

Master of Science



# **UE Mathematics for Computer Science**

First session exam December 18, 2013 (3 hours)

Only personal hand-written notes are allowed.

Use separated sheets for problems 1-2 (part I) and problems 3-4 (part II).

All problems are independent from each other.

Number of points given for each problem is given for information purposes only and is subject to modifications without notice.

# Part I

# Problem 1: Cover Time (5 points)

Consider a random walk on an undirected graph  $\mathcal{G} = (X, E)$  of size n = |X|. For example, a flea is randomly jumping from node to node according to the jump probability

$$p_{i,j} = \frac{1}{d(i)},$$

where d(i) is the degree of node i (number of neighbors).

The cover time of the random walk is the average time time needed by the flea to visit all the nodes of the graph

### Question 1.1 : Line





*Hint: first show that the cover time is the hitting time of* n *starting from* 1.

### Question 1.2 : Complete graph

When the graph is a complete graph, starting from 1 compute the cover time and compare with the previous result.



Complete graph with n = 6 nodes

Hint: show that the problem is equivalent to the coupon collector problem.

### Problem 2: Monotonicity (5 points)

#### **Question 2.1 :**

Compute f(m, n) the number of functions from  $\{1, 2, \dots, m\}$  to  $\{1, 2, \dots, n\}$ .

#### **Question 2.2 :**

Propose a simple algorithm that generates uniformly a function from  $\{1, 2, \dots, m\}$  to  $\{1, 2, \dots, n\}$ .

#### **Question 2.3 :**

Compute the expected number of fixed points of a uniformly generated function from  $\{1, 2, \dots, m\}$  to  $\{1, 2, \dots, m\}$ .

A function f is said to be strictly increasing if for all x < y we have f(x) < f(y). Question 2.4 :

For  $m \leq n$  use combinatorial arguments to compute c(m, n) the number of strictly increasing functions from  $\{1, 2, \dots, m\}$  to  $\{1, 2, \dots, n\}$ .

A function f is said to be **nondecreasing** if for all x < y we have  $f(x) \leq f(y)$ . Question 2.5 :

Use combinatorial arguments to compute d(m, n) the number of nondecreasing functions from  $\{1, 2, \dots, m\}$  to  $\{1, 2, \dots, n\}$ .

#### **Question 2.6 :**

Design an algorithm that generates uniformly a nondecreasing function from  $\{1, 2, \dots, m\}$  to  $\{1, 2, \dots, n\}$ .

#### Question 2.7 : (bonus)

Compute the expected number of fixed points of a uniformly generated nondecreasing function from  $\{1, 2, \dots, m\}$  to  $\{1, 2, \dots, m\}$ .

# Part II

#### Problem 3: Fibonacci System Number (6 points)

Let us study the way the Fibonacci numbers can be used for representing integers. Let us write  $j \gg k$  iff  $j \ge k + 2$ .

We will first prove the Zeckendorf's Theorem which states that every positive integer n has a unique representation of the form:

 $n = F_{k1} + F_{k2} + ... + F_{kr}$  where  $k1 \gg k2 \gg ...kr \gg kr$ . For instance, the representation of one million turns out to be:  $1000000 = 832040 + 121393 + 46368 + 144 + 55 = F_{30} + F_{26} + F_{24} + F_{12} + F_{10}$ 

#### **Question 3.1 :**

Show the existence by an induction on n. The proof is constructive using the following greedy rule: choosing  $F_{k1}$  as the largest Fibonacci number lower than n, then, choosing  $F_{k2}$  as the largest one that is less than  $n - F_{k1}$  and so on...

#### **Question 3.2 :**

Show that this representation is unique.

Any unique system of representation is a number system. The previous theorem ensures that any non-negative integer can be written as a sequence of bits  $b_i$ , in other words,  $n = (b_m b_{m-1} ... b_2)_F$  iff  $n = \sum_{k=2}^m b_k F_k$ 

#### **Question 3.3 :**

Write the Fibonacci representation of one million and compare it to the usual binary representation (recall that  $1000000 = (2^{19} + 2^{18} + 2^{17} + 2^{16} + 2^{14} + 2^9 + 2^6)_2$ ).

Conclude about their respective features. In particular, write the decomposition in the Fibonacci basis for the first 7 integers (starting from  $1 = (0001)_F$ ). Give an argument for the property that there is no consecutive digits equal to 1 in such representations.

#### **Question 3.4 :**

Let us now study how to perform basic arithmetic operations within this system. We will focus on the increment (addition of 1): obtaining n + 1 from n.

Detail first this operation when the last digit is 0 and justify it by the definition of Fibonacci numbers.

Give a process to obtain the increment when the two last digits are 01.

## Problem 4: Miscellaneous Exercises (4 points)

This part contains two easy independent problems. **Question 4.1 :** 

Show by a geometrical proof that the odd square numbers are congruent to 1 modulo 8.

## Question 4.2 :

F(n) is the number of paths from node 1 to n in the following family of graphs of figure 1.



Figure 1: Counting paths from node 1 to node n (n = 7)

Show how this number is related to Fibonacci's numbers.