INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS' HOLES REFERENCES

Combinatorics Basics

Explained by Examples : Subsets, strings, trees

Master MOSIG: Mathematics for Computer Science Jean-Marc.Vincent@univ-grenoble-alpes.fr

September 2024

These notes are only the sketch of the lecture: the aim is to apply the basic counting techniques to the binomial coefficients and establish combinatorial equalities.

References: Concrete Mathematics: A Foundation for Computer Science Ronald L. Graham, Donald E. Knuth and Oren Patashnik Addison-Wesley 1989 (chapter 5)

COMPUTER SCIENCE

The four faces of a computer science object

Information representation	Algorithmics				
Encoding, data, numerical information	Design, proof, complexity,				
Programming Language	Architecture				
Languages, software engineering	Processor, networks, operating systems				

Reference: Les quatre concepts de l'informatique, Didapro, 2011 by Gilles Dowek, INRIA/ENS-Saclay

INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS' HOLES REFERENCES

ABSTRACT OBJECTS IN COMPUTER SCIENCE

Symbols, Words, and Texts

- ▶ 011011100101110111...
- 270c4fe6205c0f43d3163f566534f308
- grammars, rewriting,...

Sets

- sets encoding,
- subsets, partitions

Trees

- binary trees, binary search trees
- covering trees
- tree structures

Ordering

- permutations
- sequences
- partial orders

Why counting?

- Characteristics of objects
- Better understanding of the structures
- ► Counting = Description Method = Enumeration = Generation

WELL BALANCED EXPRESSIONS

The problem

 $((a+(3\times(c+1)) \quad (9+x)\times((5+e) \quad (4\times3)))$ is a well-balanced expression?

and this one

$$(5+a) \times (2 \times 3 \times (5/e))) + (4 \quad 3 \times (e+7))$$

Exercise : Design the algorithm for expressions composed with (), $\{,\}$ and [,] symbols.

ANALYSIS OF THE PROBLEM

Is the algorithm correct?

- Formal proof (modify the algorithm to prove it)
- ► Check on examples (which ones?) Is it a proof?
- Enumerate all the possible expressions with '(' and ')' and check the correctness. Is it a proof?
- Generate a random set arbitrary large of expressions and check. Is it a proof?

Aim of the activity:

- Describe the structure, check details, fix notations
- Explore the small cases exhaustively
- Establish algebraic structure, make links with other problems

SUBSET ENUMERATION

 $\binom{n}{k}$ is the number of ways to choose k elements among n elements

http://www-history.mcs.st-and.ac.uk/ iographies/Pascal.html

For all integers 0 k n

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k} \tag{1}$$

Prove the equality by a combinatorial argument

Hint: the number of sequences of k different elements among n is $n(n-1)\cdots(n-k+1)$ and the number of orderings of a set of size k is k.

BASIC PROPERTIES

$$\binom{n}{k} = \frac{n}{k (n - k)} \tag{2}$$

Prove it directly from Equation 1

For all integers 0 k

$$\binom{n}{k} = \binom{n}{n-k} \tag{3}$$

Prove it directly from 2
Prove it by a combinatorial argument

Hint : bijection between the set of subsets of size k and ???.

Exercise

Give a combinatorial argument to prove that for all integers 0 k n:

$$k\binom{n}{k} = n\binom{n-1}{k-1}$$

PASCAL'S TRIANGLE

Recurrence Equation

The binomial coefficients satisfy

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k} \tag{5}$$

Prove it directly from Equation 1
Prove it by a combinatorial argument

Hint: partition in two parts the set of subsets of size k; those containing a given element and those not.

INTRODUCTION (SUBSETS) ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS' HOLES REFERENCES

PASCAL'S TRIANGLE(2)

THE BINOMIAL THEOREM

For all integer n and a formal parameter X

$$(1+X)^n = \sum_{k=0}^n \binom{n}{k} X^k$$
 (Newton 1666) (6)

Prove it by a combinatorial argument *Hint*: write $(1+X)^n = \underbrace{(1+X)(1+X)\cdots(1+X)}_{\text{in each term choose 1 or }X, \text{ what is the}$

coefficient of X^k in the result (think vector of n bits).

