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Lecture 6 – Maths for Computer Science Coloring problems

Let us start by completing the last lecture dealing with the study
of structured graphs by studying trees.

Definition
Trees are identified mathematically as graphs that contain no
cycles or, equivalently, as graphs in which each pair of vertices is
connected by a unique path.

A tree is thus the embodiment of “pure” connectivity, which
provides the minimal interconnection structure (in number of
edges) that provides paths that connect every pair of vertices.
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Example

Figure: Undirected and directed trees.
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Preliminary results

Proposition

Any tree of order n has n − 1 edges.

Lemma

Any connected tree of order n (n ≥ 1) has at least one vertex
of degree 1 (called a leaf).

Rapid Proof

By contradiction, the graph has a cycle.
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Proof (1)

Principle

By induction on the order of the graph n.

Base case for n = 2
The tree is composed of only one edge.
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Proof (2)

Inductive hypothesis. Assume that the indicated tally is correct
for all trees having no more than k vertices.

Inductive extension. Consider a tree T with k + 1 vertices.

By the Lemma, T must contain at least one vertex v of
degree 1.

If we remove v and its (single) incident edge, we now have a
tree T ′ on k vertices.

By induction hypothesis, T ′ has k − 1 edges. When we
reattach v to T ′, we restore T to its original state.

Because this restoration adds one vertex and one edge to T ′,
T has k + 1 vertices and k edges.
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Spanning Trees

Let consider a weighted graph G .

Motivation
a way of succinctly summarizing the connectivity structure inherent
in undirected graphs.

Definition
Take the same set of vertices and extract a set of edges that spans
the vertices.

Determining a minimal Spanning Tree is a polynomial
problem1.

1There exist two possible constructions, following two different philosophies
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Coloring problems

Objective

The purpose of this lecture is to present coloring problems in
graphs and analyze their solutions.

Coloring

A vertex-coloring of a graph G is an assignment of labels
(“colors”) to G ’s vertices, in such a way that all of a vertex v ’s
neighbors get different labels than v ’s.

The chromatic number of a graph G is the smallest number of
colors that one can use in crafting a legal vertex-coloring of G .
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Coloring problems

Content

The notion of graph coloring can be used to computational
advantage in a broad variety of situations.

We will study gradually several classes of graphs.

Graph leveled

outer-planar graphs

Planar graphs – The 4-color theorem and Euler’s formula.

Dealing with general graphs
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Graphs with Chromatic Number 2

Graph leveled

We start with graphs with small chromatic numbers by focusing on
2-colorable graphs.
It is not difficult to characterize these graphs structurally.

Definition
A graph G is leveled if there exists an assignment of level-numbers
{1, 2, . . . , λ} to the vertices of G in such a way that every neighbor
of a vertex having level-number ` has either level-number `+ 1 or
level-number `− 1.
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Graphs with Chromatic Number 2

Proposition

A graph G has chromatic number 2 if, and only if, it is leveled.
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Graphs with Chromatic Number 2

Proof (sketch)

Consider first that G is a leveled graph.
Then, labeling each vertex of G with the (odd-even) parity of
its level provides a valid 2-coloring.

Consider that G is 2-colorable.
Pick any vertex v0 of G and assign it to be the unique vertex
on level 1.
Next, assign all neighbors of v0 to level 2.
Continuing iteratively, say that the largest level-number that
we have employed (i.e., assigned vertices to) is `.
Then, we now assign to level `+ 1 all neighbors of level-`
vertices that have not yet been assigned to a level.
Because G is 2-colorable, this process colors every vertex of G .
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Graphs with Chromatic Number 2

Moreover, for each vertex v of G :

Vertex v is assigned a single color.

If the shortest path from v to vertex v0 has length `, then v is
assigned to level `+ 1.

Each neighbor of level-(`+ 1) vertex v is assigned to level ` or
level `+ 2, as required.

Thus, if we color each vertex v of G by the parity of its assigned
level each edge of G connects a vertex of one color with a vertex
of the other color.
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Graphs with Chromatic Number 2

Applications

We can now show that the following graphs are 2-colorable.

(a) every tree (which includes any path-graph)

(b) every cycle-graph of order n where n is even

(c) every (m, n)-mesh graph

(d) every (m, n)-torus graph with m and n both even

(e) every hypercube Hn
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Graphs with Chromatic Number 2

Detail of proof (e)

(e) Each edge of a hypercube Hn connects a vertex
v = β1β2 · · ·βn, where each βi ∈ {0, 1}, to a vertex
v ′ = β′1β

′
2 · · ·β′n where βj 6= β′j for precisely one j .

