
Maths for Computer Science Solving recurrences

Maths for Computer Science
Solving recurrences

Denis TRYSTRAM
Lecture notes MoSIG1

sept. 2024

1 / 49

Maths for Computer Science Solving recurrences

Recall the principle

Objective

Present induction, which is the basic principle used for
solving recurrences.

Show its application on several examples.

This lecture is devoted to studving a variety of types of
recurrences (linear recurrence, multiple steps recurrences, etc.).

We will show how to use various ways for solving problems by
recurrence.

2 / 49

Maths for Computer Science Solving recurrences

Recall the principle

Brief overview of this sequence

Recall of the induction principle and recurrence proofs.

A first example (direct application)

Take care at the first steps!

Linear and bilinear recurrences:
Hanoi’s towers and The token game

3 / 49

Maths for Computer Science Solving recurrences

Recall the principle

An example of induction: Factorial

The first classical example of the recurrent mode of computing
involves the factorial function Fact (of a nonnegative integer).

The “direct” mode of computing Fact at an argument n is:

Fact(n) = 1× 2× · · · × n

The recurrent mode of computing Fact(n) is more
compact—and it better exposes the inherent structure of the
function.

Fact(n) =

{
n × Fact(n − 1) if n > 1

1 if n = 1

4 / 49

Maths for Computer Science Solving recurrences

Recall the principle

Proof by recurrence

Goal:
proving that a statement P(n) involving integer n is true using the
induction principle.

Basis. Solve the statement for the small value(s) of n and
verify P(1)

Induction step. Prove the statement for n + 1 assuming it is
correct for k ≤ n.

Principle: start by writing the expression at rank n + 1 and apply
an external definition, where you exhibit previous ranks k ≤ n.
Then, replace P(n) by its expression and deduce P(n + 1) by
algebraic manipulations.

5 / 49

Maths for Computer Science Solving recurrences

Recall the principle

Example

Proposition P(n).

∀n, the n-th perfect square is the sum of the first n odd integers.

n2 =
n∑

k=1

(2k − 1)

Proof.
For every positive integer k , let P(k) denote the assertion

k2 = 1 + 3 + 5 + · · ·+ (2k − 1)

6 / 49

Maths for Computer Science Solving recurrences

Recall the principle

Example

Proposition P(n).

∀n, the n-th perfect square is the sum of the first n odd integers.

n2 =
n∑

k=1

(2k − 1)

Proof.
For every positive integer k , let P(k) denote the assertion

k2 = 1 + 3 + 5 + · · ·+ (2k − 1)

6 / 49

Maths for Computer Science Solving recurrences

Recall the principle

Let us proceed by the standard format of an inductive argument:

Basis. Because 12 = 1, proposition P(1) is true.

Induction step. Let us assume, for the sake of induction, that
assertion P(k) is true for all positive integers smaller than n.

7 / 49

Maths for Computer Science Solving recurrences

Recall the principle

Consider now the summation at rank n + 1

1 + 3 + 5 + · · ·+ (2n − 1) + (2n + 1)

Because P(n) is true, we know that

1 + 3 + · · ·+ (2n + 1) =
(
1 + 3 + · · ·+ (2n − 1)

)
+ (2n + 1)

= n2 + (2n + 1)

= (n + 1)2

The Principle of (Finite) Induction tells us that P(n) is true for all
integer n.

8 / 49

Maths for Computer Science Solving recurrences

Recall the principle

When to use recurrence?

We need to have a precise idea of what has to be proven!

The analysis of the first ranks1 helps in finding recurrence
patterns.

1and not only the first one
9 / 49

Maths for Computer Science Solving recurrences

Recall the principle

Starting an induction

Let us (mis)use the method of Finite Induction to craft a fallacious
proof of the following absurd “fact”.

Proposition.

All horses are the same color.

The base case. If there is only a single horse in the set, then
obviously P is true (all horses in a singleton are the same
color).

Inductive hypothesis. in every set of n horses, all horses in
the set are the same color.

10 / 49

Maths for Computer Science Solving recurrences

Recall the principle

Extension to n + 1 horses.

Let us be given a set of n + 1 horses.

