
Lecture 3 – Maths for Computer Science More on Fibonacci numbers and Stern sequence

Lecture 3 – Maths for Computer Science
More on Fibonacci numbers and Stern sequence

Denis TRYSTRAM
Lecture notes MoSIG1

Oct. 2024

1 / 50



Lecture 3 – Maths for Computer Science More on Fibonacci numbers and Stern sequence

Recall: various bilinear progressions

Fibonacci sequence

F (n + 1) = F (n) + F (n − 1) with F (0) = 1 and F (1) = 1

Lucas’ numbers
Same as Fibonacci with a different seed.
L(n + 1) = L(n) + L(n − 1) with L(0) = 1 and L(1) = 3

Stern sequence

s(2n) = s(n) and s(2n + 1) = s(n) + s(n + 1) with d(0) = 0 and
d(1) = 1
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Recall Fibonacci numbers

Definition:
Given the two numbers F (0) = 1 and F (1) = 1
the Fibonacci numbers are obtained by the following expression:
F (n + 1) = F (n) + F (n − 1) for n ≥ 1
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Recall the Pascal’s triangle
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Fibonacci numbers hidden into the Pascal’s triangle

Can you formalize and prove the property?
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Intuition of the proof

Each term of a diagonal is equal to the sum of terms of the
two previous diagonals
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Analysis of other properties of Pascal’s triangle

Let us study quickly some properties

7 / 50



Lecture 3 – Maths for Computer Science More on Fibonacci numbers and Stern sequence

Summing the rows

The proof comes directly from the definition of the Newton
binomial equality: (1 + 1)n = 2n
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Triangular and tetrahedral numbers

Any idea for proving?

Apply the inductive definition of the binomial coefficients!
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Leibniz’ harmonic triangle

The idea: Build an equivalent of Pascal’s triangle for
harmonic numbers (inverse of integers)

Intuition: Express the inverse of natural numbers1

1
2 = 1− 1

2

1
3 = 1− 2× 1

2 + 1
3

1
4 = 1− 3× 1

2 + 3× 1
3 − 1

4

1
5 = 1− 4× 1

2 + 6× 1
3 − 4× 1

4 + 1
5

There is a clear link with the binomial coefficients

1This is not easy
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Let denote by L(n, k) the current coefficient.

It is defined by a local relation, like in the Pascal’s triangle.

Definition
L(n, 1) = 1

n for n ≥ 1
L(n, k + 1) = L(n − 1, k)− L(n, k) for n > 1, 1 ≤ k ≤ n

The coefficient in row n − 1 is obtained by the sum of the two
nearest neighbours in the next row.
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Pictorially
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A more explicit link with Pascal’s triangle

L(n, k) = 1
n×(n−1

k−1)
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There are a lot of properties to prove:
sum of rows,
symmetry within a row,
interpretation of elements by columns, etc..

Let us come back to Fibonacci
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Cassini identity

Proposition:

F (n − 1).F (n + 1) = F (n)2 + (−1)n+1 for n ≥ 1

Can we get some intuition on the first ranks?

n = 1, F (0).F (2) = F (1)2 + 1 = 2

n = 2, F (1).F (3) = F (2)2 − 1 = 4− 1 = 3

n = 3, F (2).F (4) = F (3)2 + 1 = 9 + 1 = 10

n = 4, F (3).F (5) = F (4)2 − 1 = 25− 1 = 24

...
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Proof (by induction)

The basis case n = 1 holds since F (0).F (2) = F (1)2 + 1 = 2.

The induction step is proved assuming the Cassini identity
holds at rank n.
Apply the definition of F (n + 2):
F (n).F (n+2) = F (n)(F (n+1)+F (n)) = F (n).F (n+1)+F (n)2

Replace the last term using the recurrence hypothesis:
F (n)2 = F (n − 1).F (n + 1)− (−1)n+1

= F (n − 1).F (n + 1) + (−1)n+2

Thus,
F (n).F (n+2) = F (n).F (n+1)+F (n−1).F (n+1)+(−1)n+2

= F (n + 1)(F (n) + F (n − 1)) + (−1)n+2

Apply again the definition of Fibonacci sequence
F (n) + F (n − 1) = F (n + 1), we obtain:
F (n).F (n + 2) = F (n + 1)2 + (−1)n+2
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A Paradox (favorite puzzle of Lewis Carroll)
Consider a chess board (8 by 8 square) and cut it into 4 pieces,
then reassemble them into a rectangle.

The surface of the square is F (n)2 while the rectangle is
F (n + 1).F (n − 1).
The Cassini identity is applied for n = 5, F (5) = 8.

On one side, the surface is 8× 8 = 64

On the other side 13× 5 = 65

What’s wrong?
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Explanation

The paradox comes from the representation of the ”diagonal” of
the rectangle which does not coincide with the hypothenuse of the
right triangles of sides F (n + 1) and F (n − 1).
In other words, it always remains (for any n) an empty space
(corresponding to the unit size of the basic square of the chess
board).

