Solving TSP with Christofides' Algorithm

Clément Mommessin

November 2024

We consider a salesperson who wants to visit all n cities. We are given a **complete graph** G with weight of edges representing the cost of travelling from one city to another (the distance).

The goal is to find a **tour of minimum cost** traversing all cities once and only once.

Euclidian metric:

We assume the *triangle inequality* for the distance between cities. For any 3 vertices A, B, C, we have $c(AC) < c(AB) + c(BC)$.

Christofides' Algorithm on graph G:

- **1** Create a Minimum Spanning Tree T^* of G.
- 2 Let V_{odd} be the set of vertices with odd degree in T^* . Find a Minimum-weight Perfect Matching M^* in the subgraph induced in G by V_{odd} .
- 3 Combine the edges of T^* and M^* to form a connected multigraph H .
- $\overline{4}$ Form a Eulerian circuit in H (traverse all edges exactly once).
- 5 Transform the Eulerian circuit in H into an Hamiltonian circuit in G by shortcutting repeated vertices.

Example Graph

WARNING: This is not a complete graph, but it works for this example

Step 1: Create a Minimum Spanning Tree T^*

Minimum Spanning Tree

Let V_{odd} be the set of vertices with odd degree in T^* . Prove that V_{odd} has an even number of vertices.

Vertices with Odd Degree

Step 2: Find a Minimum-weight Perfect Matching M^* in the subgraph induced in G by V_{odd} .

Minimum Perfect Matching

Step 3: Combine the edges of T^* and M^* to form a connected multigraph $H₁$

Prove that each vertex of H has an even degree.

Union of Graphs

Step 4: Form a Eulerian circuit in H (traverse all edges exactly once). Step 5: Transform the Eulerian circuit in H into an Hamiltonian circuit in G by shortcutting repeated vertices.

Shortcutting

Et voilà ! (Bonus question: is it optimal?)

Prove that the tour formed by the algorithm is a 2-approximation, i.e., the tour has a cost no greater that 2 times the cost of an optimal tour. Hints:

- **1** What is the relation between the cost of the tour and the weights of the minimum spanning tree and the minimum perfect matching?
- 2 Show that the shortcutting process does not increase the total weight of the tour.

Even better: prove it is a 3/2-approximation.

Prove that the tour formed by the algorithm is a 2-approximation, i.e., the tour has a cost no greater that 2 times the cost of an optimal tour. Hints:

- **1** What is the relation between the cost of the tour and the weights of the minimum spanning tree and the minimum perfect matching?
- 2 Show that the shortcutting process does not increase the total weight of the tour.
- 3 Prove that the weight of the minimum spanning tree (ω_{T*}) is a lower bound of the value of the optimal tour (ω_{OPT}) .
- 4 Prove that the weight of the minimum perfect matching (*ω*_M[∗]) is a lower bound of the value of the optimal tour (ω_{OPT}) .

Even better: prove it is a 3/2-approximation.