Remove one horse from the set, then the remaining set, call it
S has n horses.

By our inductive hypothesis, all of the horses in S have the
same color.

Now remove one horse from S and replace it with the horse
that was removed from the (n + 1)-horse set.
We now have a new n-horses set S ′.

Once again we invoke the inductive hypothesis to conclude
that all horses in S ′ have the same color. If we now reunite all
of the horses, the transitivity of the relation “have the same
color” guarantees that all of the horses in the (n + 1)-horses
set have the same color.

11 / 49

Maths for Computer Science Solving recurrences

Recall the principle

What’s wrong?

We all know that all horses do not share the same color.

The base case was not adequate for the “proof”

When we remove first one horse from the set of n + 1 horses
and then another horse from that set, and we still have a
horse left to compare those two horses to, we must have
started with at least three horses!

This means that n + 1 must be no smaller than 3, so n must
be no smaller than 2. The base of the induction must,
therefore, be sets that contain 2 horses—and the same-color
“proposition” is, of course, absurd for such sets!

This brings us to the critical issue of how to select the “small”
cases that comprise the base of our induction.

12 / 49

Maths for Computer Science Solving recurrences

Recall the principle

What’s wrong?

We all know that all horses do not share the same color.
The base case was not adequate for the “proof”

When we remove first one horse from the set of n + 1 horses
and then another horse from that set, and we still have a
horse left to compare those two horses to, we must have
started with at least three horses!

This means that n + 1 must be no smaller than 3, so n must
be no smaller than 2. The base of the induction must,
therefore, be sets that contain 2 horses—and the same-color
“proposition” is, of course, absurd for such sets!

This brings us to the critical issue of how to select the “small”
cases that comprise the base of our induction.

12 / 49

Maths for Computer Science Solving recurrences

Recall the principle

Content

Fibonacci sequence

Preliminary: Hanoi’s towers

Beyond standard proofs
The Token Game.
Non linear recurrences.
in particular, bilinear recurrences.

un+1 = α.un + β.un−1 + γ where u0 and u1 are given.

13 / 49

Maths for Computer Science Solving recurrences

Recall the principle

Applications

Fibonacci numbers
The simplest possible bilinear recurrence (α = β = 1 and γ = 0).
F (n + 1) = F (n) + F (n − 1) with F (0) = 1 and F (1) = 1

Same with a different seed.
L(n + 1) = L(n) + L(n − 1) with L(0) = 1 and L(1) = 3

Hanoi’s towers
T (n) = 2.T (n − 1) + 1 with T (0) = 1 and T (1) = 1

Token Game
T (n + 1) = T (n) + 2.T (n − 1) + 1 with T (0) = 1 and T (1) = 2

Stern sequence

s(0) = 0 and s(1) = 1
s(2n) = s(n) and s(2n + 1) = s(n) + s(n + 1)

14 / 49

Maths for Computer Science Solving recurrences

Definition of Fibonacci numbers

Definition of Fibonacci numbers

The original problem has been introduced by Leonardo of Pisa
(Fibonacci) in the middle age.

Fibonacci numbers are the number of pairs of rabbits that can
be produced at the successive generations.

Starting by a single pair of rabbits and assuming that each
pair produces a new pair of rabbits at each generation during
only two generations.

15 / 49

Maths for Computer Science Solving recurrences

Definition of Fibonacci numbers

Definition (pictorially)

16 / 49

Maths for Computer Science Solving recurrences

Definition of Fibonacci numbers

Definition (more formally)

Definition:
Given the two numbers F (0) = 1 and F (1) = 1
the Fibonacci numbers are obtained by the following expression:
F (n + 1) = F (n) + F (n − 1)

The first ranks:

n 0 1 2 3 4 5 6 7 8 9 10 ...

F(n) 1 1 2 3 5 8 13 21 34 55 89 ...

17 / 49

Maths for Computer Science Solving recurrences

Definition of Fibonacci numbers

Definition (more formally)

Definition:
Given the two numbers F (0) = 1 and F (1) = 1
the Fibonacci numbers are obtained by the following expression:
F (n + 1) = F (n) + F (n − 1)

The first ranks:

n 0 1 2 3 4 5 6 7 8 9 10 ...

