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Objectives

Review some structured graphs and study their properties.

Complete graphs

Cycles

Meshes and torus

Hypercubes

Trees
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Structured Graphs

Complete graphs (or cliques)

Definition.
Each vertex of Kn is connected to all the other vertices.

Connected (D = 1)

Regular graph (δ = n − 1)

Number of edges Σ1≤k≤n−1 k = (n)(n−1)
2
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Structured Graphs

Rings or Cycles

Definition.
Each vertex of Cn has exactly one predecessor and one successor.

Coding of edges{
{i , i + 1 mod n} | i ∈ {0, 1, . . . , n − 1}

}
.

Connected (D = ⌊n2⌋)
Regular graph (δ = 2)

Number of edges n
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Structured Graphs

An interesting observation

Proposition.

If every vertex of a graph G has degree ≥ 2, then G contains a
cycle.

Proof
Let us assume by contradiction that we have a cycle-free graph G
all of whose vertices have degree ≥ 2.

Let us view graph G as a park where every vertex of G is a statue,
and every edge is a path between two statues.
The fact that every vertex of G has degree ≥ 2 means that if we
take a stroll through G , then every time we leave a vertex v ∈ V ,
we can use a different edge/path than we used when we came to v .
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Structured Graphs

Meshes and Torus

Definition.
Cartesian product of paths/cycles.

Coding of meshes (vertices and edges).

{1, 2, . . . , m} × {1, 2, . . . , n}{
⟨i , j⟩ |

[
i ∈ {1, 2, . . . , m}

]
,

[
j ∈ {1, 2, . . . , n}

]}

Torus is obtained by adding the wraparound links...
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Structured Graphs

Example for n = 4
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Structured Graphs

Properties of the square torus with n vertices

√
n by

√
n

Connected (diameter D = Θ(
√
n) = 2 · ⌊

√
n
2 ⌋)

Regular graph (degree δ = 4 = Θ(1))

Number of edges 2n = Θ(n)
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Structured Graphs

Hypercubes

Motivation:
build a graph with a trade-off beetwen the degree and the
diameter.

Recursive Definition.

The order-0 boolean hypercube, H0, has a single vertex, and
no edges.

The order-(k + 1) boolean hypercube, Hk+1, is obtained by

taking two copies of Hk (H
(1)
k and H

(2)
k ), and creating an edge

that connects each vertex of H
(1)
k with the corresponding

vertex of H
(2)
k .
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Structured Graphs

Construction
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Structured Graphs

The next dimension

Representation of H4
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Structured Graphs

Coding

A natural binary coding

The coding from the vertices is naturally in the binary system.

The coding of two adjacent vertices is obtained by flipping only
one bit.
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Structured Graphs

Characteristics of Hypercubes

The number of vertices is a power of 2: n = 2k (k = log2(n))

Diameter Dn = k

Degree δn = k

Number of edges?

Hk+1 is obtained by two copies of Hk plus 2k edges for linking
each relative vertex, thus:
Nk+1 = 2× Nk + 2k starting at N0 = 0

Nk = k × 2k−1
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Algebraic properties

Graph isomorphism

The difficulty here is that there are many ways to draw a graph...

Property.

The hypercube H4 is identical to the 4 by 4 torus.

The proof is by an adequate coding of the vertices/edges.
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Algebraic properties

Coding schemes

The following figure (left) depicts this coding of a vertex and its
neighbors.
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Algebraic properties

The (almost) full picture
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Algebraic properties

Gray Codes

Cultural aside
Let us present the most popular code, namely, the Reflected Gray
code

The 1-bit Gray code is simply 0 and 1.
The next one (for 2-bits) is obtained by mirroring the 1-bit code
and prefix it by 0 and 1.
The next ones are obtained similarly.
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Algebraic properties

Gray Code

How to obtain the Gray code from the binary code?
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Algebraic properties

Gray code can easily be determined from the classical binary
representation as follows
(xn−1xn−2...x1x0)2
shift right:
(0xn−1xn−2...x1)2

Take the exclusive OR (bit-to-bit) between the binary code and its
shifted number:
(xn−1(xn−2 ⊕ xn−1)...(x0 ⊕ x1))G

For instance the binary code of 5 = (00101)2 is
(0⊕ 0)(0⊕ 0)(0⊕ 1)(1⊕ 0)(0⊕ 1) = (00111)G .
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Algebraic properties
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Algebraic properties

Matching

Definition
A matching is a set of edges that have no vertices in common.

It is perfect if its vertices are all belonging to an edge1.

Proposition.

The number of perfect matchings in a graph of order n = 2k grows
exponentially with k .

1thus, the number of vertices is even and the cardinality of the matching is
exactly half of this number
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Algebraic properties

Example

Figure: The 3 possible perfect matchings of K4.
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Algebraic properties

Proof

by recurrence on k ,
let denote the number of perfect matchings by Nk .

Base case: For k = 1, there is only one perfect matching N1 = 1
and for k = 2, there are 3 different perfect matchings N2 = 3.
Induction step: For k , there are 2k − 1 possibilities for a vertex to
choose an edge, Nk = (2k − 1).Nk−1

Thus, Nk is the product of the k first odd numbers.

However, determining a perfect matching of minimal weight in a
weighted graph can be obtained in polynomial time (using the
Hungarian assignment algorithm).
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Algebraic properties

Another interesting class of graphs.

Bipartite graphs.

A graph G is bipartite if its vertices can be partitioned into (by
definition of “partition”, disjoint) sets X and Y in such a way that
every edge of G has one endpoint in X and the other in Y .

An interesting question is to link bipartite graphs and matchings.
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Trees

Trees

Definition
Trees are identified mathematically as graphs that contain no
cycles or, equivalently, as graphs in which each pair of vertices is
connected by a unique path.

A tree is thus the embodiment of “pure” connectivity, which
provides the minimal interconnection structure (in number of
edges) that provides paths that connect every pair of vertices.

Proposition

Any tree of order n has n − 1 edges.
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Trees

Example

Figure: Undirected and directed trees.
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Trees

Preliminary results

Lemma

1 Let G be a connected graph with n ≥ 2 vertices.
Every vertex of G has degree at least 1.

2 Any connected tree of order n (n ≥ 1) has at least one vertex
of degree 1 (called a leaf).

Rapid Proofs

The main argument is on the analysis of graphs with minimum
degrees 0 for part 1 and more than 2 for part 2.
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Trees

Proof 1

Principle

By induction on the order of the graph n.

Base case for n = 2
Induction step. Use the previous Lemma.
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Trees

Proof 2

Inductive hypothesis. Assume that the indicated tally is correct
for all trees having no more than k vertices.

Inductive extension. Consider a tree T with k + 1 vertices.

By the Lemma, T must contain at least one vertex v of
degree 1.

If we remove v and its (single) incident edge, we now have a
tree T ′ on k vertices.

By induction, T ′ has k − 1 edges. When we reattach vertex v
to T ′, we restore T to its original state.

Because this restoration adds one vertex and one edge to T ′,
T has k + 1 vertices and k edges.
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Trees

Spanning Trees
Let consider a weighted graph G .

Motivation
a way of succinctly “summarizing” the connectivity structure
inherent in undirected graphs.

Definition
Take the same set of vertices and extract a set of edges that spans
the vertices.

Determining a minimal Spanning Tree is a polynomial-time
problem.
There exist two possible constructions, following two different
philosophies (following each one feature of the problem,
namely (i) to obtain a tree and (ii) to guarantee the minimum
weight).
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