The greater n, the better the paradox because the deformation of
the surface of this basic square becomes more tiny.
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Computing F (n) fast

F (n) can be computed in log2(n) steps.

Proposition.

For all integers n:
(a) F (2n) = (F (n))2 + (F (n − 1))2

(b) F (2n + 1) = F (n)× (2F (n − 1) + F (n))
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Details (a) – Proof by induction
The base case n = 1 is true because

F (2) = (F (1))2 + (F (0))2 = 2

F (3) = F (1)× (2F (0) + F (1)) = 3

Assume that the property holds for n, for both F (2n) and
F (2n + 1).

F (2(n + 1)) = F (2n + 1) + F (2n)

= (F (n))2 + (F (n − 1))2 + F (n)× (2F (n − 1) + F (n))

= (F (n))2 + (F (n − 1))2 + 2(F (n)× F (n − 1)) + (F (n))2

= (F (n) + F (n − 1))2 + (F (n))2

= (F (n + 1))2 + (F (n))2
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Details (b)

We again start by applying the defining recurrence of the Fibonacci
numbers on F (2(n + 1) + 1)

= F (2(n + 1)) + F (2n + 1)

= (F (n + 1))2 + F (n)2 + F (n)× (2F (n − 1) + F (n))

= (F (n + 1))2 + 2(F (n − 1) + F (n))× F (n)

= (F (n + 1))2 + 2F (n + 1)× F (n)
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Pictorially
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Pictorially (from one node)
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Lucas’ numbers

Definition of Lucas’ numbers

A natural question is:

what happens if we change the first ranks of the sequence keeping
the same recurrence pattern?

It has been studied by the french mathematician Edouard Lucas,
starting at 2 and 1 .

For some reasons that will be clarified later, the sequence is shifted
backwards (we take the convention L(−1) = 2).
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Lucas’ numbers

Definition of Lucas’ numbers

Definition:
Given the two numbers L(0) = 1 and L(1) = 3
all the other Lucas’ numbers are obtained by the same progression
as Fibonacci:

L(n + 1) = L(n) + L(n − 1)

n -1 0 1 2 3 4 5 6 7 8 9 10

F(n) 1 1 2 3 5 8 13 21 34 55 ...

L(n) 2 1 3 4 7 11 18 29 47 76 123 ...

26 / 50



Lecture 3 – Maths for Computer Science More on Fibonacci numbers and Stern sequence

Lucas’ numbers

Definition of Lucas’ numbers

Definition:
Given the two numbers L(0) = 1 and L(1) = 3
all the other Lucas’ numbers are obtained by the same progression
as Fibonacci:

L(n + 1) = L(n) + L(n − 1)

n -1 0 1 2 3 4 5 6 7 8 9 10

F(n) 1 1 2 3 5 8 13 21 34 55 ...

L(n) 2 1 3 4 7 11 18 29 47 76 123 ...

26 / 50



Lecture 3 – Maths for Computer Science More on Fibonacci numbers and Stern sequence

Lucas’ numbers

There are strong links2 with Fibonacci numbers.

In particular, we established before that:

F (n + 2) = 1 +
∑n

k=0 F (k).

We have similarly:

L(n + 2) = 1 +
∑n

k=−1 L(k)
since the basic step of the induction is still valid3.
L(2) = L(−1) + L(0) + 1 = 2 + 1 + 1 = 4.

2of course
3It will be true for all the progressions where u1 = 1
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Lucas’ numbers

A first Property

We can also easily show that the Lucas number of order n is the
symmetric sum of two Fibonacci numbers:

Proposition.

L(n) = F (n − 1) + F (n + 1) for n ≥ 1

Let check this property on the first ranks:
n = 2, L(2) = F (1) + F (3) = 1 + 3 = 4

n = 3, L(3) = F (2) + F (4) = 2 + 5 = 7

n = 4, L(4) = F (3) + F (5) = 3 + 8 = 11

n = 5, L(5) = F (4) + F (6) = 5 + 13 = 18

...
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Lucas’ numbers

Proof by induction

The basis case (for n = 1) is true since
L(1) = 3 = F (2) + F (0) = 2 + 1.

Induction step: Let assume the property holds at all ranks
k ≤ n and compute L(n + 1):
Apply the definition of Lucas’ numbers:
L(n + 1) = L(n) + L(n − 1)

Apply the induction hypothesis on both terms:
L(n + 1) = F (n + 1) + F (n − 1) + F (n) + F (n − 2)
Apply now the definition of Fibonacci numbers for
F (n+ 1) + F (n) = F (n+ 2) and F (n− 1) + F (n− 2) = F (n)
replace them in the previous expression:
L(n + 1) = F (n + 2) + F (n)

which concludes the proof.
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Lucas’ numbers

Extension 1

Notice that using a similar approach, we obtain
L(n) = F (n + 2)− F (n − 2)

What happens if we generalize?

Proposition.

