
Fundamental Computer Science
Studying the KnapSack problem

Denis Trystram
MoSIG1 and M1Info – University Grenoble-Alpes

April, 2021



{0, 1}-KnapSack

Decision form of the problem:

Knapsack

Input: a set of items A, two positive integers K,W ∈ N, and for
each a ∈ A a profit p(a) ∈ N and a weight w(a) ∈ N

Question: is there a set B ⊆ A such that∑
a∈B

p(a) ≥ K and
∑
a∈B

w(a) ≤W ?

We will use p(a) or simply pi for item i



Complexity

Show that this problem is in NP-complete.

Tip: Easy by using a reduction from 2-Partition or SubSetSum.

Easy.



Dynamic Programming

Write the Dynamic Programming algorithm for solving this problem.

I P (1, w) = 0 if the item does not fit w < ω1 otherwise P (1, w) = p1
I P (k,w) = P (k − 1, w) if w < ωk and
max(P (k − 1, w), P (k − 1, w − 1) + pk)

where P (k,w) is the best possible profit to select the first k items in a
sack of capacity w.

We target P (K,W )



Example

Let consider the optimization version of the problem.

A capacity W = 8 with 7 items (weight,profit):
(5, 2) (8, 3) (11, 6) (9, 4) (12, 5) (17, 8) (8, 4)

Let us introduce the density of item a as the ratio λ(a) = p(a)
w(a)



A first attempt for solving the problem

Greedy algorithm, highest density first.

I Sort the items by non-increasing density:

(8, 3) (5, 2) (12, 5) (9, 4) (17, 8) (8, 4) (11, 6)

2.67 2.5 2.4 2.25 2.12 2 1.67

I Select one item after the other in this order.

I What is the cost of the previous instance?

I Is it optimal?

I Is the algorithm guarantied by an approximation?

I NO! Show that this process is arbitrarily bad.



A first attempt for solving the problem

Greedy algorithm, highest density first.

I Sort the items by non-increasing density:

(8, 3) (5, 2) (12, 5) (9, 4) (17, 8) (8, 4) (11, 6)

2.67 2.5 2.4 2.25 2.12 2 1.67

I Select one item after the other in this order.

I What is the cost of the previous instance?

I Is it optimal?

I Is the algorithm guarantied by an approximation?

I NO! Show that this process is arbitrarily bad.



Bad instances

Let denote by fBD(I) the profit of a solution obtained by the naive
strategy BestDensity on the instance I, and OPT (I) the optimal profit
for this instance.

n = 2 items and W = k.

I (p1 = 1, w1 = 1)

I (p2 = k − 1, w2 = k)



Proof

I The density of the first item is 1

I The density of the second one is k−1
k = 1− 1

k .

The density of the first item is larger, thus, we select this one first.
The second item can no more fit into the sack.
Thus, the profit is equal to 1.
If we have selected the second first, the profit would be k − 1 (in Θ(k))

This strategy is arbitrarily bad as k can be taken as large as we wish...



Improvement

We modifiy the previous heuristic in order to obtain a guarantee

I Sort the items by non-increasing density.

I Build a solution greedily as before until the next item does not fit
into the sack (call it S1).

I Consider the alternative solution S2 composed of the item with the
largest profit.

I Take the maximum between S1 and S2.

Show that

This policy is a 1
2 -approximation.



Proof

We show that this algorithm, called A, is never worse than twice the
optimal.

I For each instance I:
2 · fA(I) ≥ OPT (I)
where fA(I) is the profit of the solution obtained by the algorithm.



Proof (cont’d)

We have the following property:

OPT ≤ Σi∈S1
pi + piT

that corresponds to: OPT ≤ Σi∈S1
pi + p′iT where p′iT is the part of the

truncated item iT that saturates the sack.
Of course, it is lower than piT .

This policy is a 1
2 -approximation.

The cost is fA = max(piT ,Σi∈S1
pi)

as 2.max(x, y) ≥ x+ y, we have:
2fA ≥ Σi∈S1

pi + piT ≥ OPT .