F(n) 1 1 2 3 5 8 13 21 34 55 89 ...

17 / 49

Maths for Computer Science Solving recurrences

Definition of Fibonacci numbers

Combinatorial interpretation

Proposition

The Fibonacci number F (n) can be interpreted as the number of
length-n binary strings in which each occurence of a 1 is directly
preceded by a 0.

Let Sn be the set of such strings of length n.

18 / 49

Maths for Computer Science Solving recurrences

Definition of Fibonacci numbers

Proof

By the previous definition, every binary string ωn ends either with 0
or with 01.

If ωn ends with 0, then, it has the form x0 where the prefix x
is a binary string of length n − 1.
Moreover, x must belongs to Sn−1 in order ωn belongs to Sn.
Therefore Sn contains |Sn−1| strings of this form.

If ωn ends with 01, then it has the form ωn = y01, where the
prefix y is a binary string of length n − 2.
Moreover, y must belong to Sn−2 in order for ωn to belong to
Sn, that contains |Sn−2| strings of this form.

F (n) = |Sn| = F (n − 1) + F (n − 2)

19 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Studying a first property

Proposition:∑n
k=0 F (k)?

Let compute the expression on the first ranks:

n = 1, F (1) + F (0) = 1 + 1 = 2

n = 2, F (2) + F (1) + F (0) = 2 + 1 + 1 = 4

n = 3,
F (3) + F (2) + F (1) + F (0) = 3 + 2 + 1 + 1 = 7

n = 4,
F (4) + F (3) + F (2) + F (1) + F (0) = 5 + 3 + 2 + 1 + 1 = 12

Any idea of the expression?

20 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Studying a first property

Proposition:∑n
k=0 F (k)?

Let compute the expression on the first ranks:

n = 1, F (1) + F (0) = 1 + 1 = 2

n = 2, F (2) + F (1) + F (0) = 2 + 1 + 1 = 4

n = 3,
F (3) + F (2) + F (1) + F (0) = 3 + 2 + 1 + 1 = 7

n = 4,
F (4) + F (3) + F (2) + F (1) + F (0) = 5 + 3 + 2 + 1 + 1 = 12

Any idea of the expression?

20 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Guess
Let compute the expression on the first ranks:

n = 1,
1 + 1 = 2 = 3− 1

n = 2,
2 + 1 + 1 = 4 = 5− 1

n = 3,
3 + 2 + 1 + 1 = 7 = 8− 1

n = 4,
5 + 3 + 2 + 1 + 1 = 12 = 13− 1

Proposition:∑n
k=0 F (k) = F (n + 2)− 1

21 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Proof
∑n

k=0 F (k) + 1 = F (n + 2)

By induction

The basis case (for n = 0) is true since F (2) = 1 + F (0).

Induction step: Let assume the property holds at rank n for
F (n + 2) and compute F (n + 3):
Apply the definition of Fibonacci numbers:
F (n + 3) = F (n + 1) + F (n + 2)
Replace the last term by the recurrence hypothesis:
F (n + 2) = 1 +

∑n
k=0 F (k)

Thus,
F (n + 3) = F (n + 1) + 1 +

∑n
k=0 F (k) = 1 +

∑n+1
k=0 F (k)

22 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Product of two consecutive Fibonacci numbers

Proposition:

F (n).F (n − 1) =
∑n−1

k=0 F (k)
2 (for n ≥ 1)

Let check the expression on the first ranks:

n = 2, F (2).F (1) = F (1)2 + F (0)2 = 1 + 1 = 2

n = 3, F (3).F (2) = F (2)2 + F (1)2 + F (0)2 = 4 + 1 + 1 = 6

n = 4, F (4).F (3) = F (3)2 + F (2)2 + F (1)2 + F (0)2 = 15

n = 5,
F (5).F (4) = F (4)2 + F (3)2 + F (2)2 + F (1)2 + F (0)2 = 40

23 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Proof by induction

The basis case (for n = 1) is true since
F (1).F (0) = F (0)2 = 1.