Exercises

Use a combinatorial argument to prove :

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Use the binomial theorem to prove (give also a combinatorial argument)

$$\sum_{k=0}^{n} \binom{n}{k} = \sum_{k=0}^{n} \binom{n}{k} = 2^{n-1}$$

SUMMATIONS AND DECOMPOSITIONS

The Vandermonde Convolution

For all integers m, n, k

$$\sum_{j=0}^{k} {m \choose j} {n \choose k \quad j} = {m+n \choose k} \tag{7}$$

Prove it by a combinatorial argument

Hint: choose k elements in two sets one of size m and the other n.

Exercise

Prove that

$$\sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n} \tag{8}$$

Hint: Specify Equation 7

SUMMATIONS AND DECOMPOSITIONS (2)

Upper summation

For all integers p

$$\sum_{k=p}^{n} {k \choose p} = {n+1 \choose p+1}$$

(9)

Exercises

Establish the so classical result

$$\sum_{k=1}^{n} {k \choose 1}$$

Compute

$$\sum_{k=2}^{n} {k \choose 2}$$
 and deduce the value of $\sum_{k=1}^{n} k^2$

THE MAIN RULES IN COMBINATORICS (I)

Bijection Rule

Let A and B be two finite sets if there exists a bijection between A and B then

$$|A|=|B|$$
.

Summation Rule

Let A and B be two **disjoint** finite sets then

$$|A\cup B|=|A|+|B|.$$

Moreover if $\{A_1, \dots A_n\}$ is a partition of A (for all $i \neq j$, $A_i \cap A_j = \emptyset$ and $\bigcup_{i=0}^n A_i = A$)

$$|A|=\sum_{i=0}^n|A_i|.$$

THE MAIN RULES IN COMBINATORICS (II)

Product rule

Let A and B be two finite sets then

$$|A \times B| = |A| \cdot |B|$$
.

Inclusion/Exclusion principle

Let $A_1, A_2, \cdots A_n$ be sets

$$|A_1 \cup \cdots \cup A_n| = \sum_{k=1}^n (-1)^k \sum_{S \subset \{1 \cdots n\} ||S|=k} \left| \bigcap_{i \in S} A_i \right|.$$

Exercises

Illustrate these rules by the previous examples, giving the sets on which the rule apply.

THE CENTRAL ROLE OF BIJECTION

Mapping

A mapping (function) between X and Y associate to each element x of X a unique element Y

$$f: \quad X \quad \to \quad Y \\ x \quad \mapsto \quad y$$

f is an injection iff

$$\forall (x_1, x_2) \in X^2 \quad f(x_1) = f(x_2) \Rightarrow x_1 = x_2$$

f is a surjection iff

$$\forall y \in Y \quad \exists x \in X \text{ such that } y = f(x)$$

f is a bijection iff f is injective and surjective

$$\forall y \in Y \quad \exists \ x \in X \text{ such that } y = f(x) \ (x \text{ is unique})$$

INTRODUCTION SUBSETS ALGEBRA (RULES) CLASSICAL TREES GENERATING FUNCTIONS PIGEONS' HOLES REFERENCES

MAPPINGS AND CARDINALITIES

X and Y FINITE sets

Typical mapping

Injective mapping

Surjective mapping

Bijective mapping

RECIPROCAL MAPPING

A typical mapping f

Inverse Image

subsets of elements of X (equivalence relation on X)

$$f^{-1}(y_1) = \emptyset$$

$$f^{-1}(y_2) = \{x_1, x_3\}$$

$$f^{-1}(y_3) = \{x_4\}$$

$$f^{-1}(y_4) = \{x_2, x_5\}$$

$$f^{-1}(y_5) = \emptyset$$

$$f^{-1}(y) = \{x \in X, \text{ such that } f(x) = y\}$$

Combinatorial property:

$$\sum_{y\in Y}\left|f^{-1}(y)\right|=|X|$$

Exercise :

For all the previous combinatorial proofs construct the corresponding functions.

INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS' HOLES REFERENCES

COUNTING FUNCTIONS (EXERCISES)

Let X and Y finite sets

$$f: \quad X \quad \rightarrow \quad Y$$
$$\quad x \quad \mapsto \quad y$$

- Compute the total number of such functions f
- ► Compute the number of *injective* functions
- ► Compute the number of *surjective* functions
- Compute the number of bijective functions

Counting relations

Let X be set, a **relation** \mathcal{R} is a part of $X \times X$. When X is finite, compute the number of relations on X that are

- **reflexive** (\mathcal{R} is reflexive iff $\forall x \in X$ we have $x\mathcal{R}x$)
- **> symetric** (\mathcal{R} is symetric iff $\forall (x \ y) \in X^2$ we have $x\mathcal{R}y \Longrightarrow y\mathcal{R}x$)
- ▶ antisymetric (\mathcal{R} is antisymetric iff $\forall (x \ y) \in X^2$ we have $(x\mathcal{R}y \text{ and } y\mathcal{R}x) \Longrightarrow x = y$)

 \mathcal{R} is **transitive** iff $\forall (x, y, z) \in X^3$ we have $(x\mathcal{R}y \text{ and } y\mathcal{R}z) \Longrightarrow x\mathcal{R}z$ Try to understand why computing the number of transitive relations is hard. OEIS

INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS' HOLES REFERENCES

DISTRIBUTION PROBLEMS

Context

Place a set of N objects, called *balls*, into a set of M containers, called *urns*. Basic situations:

- Labelled balls
- Labelled urns

More constraints:

- at least k balls per urn
- at last k balls per urn
- number of empty urns
- ▶ .

INTRODUCTION SUBSETS ALGEBRA RULES (CLASSICAL) TREES GENERATING FUNCTIONS PIGEONS' HOLES REFERENCES

Example with N = 3 and M = 2

	Labelled urns	Unlabelled urns
labelled balls	urn 1 urn 2 123	one urn the other 123 ∅ 12 3 13 2 23 1
unlabelled balls	urn 1 urn 2 ***	one urn the other *** Ø ** *

Compute the number of configurations in each cell and generalize (if possible).

DERANGEMENT

Definition

A derangement of a set S is a bijection on S without fixed point. Number of derangements of n elements d_n (notation n).

Inclusion/Exclusion principle

$$n = n {n \choose 1}(n-1) + {n \choose 2}(n-2) \cdots + {(-1)^n {n \choose n}}(n-n),$$

$$= n \sum_{i=0}^n \frac{(-1)^i}{i} \stackrel{n \to \infty}{\sim} n \frac{1}{e}.$$

Recurrence relation

Show by a combinatorial argument that

$$d_n = (n \ 1)(d_{n-1} + d_{n-2}) = nd_{n-1} + (-1)^n.$$

PROOF OF THE SECOND EQUATION

First we have the first element Thanks OEIS

			_			5	_	7	8	9	10	
d _n	1	0	1	2	9	44	265	1854	14833	133496	14684570	

Suppose that d_n satisfies the recurrence equation $d_n = (n-1)(d_{n-1} + d_{n-2})$ for $n \ge 2$ with $d_0 = 1$ and $d_1 = 0$. We will prove by recurrence that $d_n = nd_{n-1} + (-1)^n$ with $d_0 = 1$ (E).

- **1** base case: this is true for n = 0 and n = 1
- Suppose that (E) is satisfied for n-1. Then $d_{n-1}=(n-1)d_{n-2}+(-1)^{n-1}$, we deduce that $(n-1)d_{n-2}=d_{n-1}-(-1)^{n-1}$. Injecting that equality in the recurrence equation of d_n .

$$d_{n} = (n \quad 1)(d_{n+1} + d_{n+2})$$

$$= (n \quad 1)d_{n+1} + (n \quad 1)d_{n+2}$$

$$= (n \quad 1)d_{n+1} + d_{n+1} \quad (1)^{n+1}$$

$$= nd_{n+1} + (1)^{n}$$

The base case and the induction is proven, so is the result

FIBONACCI NUMBERS

Recurrence Equation

$$\begin{cases} F_0 = F_1 = 1 \\ F_n = F_{n-1} + F_{n-2} & \text{for all } n \geqslant 2 \end{cases}$$

Interpretation

What kind of situation could be represented by Fibonacci's Numbers?