2.L(n) = F (n + 3) + F (n − 3)

Proof.
We start from L(n) = F (n + 2)− F (n − 2)
F (n + 2) = F (n + 3)− F (n + 1) and
F (n − 2) = F (n − 1)− F (n − 3)
L(n) = F (n + 3)− (F (n + 1) + F (n − 1)) + F (n − 3)
2.L(n) = F (n + 3) + F (n − 3)
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Lucas’ numbers

Extension 2

Go to the next step using the same technique:

2.L(n) = F (n + 3) + F (n − 3)
= F (n + 4)− F (n + 2) + F (n − 2)− F (n − 4)

3.L(n) = F (n + 4)− F (n − 4)

One more step: 5.L(n) = F (n + 5) + F (n − 5)

Thus, we guess the following expression.

Proposition4.

F (k − 1).L(n) = F (n + k) + (−1)k−1F (n − k) for k ≤ n

4The formal proof is let to the reader
31 / 50
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Lucas’ numbers

A natural question

The golden ratio.

It is a well-known result that the ratio of two consecutive
Fibonacci number tends to the Golden ratio:

limn→∞
F (n)

F (n−1) = Φ

As this result is obtained by solving the following equation
x2 = x + 1 (Φ is the positive root) and does not depend on the
first rank, this holds also for the Lucas’ numbers.
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Lucas’ numbers

A last result: the Zeckendorf’s Theorem

Objective: Study the Fibonacci numbers as a numbering system.
Here, we assume that the Fibonacci sequence starts at index 1 and
not 0.

Let us first introduce a notation: j ≫ k iff j ≥ k + 2.
The Zeckendorf’s theorem states that:

every positive integer n has a unique decomposition of the form:
n = Fk1 + Fk2 + ...+ Fkr where k1 ≫ k2 ≫ ... ≫ kr and kr ≥ 2

The decompositions will never consider F1 (since F1 = F2).
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Lucas’ numbers

Get intuition of the proof with a picture

F2	
F3	

F6	F4	
F5	

F7	 F8	
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Stern’s sequence

Stern’s sequence

Definition
s(0) = 0 and s(1) = 1

s(2n) = s(n)
and s(2n + 1) = s(n) + s(n + 1)

Interpretation:

If n is even, we keep the value s(n/2)

If it is odd, we split it into two parts that are as balanced as
possible.
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Stern’s sequence

Cultural aside

Our purpose in the analysis of Stern (and other) progression is
not to study the progression for itself

but to develop insight about a mathematical object and
learn/experience proof techniques

36 / 50



Lecture 3 – Maths for Computer Science More on Fibonacci numbers and Stern sequence

Stern’s sequence

Get a first insight

First elements

What is the best representation?
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Stern’s sequence

Consider s(n) as a double entry array:
s ′(p, q), for p ≥ 0 and 1 ≤ q ≤ 2p
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Stern’s sequence

What is the correspondence between elements in s and s ′?

Consider s(n) as a double entry array:
s ′(p, q) = s(2p − 1 + q), for p ≥ 0 and 1 ≤ q ≤ 2p
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Stern’s sequence

Progression of the elements along a given column

It is an arithmetic progression.

What is the argument of the corresponding proof?
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Stern’s sequence

Proof

Mathematically, we want to prove that s ′(p, q) = s ′(p′, q) + Cq

where q is fixed and thus, Cq is a constant.
Let P(n) the following property by induction on n.
s(2p + k) = s(k) + s(2p − k)
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Stern’s sequence

Sum of each row

Successive powers of 3

Prove this result (a natural way is by induction on p).
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Stern’s sequence

Looking carefully at row p

p=1
s(2) + s(3) = 2s(2) + s(1) = 3

p=2
s(4) = s(2)
s(5) = s(3) + s(2) and s(3) = s(2) + s(1)
s(6) = s(3) = s(2) + s(1)
s(7) = s(4) + s(3) = 2s(2) + s(1)

total of this row: 6s(2) + 3s(1) 3 times the previous row.

p=3
A similar reasoning leads to:
18s(2) + 9s(1) = 3[6s(2) + 3s(1)] = 32[2s(2) + s(1)]

We guess:
3(p−1)[2s(2) + s(1)] = 3p that is proven by recurrence
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Stern’s sequence

Guess a relation between the terms in a row

They are arranged in a symmetric order and more precisely,
like a palindrome.
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Stern’s sequence

Proof

The pivot of row p is at q = 2p−1 + 1
Thus, it corresponds to n = 3 · 2p−1
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Stern’s sequence

Maximum number in each row

They are the successive Fibonacci numbers.
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Maximum number in each row
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Stern’s sequence

Enumeration of the rationals

Deriving the rationals
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Stern’s sequence

Link with the Pascal’s triangle
Consider the Triangle modulo 2.

We get the Stern’s series!
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Stern’s sequence

Combinatorial interpretation of s(n) :∑
i ,j ,2i+j=n

(i+j
i

)
modulo 2.
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Stern’s sequence

Similarities between the two sequences

The rows in Pascal triangle sum up to powers (of 2)

arithmetic progression along columns

Deriving Fibonacci numbers

Symmetry within the rows
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