Therefore, the following aggregation of vertices of Hn into sets
S0, S1, . . . ,Sn provides a valid leveling of Hn.

Assign vertex v = β1β2 · · ·βn to set Sk precisely if k of the bits βi
equal 1.

The successive levels are associated to the colors alternatively.
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outer-planar Graphs

outer-planar graphs

Definition
A graph G is outer-planar if it can be drawn by placing its vertices
along a circle in such a way that its edges can be drawn as
non-crossing chords of the circle.

The latter condition is equivalent to demanding that G ’s edges can
be drawn within the circle without any crossings.

K3 is outer-planar (straighforward)

K4 is not outer-planar

K2,3 is not outer-planar

However, both last graphs are planar...
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outer-planar Graphs

Proof

K4 is not outer-planar

It is usually not so easy to prove a negative result.
Can you prove this result?
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outer-planar Graphs

Another example

Proposition

Every Tree is outer-planar.
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outer-planar Graphs
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outer-planar Graphs
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outer-planar Graphs

Challenge

Using the intuition gained in the figure on a specific sample, write
a formal proof for any tree.
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outer-planar Graphs

The 3-coloring theorem of outer-planar graphs.

Proposition

Every outer-planar graph is 3-colorable.
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outer-planar Graphs

A technical Lemma.

Lemma.
Let G be an n-vertex outer-planar graph.

(a) For maximal G : If n ≥ 3, then at least one of G ’s vertices has
degree 2.
(b) For all outer-planar G : If n ≥ 1, then at least one of G ’s
vertices has degree ≤ 2.

We remark first that part (b) follows immediately from (a) because
adding edges to a non-maximal graph — with the goal of making
it maximal — can never reduce the degree of any vertex.
Thus, we turn to crafting a proof of part (a).
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outer-planar Graphs

Proof of Part (a)

We visualize each n-vertex maximal outer-planar graph G in terms
of the drawing that witnesses its outer-planarity.
We name G ’s vertices 0, 1, . . . , n − 1, in their clockwise order
around the circle in the drawing.
G ’s edges come in two groups.

There are the ring edges, i.e., the ones that go around the
circle.

These are edges
(0, 1), (1, 2), (2, 3), . . . , (n − 2, n − 1), (n − 1, 0)

There are the chordal edges.

In the drawing, these are non-crossing chords of the circle.
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outer-planar Graphs

Study of small graphs

We start by analyzing outer-planar drawings of graphs having
three, four, and five vertices, in order to develop intuition.

n = 3 vertices.
The unique 3-vertex maximal outer-planar graph has three ring
edges

(0, 1), (1, 2), (2, 0)

and no chordal edges. All three of its vertices have degree 2.
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outer-planar Graphs

4 vertices

There are two 4-vertex maximal outer-planar graphs.
Both graphs have four ring edges

(0, 1), (1, 2), (2, 3), (3, 0)

and one chordal edge.

The graph with chordal edge (0, 2) has two vertices of degree 2,
namely, 1 and 3.

The graph with chordal edge (1, 3) has two vertices of degree 2,
namely, 0 and 2.

26 / 67



Lecture 6 – Maths for Computer Science Coloring problems

outer-planar Graphs

5 vertices
There are five 5-vertex maximal outer-planar graphs.
All graphs have five ring edges and two chordal edges (which share
an endpoint).
Let show on two of them:

27 / 67



Lecture 6 – Maths for Computer Science Coloring problems

outer-planar Graphs

Large graphs

Extension.
Given any such previous drawing, one cannot add a chordal edge
to the drawing without crossing an existing chordal edge.

Let turn this intuition into a formal proof.
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outer-planar Graphs

Proof of the 3-coloring

The proof is by induction on the number of vertices n.

Base case. It is very easy to find 3-colorings of outer-planar
graphs with ≤ 3 vertices.

Inductive assumption. Assume that every outer-planar graph
having < n vertices is 3-colorable.

Inductive extension. Focus on an arbitrary n-vertex outer-planar
graph G .

By the previous Lemma, G has a vertex v of degree ≤ 2.
Let us remove it from G , along with its incident edges (call the
resulting graph G ′).
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outer-planar Graphs

G ′ is clearly outer-planar.

G ′ has less than n vertices.