Induction step2: Let assume the property holds at rank n
and compute F (n + 1).F (n):
Apply the definition of F (n + 1):
F (n + 1).F (n) = (F (n) + F (n − 1)).F (n)
= F (n)2 + F (n).F (n − 1)
Apply now the induction hypothesis to this last term:
F (n + 1).F (n) = F (n)2 +

∑n−1
k=0 F (k)

2 =
∑n

k=0 F (k)
2

2exactly the same scheme as before!
24 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

An alternative proof (draft)

The relation can be proved very easily by the geometric argument
shown below. The basis is a unit square (1 by 1).

25 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Another property dealing with squares

Proposition:

F (n + 2)2 = 4.F (n).F (n + 1) + F (n − 1)2 for n ≥ 2.

Let check the expression on the first ranks:

n = 1, F (3)2 = 32 = 4.F (1).F (2) + F (0)2 = 8 + 1 = 9

n = 2, F (4)2 = 52 = 4.F (2).F (3) + F (1)2 = 24 + 1 = 25

n = 3, F (5)2 = 82 = 4.F (3).F (4) + F (2)2 = 60 + 4 = 64

n = 4, F (6)2 = 132 = 4.F (4).F (5) + F (3)2 = 160 + 9 = 169
...

26 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Analytic proof

Use the definition of the Fibonacci numbers and expand:

F (n + 2)2 = (F (n + 1) + F (n))2

= F (n + 1)2 + 2.F (n + 1).F (n) + F 2
n

= 4.F (n + 1).F (n)− 2.F (n + 1).F (n) + F (n + 1)2 + F (n)2

= 4.F (n + 1).F (n) + (F (n + 1)− F (n))2

Again, using the definition of F (n + 1) into the square, we get the
expected result:

F (n + 2)2 = 4.F (n + 1).F (n) + F (n − 1)2

27 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Graphical proof

Take care: a figure alone is not a proof!
The argument should be a generic one.
Here, it is enough to say that the small square in the left if of size
F (n − 1))...

28 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Hanoi’s Towers

It is a well-known problem: A set of n disks of decreasing
diameters initially stacked on one of three pegs.
Problem definition. The goal is to transfer the entire tower from
a given peg (D) to another fixed one (A), moving only one disk at
a time and never moving a larger disk on top of a smaller one.

D I	 A	

The main question is to determine the best way to realize this
operation (which means in a minimum number of moves).

29 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

The classical (recursive) solution

The natural method is recursive. It consists in moving the n − 1
top disks on the intermediate peg, then, put the largest one on the
target peg, and moving again the n − 1 disks on top of it.

30 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Compute the cost

Basis is straightforward since H1 = 21 − 1 = 1.

Induction step
Hn = 2Hn−1 + 1 where Hn−1 = 2n−1 − 1,
thus, Hn = 2(2n−1 − 1) + 1 = 2n − 1 and we are done.

Notice that this expression can also be obtained directly as the
sum of a geometric series:

Hn = 2Hn−1 + 1
= 2(2Hn−2 + 1) + 1
= . . .

=
∑n−1

k=0 2
k = 2n − 1

31 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

formal algorithm

input: an integer n, three pegs indexed as D (departure), A
(arrival) and I (intermediate). All the disks are stacked on peg D.
output: The disks are stacked on peg A.

If (n ̸= 0) then

Hanoi(n-1,D,I,A)

move disk from D to A

Hanoi(n-1,I,A,D)

Analysis. It is easy to compute the number of moves, using the
same recurrence equation as for the lower bound:
Hn = 2n − 1.

32 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Extension to bilinear equations: The Token Game

Consider a bank with n circle positions numbered from 1 to n and
n tokens. Initially, the bank is empty.

The game consists in determining the process to fill the bank with
the n tokens, putting or removing one token at a time according to
one of the two following constraints.

Rule 1. Position 1: Put a token if it is empty or remove it.

Rule 2. Position next to the first empty position (i.e. on the
right): Put a token if the position is empty or remove it.

33 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Extension to bilinear equations: The Token Game

Consider a bank with n circle positions numbered from 1 to n and
n tokens. Initially, the bank is empty.

