b (N−1)b

2 N−1 N
b2b

a a aa a

(N−3)b
(N−1)b (N−2)b

Transition matrix


a (N − 1)b 0 · · · · · · 0

a b (N − 2)b
. . .

.

.

.

.

.

. 0 2b (N − 3)b
. . .

.

.

.

.

.

.

.

.

.
. . .

. . .
. . . 0

.

.

.

.

.

.
. . . (N − 2)b b

a 0 · · · · · · 0 (N − 1)b



.

Example

N = 8, a = 0.3 and b = 0.1

π =



0.30
0.23
0.18
0.12
0.08
0.05
0.03
0.01


.
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Move ahead analysis

Markov chain graph

N−11

b

a

(N−2)b

b

a

(N−2)b

b

a

(N−2)b

b

a

2 3 N

(N−1)b

a

b

(N−2)b+a

Transition matrix


a + (N − 2)b b 0 · · · · · · 0

a (N − 2)b b
. . .

.

.

.

0 a (N − 2)b b
. . .

.

.

.

.

.

.
. . .

. . .
. . .

. . . 0

.

.

.

.

.

.
. . .

. . . (N − 2)b b
0 0 · · · 0 a (N − 1)b



.

Example

N = 8, a = 0.3 and b = 0.1

π =



0.67
0.22
0.07
0.02
0.01
0.01
0.00
0.00


.
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Performances

Steady state

MF =



0.30
0.23
0.18
0.12
0.08
0.05
0.03
0.01


MA =



0.67
0.22
0.07
0.02
0.01
0.01
0.00
0.00


.

Move to front

π(i) =
(N − 1 − i) · · · (N − 2)(N − 1)bi−1

(a + (N − i)b) · · · (a + (N − 2)b)(a + (N − 1)b)
π1.

Move ahead

πi = (
b

a
)i−1 1 − b

a
1 − ( b

a )N
.

Cache miss
Memory

size
Move

to front
Move
Ahead

0 1.00 1.00
1 0.70 0.33
2 0.47 0.11
3 0.28 0.04
4 0.17 0.02
5 0.09 0.01
6 0.04 0.00
7 0.01 0.00
8 0.00 0.00

Best strategy :
Move ahead

Comments

Self-ordering protocol : decreasing probability
Convergence speed to steady state :
Move to front : 0.7n Move ahead : 0.92n

Tradeoff between “stabilization” and long term performance
Depends on the input flow of requests
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Synthesis : Modelling and Performance

Methodology

1 Identify states of the system
2 Estimate transition parameters, build the Markov chain (verify properties)
3 Specify performances as a function of steady-state
4 Compute steady-state distribution and steady-state performance
5 Analyse performances as a function of input parameters

Classical methods to compute the steady state

1 Analytical formulae : structure of the Markov chain (closed form)
2 Formal computation (N < 50)
3 Direct numerical computation (classical linear algebra kernels) (N < 1000)
4 Iterative numerical computation (classical linear algebra kernels) (N < 100.000)
5 Model adapted numerical computation (N < 10.000.000)
6 Simulation of random trajectories (sampling)
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