JOSEPHUS PROBLEM Denis TRYSTRAM Lecture notes Maths for Computer Science – MOSIG 1 – 2018

1 Josephus' problem

The problem comes from an old story reported by Flavius Josephus during the Jewish-Roman war in the first century. The legend reports that Flavius was among a band of 41 rebels trapped in a cave by the roman army. Preferring suicide to capture, the rebels decided to form a circle and proceeding around to kill every second remaining person until no one was left. As Josephus had some skills in Maths and wanted none of this suicide non-sense, he quickly calculated where he should stand in the circle in order to stay alive at the end of the process.

Definition. Given n successive numbers in a circle. The problem is to determine the *survival number* (denoted by J(n)) in the process of removing every second remaining number starting from 1 (see figure 1).

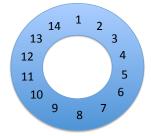


Figure 1: Initial situation for the Josephus process.

In particular, we are going to determine if there exists a closed formula. Guessing the answer sounds not obvious. We need to better understand the progression.

Property 1. J(n) is odd

Proof. This is straightforward since the first tour removes all even numbers! See figure 2.

We called *round*, the set of steps to come back at a given position in the circle. Starting at 1, the first round is completed after $\lceil \frac{n}{2} \rceil$ steps. Then, again half of the of the remaining numbers are removed in the second round and so on.

How many rounds do we have for determining J(n)? If N denotes this number, it verifies $\sum_{i=1}^{i=N} \frac{1}{2^i} = 1$.

Property 2. (even numbers) J(2n) = 2J(n) - 1

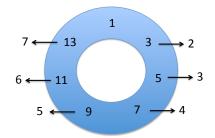


Figure 2: First step of the process (n is even).

Proof. This is a simple generalization of the previous property. If n is even, the first round corresponds simply to come back to the original circle where one half of the points have been removed.

From this, we deduce $J(2^m) = 1$ for all m. Let us turn to odd numbers.

Property 3. (odd numbers) J(2n + 1) = 2J(n) + 1

We can compute easily the first ranks. It turns out that the progression is composed of grouped terms starting at each power of 2. Let $n = 2^m + k$, the rule within each group m is to start at 1 and increase by 2 the successive numbers $(0 \le k < 2^m)$. Let prove it by recurrence on n.

Property 4. $J(2^m + k) = 2k + 1$ **Proof**.

- **Basis.** n = 1, thus m = 0, k = 0 and $J(1) = 2^0 + 0 = 1$
- Induction step. Suppose the formula holds for any integer lower than $n = 2^m + k$. Since there are two expressions for J(.), we distinguish the cases whether k is even and k is odd:
 - If k is even, then, $2^m + k$ is even, and we can write: $J(2^m + k) = 2J(2^{m-1} + \frac{k}{2}) - 1$ by induction hypothesis, $J(2^{m-1} + \frac{k}{2}) = 2\frac{k}{2} + 1 = k + 1$ Thus, $J(2^m + k) = 2(k + 1) - 1 = 2k + 1$.
 - If k is odd, the proof is similar: $J(2^m + k) = 2J(2^{m-1} + \lfloor \frac{k}{2} \rfloor) + 1 = 2\lfloor \frac{k}{2} \rfloor + 1 = 2k + 1.$

We can even go one step further with this problem by remarking that powers of 2 play an important role. Let us use the radix 2 representation of n and J(n):

 $n = \sum_{j=0}^{j=m} b_j \cdot 2^j = b_m \cdot 2^m + b_{m-1} \cdot 2^{m-1} + \dots + b_1 \cdot 2 + b_0$ $n = (1b_{m-1} \dots b_1 b_0)_2 \text{ since by definition of } m \ b_m = 1$ $k = (0b_{m-1} \dots b_1 b_0)_2 \text{ since } k < 2^m$ Thus, using the closed formula for J(n): $J(n) = (b_{m-1} \dots b_0 b_m)_2.$

In other words, the solution is obtained by a simple shift of the binary representation of n. Applied to $n = 41 = (101001)_2$ Josephus Flavius was able to determine the last position in few seconds: $(010011)_2 = 19$.