The game consists in determining the process to fill the bank with
the n tokens, putting or removing one token at a time according to
one of the two following constraints.

Rule 1. Position 1: Put a token if it is empty or remove it.

Rule 2. Position next to the first empty position (i.e. on the
right): Put a token if the position is empty or remove it.

33 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Figure: Rule 1: Position 1 contains a token, thus, remove it.

Figure: Rule 2: The position next to the first idle position (i.e. position 3
here) is idle, thus, put a remaining token.

34 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Intuition of the solution
How the player should choose successive moves, with the goal of
filling the bank as quickly as possible?

One can garner some strategic observations about how to play the
Game by looking at small instances.

When n = 1, the player should simply fill the slot using a
Type-1 move.

When n = 2, the player must first play a Type-2, then a
Type-1 move.

As the Game proceeds, observation suggests that the player
should begin with a Type-1 move when n is odd and with a
Type-2 move when n is even.

Another easy observation is:
The player should not play two successive moves of the same
type, because the second one just undoes the first.

35 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Analysis (2)

A strategy is beginning to emerge:

1 Choose the initial move based on the parity of n.

2 Subsequently, alternate between the two types of moves.

This strategy is pleasingly simple, but:
(a) Does it lead us to the required terminal state?
(b) What is the cost of a (successful) play using this strategy?

36 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Analysis (3)

A token can be placed into the last bank-slot (i.e., the nth) via the
Type-2 move

In order for this move to be eligible, the bank must be in the
following configuration:[

tokens in slots 1, 2, . . . , n − 2
]
,
[
no token in n − 1 and n

]
This configuration requires that the first n − 2 slots have been
filled.3

Once the player has achieved this configuration and executed the
mandated move, the player henceforth ignores the token in
bank-slot n. Here comes the recursion!

3Remark that n − 2 has the same parity as n.
37 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Analysis
The Game can be played by recursively executing the super-steps
depicted below, on successively smaller banks and piles.

Figure: A schematic of the recursive play of the Game.
38 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Analysis

The cost of the recursive solution is:

f (n) =


1 if n = 1
2 if n = 2
f (n − 2) + 1 + f −1(n − 2) + f (n − 1) if n > 2

(1)

Let f −1 denote the bank-emptying operation.
If one thinks in terms of mirror-image operations, then one
discovers a recursive solution for emptying the bank:

f −1(n) =


1 if n = 1
2 if n = 2
f −1(n − 1) + f (n − 2) + 1 + f −1(n − 2) if n > 2

(2)

39 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Analysis

The cost of the recursive solution is:

f (n) =


1 if n = 1
2 if n = 2
f (n − 2) + 1 + f −1(n − 2) + f (n − 1) if n > 2

(1)

Let f −1 denote the bank-emptying operation.
If one thinks in terms of mirror-image operations, then one
discovers a recursive solution for emptying the bank:

f −1(n) =


1 if n = 1
2 if n = 2
f −1(n − 1) + f (n − 2) + 1 + f −1(n − 2) if n > 2

(2)

39 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Analysis (6)
Both systems of equations are coupled!

Taking the difference between expressions (1) and (2), we find
that the costs of f (n) and f −1(n) are equal!

f (n) − f −1(n) = f (n − 2) + 1 + f −1(n − 2) + f (n − 1)

− f −1(n − 1) − f (n − 2) − 1 − f −1(n − 2)

= f (n − 1) − f −1(n − 1)

· · ·
= f (1) − f −1(1)

= 0

40 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Analysis (6)
Both systems of equations are coupled!

Taking the difference between expressions (1) and (2), we find
that the costs of f (n) and f −1(n) are equal!

f (n) − f −1(n) = f (n − 2) + 1 + f −1(n − 2) + f (n − 1)

− f −1(n − 1) − f (n − 2) − 1 − f −1(n − 2)

= f (n − 1) − f −1(n − 1)

· · ·
= f (1) − f −1(1)

= 0

40 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Analysis (7)

The final equation is:

f (n) =


1 if n = 1
2 if n = 2
f (n − 1) + 2f (n − 2) + 1 if n > 2

(3)

41 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Solving the recurrence

We can dramatically simplify the previous recurrence by focusing
on the function4

g(n) = f (n) + f (n − 1) for n ≥ 2

instead of on f .