Hint: Consider words in $\{0,1\}^n$

Use a combinatorial argument to prove

$$F_n = F_{n-2} + F_{n-3} + \cdots + F_1 + F_0$$

Hint: Consider the last 1

Imagine other combinatorial equalities

INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS' HOLES REFERENCES

(UNDIRECTED) TREES

A tree $\mathcal{T} = (\mathcal{X}, \mathcal{E})$ is an acyclic connected graph

- **connected**: for all $x y \in \mathcal{X}^2$ there is a path from x to y (x y)
- **acyclic**: there are no paths from x to x x / x

Notations

 \mathcal{X} set of n nodes

 \mathcal{E} set of edges

A **leaf** is a node with exactly one edge and an **internal node** has at least two neighbors.

Prove that the maximum number of leaves is n-1 and the minimum 2 (for (n-3)).

An undirected graph T with n nodes is a tree iff

- \mathbf{O} \mathcal{T} is acyclic and connected
- \square T is acyclic with a maximal number of edges
- \odot \mathcal{T} is connected with a minimal number of edges
- \mathcal{T} is connected with n 1 edges
- **6** \mathcal{T} is acyclic with n 1 edges
- for all couple $(x \ y)$ of nodes there is a unique path $x \ y$ joining the two nodes.

Prove the equivalences (with a minimal number of implications).

CAYLEY'S FORMULA

 \mathcal{T}_n the set of all trees with n nodes labelled by the first integers $\{1, 2, \cdots, n\}$ \mathcal{T}_n the number of such trees.

Phase 1 : small n cases

SUBSETS

nall n cases Phase 2 : Intuition of the Formulae

n	T_n
1	1
2	1
2 3	3
4	16
5	125

$$T_n = n^{n-2}$$
.

Many proofs (see Proofs from the Book).

Approach based on an explicit bijection between the set of trees and the a set of words.

Algorithmic as it associates to each tree a unique word with a coding algorithm.

The uniqueness is obtained with a decoding algorithm (H. Prüfer in 1918).

PR FER'S CODING ALGORITHM

Phase 3: double counting

Find a one to one mapping with another set which cardinality is known.

$$\mathcal{T}_n \longleftrightarrow \mathcal{W}_{n-2}$$

 \mathcal{W}_{n-2} is the set of words of length n-2 over the alphabet $\{1, \dots, n\}$

```
CODING (T)
Data: A tree T with labelled nodes (all labels are comparable)
Result: A word of n 2 labels

W \leftarrow \{\}
for i = 1 to n 2 do
x \leftarrow \text{Select\_min}(T)
// x is the leaf with the smallest label
W \leftarrow W + \text{Father}(x)
// \text{Father}(x) is the unique node connected to the leaf x
T \leftarrow T \setminus \{x\}// \text{ remove the leaf } x \text{ from tree } T
```


INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL (TREES) GENERATING FUNCTIONS PIGEONS' HOLES REFERENCES

LABELLED TREES

PR FER'S DECODING ALGORITHM

```
DECODING (W)

Data: A word W = w_1 w_2 \cdots w_{n-2} of n-2 labels in \{1, \cdots, n\}

Result: A tree with n nodes labelled from 1 to n

Create n nodes labelled from 1 to n and mark each node by non selected

for i = 1 to n-2 do

\begin{array}{c} x \leftarrow \textbf{Select\_min} \ (W_i) \\ // \ x \ \text{is the node with the smallest label not in the set } w_i \cdots w_{n-2} \\ \text{Mark } x \text{ by selected} \\ \text{Link } x \text{ and } w_i \\ \text{Link the last two nodes marked non selected} \\ \textbf{return } T
```


PR FER'S DECODING ALGORITHM

Examples (10 letters words)

0	d	i	g	h	а	С	g	С	f	f
1	е	h	i	е	i	С	а	е	d	d
2	е	f	g	d	g	g	i	b	С	d
3	h	h	g	h	С	f	С	С	d	f
4	i	f	е	С	d	f	а	h	g	f
5	С	b	е	а	g	i	d	i	а	g
6	b	g	g	i	b	b	f	i	b	d
7	е	i	С	С	а	С	f	i	b	d
8	b	i	d	i	е	е	а	g	d	а
9	g	С	b	f	С	f	е	f	b	f
10	b	h	i	а	b	е	b	е	С	h
11	d	е	h	g	f	f	f	b	е	g
12	b	h	i	е	а	d	d	g	h	f
13	g	а	b	h	а	а	g	h	i	i
14	d	h	d	е	i	i	b	f	b	а
15	h	е	С	а	b	а	b	С	h	d
16	i	е	g	i	d	i	е	е	b	g
17	d	g	i	b	е	h	С	е	i	f
18	С	h	а	b	е	f	g	b	h	i
19	h	а	f	b	d	h	С	d	h	g

Questions

- Prove the bijection
- Compute the complexity of coding and decoding
- What kind of data structure could be useful?
- ► How degrees are expressed in the coding word?