By our inductive hypothesis, G ′ is 3-colorable.

Now, we can reattach vertex v to G ′ by replacing the edges that
attach v to G .

Moreover, we can now color v using whichever of the three colors
on G is not used for v ’s neighbors in G .

Once we so color v , we will have a 3-coloring of G .
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Planar Graphs

Planar graphs

Definition.
A graph is planar if it can be drawn without any crossing edges.
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Planar Graphs

Example

K5 is not planar
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Planar Graphs

Other examples

K2,3 is planar

K3,3 is not planar
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Planar Graphs

The fundamental theorem

Theorem.
Every planar graph is 4-colorable.

A century-plus attempt to prove that four colors suffice for planar
graphs culminated in one of the most fascinating dramas in
modern mathematics: Appel and Haken with the help of their
computer crafted a proof in 1974.
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Planar Graphs

A flavour of the proof

And, the backstory supplies ample motivation for the proofs, we
present the six-color and five-color analogues of the Theorem.

The last one contains the main ideas of the proof.
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Planar Graphs

The Six-Color Theorem for planar graphs

The first step in showing that every planar graph can be
vertex-colored using six colors resides in the following analogue for
planar graphs of the previous result which asserts that every
outer-planar graph has a vertex of degree 2.

Lemma.
Every planar graph has a vertex of degree ≤ 5.
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Planar Graphs

Proof of the Lemma

Let us focus on a planar drawing of a (perforce) planar graph G
which has n vertices, e edges, and f faces.

definition
A face in a drawing of G is a polygon whose sides are edges of G ,
whose points are vertices of G , and whose interiors are “empty”
(no edge of G crosses through a face).
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Planar Graphs

Example

A graph and its 5 faces.
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Planar Graphs

Euler formula

Let us present an important result that will be proved later.

Proposition

Let G be a planar graph having n vertices and e edges. For every
f -face planar drawing of G , we have an invariant:

n − e + f = 2 (1)
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Planar Graphs

Back to the proof of the Lemma

Let simplify the setting by assuming that G is connected and that
it is a maximal planar graph2

This assumption of maximality only strengthen’s the Lemma’s
conclusion by (apparently) making it more difficult to find a
small-degree vertex.

2meaning that one cannot add any new edge to the drawing without
crossing an existing edge and, thereby, destroying planarity.
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Planar Graphs

n is given, let us enumerate the two other parameters f and e.

Because G is a maximal planar graph, we have:

1 Each face of G is a 3-cycle (hence involves three vertices).

2 Each edge of G touches two faces.

3 Each edge of G touches two vertices.
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Planar Graphs

Let us now put these facts together:

f =
2

3
e

Assume, for contradiction, that every vertex of G had degree ≥ 6,
thus, e ≥ 3n

Incorporating these two bounds into Euler’s Formula, we arrive at
the following contradiction.

2 = n − e + f ≤ 1

3
e − e +

2

3
e = 0

This contradiction proves that every planar graph must have a
vertex of degree at most 5.
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Planar Graphs

Finishing the proof

This proof is identical to the one 2-color theorem of outer-planar
graphs.

Base of the induction:
For outer-planar graphs, “small” means “≤ 3 vertices”. For
planar graphs, it means “≤ 4 vertices”.
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Planar Graphs

Induction:
remove from G a vertex v of smallest degree dv , together
with all incident edges

For outerplanar graphs, we guaranteed that dv ≤ 2 and for
planar graphs, we guaranteed that dv ≤ 5.

inductively color the vertices of the graph left after the
removal of v

Let us denote by G ′ the graph obtained by removing v from
G . Then:
For outer-planar graphs, we color G ′ with ≤ 3 colors, for
planar graphs, we use our inductive assumption that G ′ can
be colored with ≤ 6 colors.

44 / 67



Lecture 6 – Maths for Computer Science Coloring problems

Planar Graphs

reattach v via its dv edges and then color v .

Note that the coloring guarantee in both results allows us to
use dv + 1 colors to color G .
Because v has degree dv , it can have no more than dv
neighboring vertices in G ′, so our access to dv + 1 colors
guarantees that we can successfully color v .

The proofs of the 3-colorability of outer-planar graphs and the
6-colorability of planar graphs thus differ only in the value of dv .
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Planar Graphs

The 5-colors theorem

We proceed again by induction.