Elementary calculation shows that g(n) satisfies the recurrence

g(n) =

{
3 if n = 2
2g(n − 1) + 1 if n > 2

(4)

4the intuition behind this proposal is to remark that the expression simplifies
if we add f (n − 1) in each side.

42 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

Solving the recurrence

We can dramatically simplify the previous recurrence by focusing
on the function4

g(n) = f (n) + f (n − 1) for n ≥ 2

instead of on f .

Elementary calculation shows that g(n) satisfies the recurrence

g(n) =

{
3 if n = 2
2g(n − 1) + 1 if n > 2

(4)

4the intuition behind this proposal is to remark that the expression simplifies
if we add f (n − 1) in each side.

42 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

We have, thereby, replaced the initial bilinear recurrence by the
(singly) linear recurrence (4).

We know how to solve geometric summations.

g(n) = 2n−1 + 2n−2 + · · ·+ 22 + 2 + 1 = 2n − 1 (5)

43 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

We can now return to evaluating f (n) in the light of our analysis
of g(n).

f (n) =

{
1 if n = 1
g(n)− f (n − 1) = (2n − 1)− f (n − 1) if n > 1

(6)

We begin to solve the singly linear recurrence (6) for f (n)
using the strategy we developed for simple geometric sums.

We expand the recurrence in order to discern its pattern and
then analyze the summation that the pattern leads to:

f (n) = 2n − 2n−1 + f (n − 2) + 1− 1

= 2n − 2n−1 + 2n−2 − f (n − 3)− 1

= 2n − 2n−1 + 2n−2 − 2n−3 + f (n − 4) + 1− 1
...

44 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

We have now reached the penultimate step in finding the value of
f (n); specifically, we have derived the following parity-specified
summations.

For even values of n : f (n) =
n∑

k=1

(−1)k 2k (7)

For odd values of n : f (n) =
n∑

k=0

(−1)k+1 2k (8)

45 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

We first gather the positive and negative terms in summation We
thereby find that, for odd values of n:

f (n) =
(
2n + 2n−2 + · · ·+ 2

)
−
(
2n−1 + 2n−3 + · · ·+ 1

)
= 2n−1 + 2n−3 + · · ·+ 1

= 2n−1 ·
(
1 +

1

4
+

1

16
+ · · ·+ 1

2n−1

)
= 2n−1 ·

(
1 +

1

4
+

1

16
+ · · ·+ 1

4(n−1)/2

)
= 2n−1 · 4

3
·

(
1 −

(
1

4

)(n+1)/2
)

=
2n+1

3
·
(
1 − 1

2n+1

)
=

1

3

(
2n+1 − 1

)
46 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

The final touch

For each n, f (n) is given by:

f (n) =

{ (
2n+1 − 1

)
/3 if n is odd(

2n+1 − 2
)
/3 if n is even

(9)

47 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

A geometric approach for the case of odd n
.
Remark that 2n−1 is a perfect square whenever n is odd, we set
out to represent f (n) as the aggregated area of a shrinking
sequence of squares, of successive dimensions

2(n−1)/2×2(n−1)/2, 2(n−3)/2×2(n−3)/2, 2(n−5)/2×2(n−5)/2, . . . , 1×1

48 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

A geometric approach for the case of odd n
.
Remark that 2n−1 is a perfect square whenever n is odd, we set
out to represent f (n) as the aggregated area of a shrinking
sequence of squares, of successive dimensions

2(n−1)/2×2(n−1)/2, 2(n−3)/2×2(n−3)/2, 2(n−5)/2×2(n−5)/2, . . . , 1×1

48 / 49

Maths for Computer Science Solving recurrences

Some recurrences on Fibonacci numbers

We can now use a geometric construction to evaluate f (n) for
arbitrary odd n. We take three copies of the cascade.

49 / 49

	Recall the principle
	Definition of Fibonacci numbers
	Some recurrences on Fibonacci numbers