Extension: is it possible to build a tree from a list of degrees?

JOYAL'S BIJECTION

What set of objects has cardinality n^n ? Number of mappings from \mathcal{X} on \mathcal{X} , (number of words of size n on an alphabet of size n)

A mapping f

	X	0	1	2	3	4	5	6	7	8	9	
-	f(x)	3	9	7	2	8	1	6	5	5	8	•

Graph associated to mapping f

INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS' HOLES REFERENCES

JOYAL'S BIJECTION

Cycles

- ► Each node has an outdegree = 1
- Decomposition in cycles and transient nodes

- x
 0
 1
 2
 3
 4
 5
 6
 7
 8

 f(x)
 3
 9
 7
 2
 8
 1
 6
 5
 5
- Extract the bijective part
- build a line with the ordered bijective part

Build the tree

- Fix the line between diamond (image of the smallest) and rectangle (image of the greatest)
- Connect the transients and remove arrows

Design the reciprocal algorithm

GENERATING FUNCTION

Newton's Binomial Theorem

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$$

One to one correspondance

$$(1+x)^n \longleftrightarrow \binom{n}{0}, \binom{n}{1}, \cdots, \binom{n}{n}$$

Generating Function (Power Series)

Sequence $a = \{a_0, a_1, \cdots, a_n, \cdots\}$

$$G_a(x) \stackrel{\text{def}}{=} \sum_{n=0}^{+\infty} a_n x^n$$

(formal series, it is not necessary to ensure convergence)

GENERATING FUNCTION (2)

A bijection

Derivation operator

$$G_{a}(x) = \sum_{n=0}^{+\infty} a_{n}x^{n}$$

$$G'_{a}(x) = \sum_{n=1}^{+\infty} n.a_{n}x^{n-1}$$

$$G''_{a}(x) = \sum_{n=2}^{+\infty} n.(n-1)a_{n}x^{n-2}$$
...
$$G_{a}^{(k)}(x) = \sum_{n=k}^{+\infty} n.(n-1)\cdots(n-k+1)a_{n}x^{n-k}$$
...
$$G_{a}(0) = a_{0}, \ \frac{G'_{a}(0)}{1} = a_{1}, \ \frac{G''_{a}(0)}{2} = a_{2}, \cdots, \ \frac{G_{a}^{(k)}(0)}{k} = a_{k}, \cdots$$

BASIC GENERATING FUNCTIONS

Sequence	\longleftrightarrow	Generating function
1,1,1,,1,		$\frac{1}{1-x}$
$0,1,2,3,\cdots,n,\cdots$		$\frac{x}{(1-x)^2}$
$0,0,1,3,6,10,\cdots, {n \choose 2},\cdots$		$\frac{x^2}{(1-x)^3}$
$1, c, c^2, \cdots, c^n, \cdots$		$\frac{1}{1 cx}$
1, 0, 1, 0, · · ·		$\frac{1}{1 x^2}$
$\frac{1}{0}, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}, \cdots$		e^{x}
$0, \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \cdots, \frac{1}{n}, \cdots$		$\log \frac{1}{1-x}$

RULES

GENERATING FUNCTIONS: APPLICATIONS

Order one equation

SUBSETS

$$a_n = 1 + na_{n-1} \quad n \geqslant 1$$

ALGERRA.