Base case.
Because the 5-clique K5 is obviously 5-colorable, so also must
be all graphs with ≤ 5 vertices.
Therefore, we know that any non-5-colorable graph would
have ≥ 6 vertices.
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Planar Graphs

Induction

Inductive hypothesis. Assume, for induction, that every
planar graph having ≤ n vertices is 5-colorable.

Inductive extension.
By the previous Lemma, the planar graph G has a vertex v of
degree ≤ 5.
The remainder of the proof focuses on the graph G , its
minimal-degree vertex v , and on v ’s (dv ≤ 5) neighbors in G .

Assume that there were a coloring of G ’s vertices which used
no more than 4 colors to color v ’s neighbors.
We could, then, produce a 5-coloring of G by using the
following analogue of the coloring strategy we used to prove
the last 6-color proposition.
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Planar Graphs

In order to proceed toward a contradiction, we must
understand what structural features of G make it impossible
to use only four colors on v ’s neighbors while 5-coloring G .
There are three important situations to recognize.

Case 1. Vertex v has degree ≤ 4.
By definition, we need at most four colors to color v ’s
neighbors in this case.
In all remaining cases, vertex v has precisely five neighbors or
else, we would have invoked Case 1 to color G with five colors.

Case 2. For some 5-coloring of G , at least two neighbors of v get the
same color.

Case 3. All the neighbors get a different color.
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Planar Graphs

Case 3.a

Two neighbors belong to two connected components (once v is
removed).
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Planar Graphs

Case 2.b

All neighbors belong to the same component.
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Planar Graphs

Euler Formula

We propose two proofs for this result.

Validation via structural induction.
This approach validates the formula by growing a planar graph G
inductively, edge by edge.

Validation via deconstruction.
Let us be given a planar graph G that has n vertices, e edges, and
f faces. We validate the formula by deconstructing G and showing
that each step in the process preserves an invariant.
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Planar Graphs

First proof
Base case. The Formula clearly holds for the smallest planar
graphs, including the smallest interesting one, C3, which has
n = e = 3 and f = 2 (the inner and outer faces of the “triangle”).

Inductive hypothesis.
Assume that the Formula holds for a given graph G .

Inductive extension. We extend our induction by growing the
current version of G , by adding a new edge. Two cases arise.

The new edge connects existing vertices. In this case, this
augmentation of G increases the number of edges (e) and the
number of faces (f ) by 1 each, while keeping the number of
vertices (n) unchanged.
The new edge adds a new vertex, which is appended to a
preexisting vertex. In this case, this augmentation of G keeps
the number of faces (f ) unchanged while it increases by 1
both the number of edges (e) and the number of vertices (n).
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Planar Graphs

Second proof
Focus on the following two-phase process.

Phase 1. Iterate the process of removing edges from G until
some edge-removal reduces G to a graph with a
single face.

This termination condition is equivalent to stopping
when the remaining graph is a (connected) tree.

If the graph remaining at some step contains an edge
that is shared by two distinct faces, then remove any
such edge.

Phase 2. Iterate the following process of removing vertices
from the tree produced by Phase 1, until only one
vertex remains.

Remove any leaf of the current tree, together with its
incident edge.
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Planar Graphs

Illustration: the Initial graph
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Planar Graphs

Phase 1 – Step 1
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Planar Graphs

Step 2
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Planar Graphs

Step 3
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Planar Graphs

Step 4
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Planar Graphs

Step 5

We stop when there is only one face left.
The graph is a tree.
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Planar Graphs

We continue in Phase 2 – Step 1
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Planar Graphs

Step 2
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Planar Graphs

Step 3
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Planar Graphs

Step 4
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Planar Graphs

Step 5
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Planar Graphs

Step 6

The process stops when it remains only one vertex.
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Planar Graphs

Analysis

There is an invariant in both phases:

f is decreasing and e is decreasing.

both n and e are decreasing.

Thus, φ remains constant.

At the end, f = 1, e = 0 and n = 1, φ = 2
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Planar Graphs

Relations between outer-planar and planar graphs

Proposition.

Let G be an outer-planar graph. Then:

(a) G is planar.
(b) Every subgraph of G is outer-planar.

Proof.
(a) G ’s planarity can be inferred from our ability to draw G ’s
edges as non-crossing chords of the circle.

(b) We can produce a drawing of any subgraph G ′ of G that
witnesses G ′’s outer-planarity by erasing some vertices and/or
some edges from our outerplanarity-witnessing drawing of G .
These erasures cannot introduce any edge-crossings.
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