$$G_a(x)$$
 $a_0 = \frac{1}{1-x}$ $1 + xG'_a(x)$

Order two equation

$$f_n = f_{n-1} + f_{n-2} \ n \geqslant 2$$

Counting objects

Number of ways of choosing a dozen doughnuts when five flavors were available. {chocolate, lemon-filled, sugar, glazed, plain}

$$G(x)=\frac{1}{(1-x)^5}=\cdots$$

FIBONNACCI'S NUMBERS

Recurrence equation

$$f_n = f_{n-1} + f_{n-2}$$
, for $n \ge 2$, f_0 and f_1 fixed

G(x) generating function of $\{f_n\}$, $G(x) = \sum_n f_n x^n$

$$G(x)$$
 f_0 $f_1x = x(G(x))$ $f_0) + x^2G(x)$

Decomposition of he generating function

$$G(x) = \frac{f_0 + (f_1 - f_0)x}{1 - x - x^2} = \frac{A}{1 - \varphi x} + \frac{B}{1 - \overline{\varphi} x}$$

with
$$\varphi = \frac{1+\sqrt{5}}{2}$$
 and $\overline{\varphi} = \frac{1-\sqrt{5}}{2}$, $1 \times x^2 = (1 - \varphi x)(1 - \overline{\varphi} x)$

- Compute A and B and deduce the power expansion of G.
- Use the power series decomposition $\frac{1}{1-cx} = c^n x^n$.
- ► And deduce a closed formula for f_o

GENERATING FUNCTIONS: ALGEBRA

Sequence	\longleftrightarrow Generating function
$a_0, a_1, a_2, \cdots, a_n, \cdots$	$G_a(x)$
$a_0 + b_0, a_1 + b_1, a_2 + b_2, \cdots, a_n + b_n, \cdots$	$G_a(x)+G_b(x)$
$0, a_0, a_1, a_2, \cdots, a_{n+1} \cdots$	$xG_a(x)$
$0.a_0, 1.a_1, 2.a_2, \cdots, na_n \cdots$	$xG'_a(x)$
$a_0b_0, a_0b_1 + a_1b_0, \cdots, a_0b_n + a_1b_{n-1} + \cdots + a_nb_0 \cdots$	$G_a(x) \times G_b(x)$

PIGEONS AND HOLES

Principle

If you have more pigeons than pigeonholes Then some hole must have at least **two** pigeons

Generalization

If there are n pigeons and t holes, then there will be at least one hole with at least

$$\left\lceil \frac{n}{t} \right\rceil$$
 pigeons

History

Johann Peter Gustav Lejeune Dirichlet (1805-1859) Principle of socks and drawers

ttp://www-history.mcs.st-and.ac.uk/ iographies/Dirichlet.html

SOME EXAMPLES

On integers (from Erdös)

- ▶ Every subset A of $\{1\ 2\ \cdots\ 2n\}$ with size n+1 contains at least 2 integers prime together
- ► Every subset A of {1 2 ··· 2n} with size n + 1 contains at least 2 integers a and b such that a divide b

On sequences

Consider a sequence of n integers $\{a_1, \dots, a_n\}$. There is a subsequence $\{a_k, \dots, a_l\}$ such that

n divide
$$\sum_{i=k}^{l} a_i$$

IRRATIONAL APPROXIMATION

Friends

Let be a non-rational number and N a positive integer, then there is a rational $\frac{\rho}{q}$ satisfying

1
$$q$$
 N and $\left| \frac{p}{q} \right| \frac{1}{qN}$

Hint: divide [0, 1[in N intervals, and decimal part of $0, 2, \cdots, N$

Sums and others

- Choose 10 numbers between 1 and 100 then there exist two disjoint subsets with the same sum.
- For an integer N, there is a multiple of N which is written with only figures 0 and 1

Geometry

- In a convex polyhedra there are two faces with the same number of edges
- Put 5 points inside a equilateral triangle with sides 1. At least two of them are at a distance less than 1
- For 5 point chosen on a square lattice, there are two point such that the middle is also on the lattice

INTRODUCTION SUBSETS ALGEBRA RULES CLASSICAL TREES GENERATING FUNCTIONS PIGEONS' HOLES REFERENCES

GRAPHS

Friends

Six people

Every two are either friends or strangers

Then there must be a set of 3 mutual friends or 3 mutual strangers

Guess the number

Player 1 : pick a number 1 to 1 Million Player 2 Can ask Yes/No questions

How many questions do I need to be guaranteed to correctly identify the number?

Sorting

REFERENCES I

- Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press. 2009.
- Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A Foundation for Computer Science (2nd Edition). Addison-Wesley Professional. 1994.
- Richard P. Stanley. Enumerative Combinatorics, Volume 2. Cambridge University Press, 1999
- Richard P. Stanley. Enumerative Combinatorics: Volume 1 (Cambridge Studies in Advanced Mathematics). Cambridge University Press, 2011.

