Fundamental Computer Science

Denis Trystram
MoSIG1 – University Grenoble-Alpes

February 10, 2020
Summary of previous lecture

- Turing Machines
 - universal computational model
 - all variants of the model are equivalent w.r.t. decidability
Non-deterministic Turing Machines

- *decide* the same languages as the deterministic
- ... but not using the same number of steps
Agenda

- Reduction
- Goal: to classify the problems in complexity classes
 - time complexity: number of steps w.r.t. the size of the input
 - space complexity
Reduction

Goal: to classify the problems in complexity classes
 - time complexity: number of steps w.r.t. the size of the input
 - space complexity

Focus on *decidable* languages (solvable problems)
Let $f : \mathbb{N} \to \mathbb{N}$ be a function. We define the **time complexity class**

$$\text{TIME}(f(n)) = \{ L \mid L \text{ is a language decided by a Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the size of the input} \}$$
Let $f : \mathbb{N} \to \mathbb{N}$ be a function. We define the **time complexity class**

\[\text{TIME}(f(n)) = \{L \mid L \text{ is a language decided by a Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the size of the input} \} \]

Example: $L = \{0^k1^k \mid k \geq 0\}$

$M_1 =$ “On input w:

1. Scan the tape and *reject* if a 0 is found on the right of a 1.
2. Repeatedly scan the tape deleting each time a single 0 and a single 1.
3. If no 0’s and no 1’s remain in the tape then *accept*, else *reject*."

Let $f : \mathbb{N} \to \mathbb{N}$ be a function. We define the **time complexity class**

$$\text{TIME}(f(n)) = \{ L \mid L \text{ is a language decided by a Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the size of the input} \}$$

Example: $L = \{0^k1^k \mid k \geq 0\} \in \text{TIME}(n^2)$

$M_1 =$ “On input w:

1. Scan the tape and *reject* if a 0 is found on the right of a 1.
2. Repeatedly scan the tape deleting each time a single 0 and a single 1.
3. If no 0’s and no 1’s remain in the tape then *accept*, else *reject*. ”
Let $f : \mathbb{N} \to \mathbb{N}$ be a function. We define the **time complexity class**

$\text{TIME}(f(n)) = \{ L \mid L \text{ is a language decided by a Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the size of the input} \}$

Example: $L = \{0^k1^k \mid k \geq 0\}$

$M_2 = \text{"On input } w:\text{"}

1. Scan the tape and *reject* if a 0 is found on the right of a 1.
2. Repeat:
 2.1 scan the tape deleting every second 0 and then every second 1.
2. If no 0’s and no 1’s remain in the tape then *accept*, else *reject.?"
Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the **time complexity class**

$$\text{TIME}(f(n)) = \{ L \mid L \text{ is a language decided by a Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the size of the input} \}$$

Example: $L = \{0^k1^k \mid k \geq 0\} \in \text{TIME}(n \log_2 n)$

$M_2 =$ “On input w:
1. Scan the tape and reject if a 0 is found on the right of a 1.
2. Repeat:
 2.1 scan the tape deleting every second 0 and then every second 1.
3. If no 0’s and no 1’s remain in the tape then accept, else reject.”
The class \mathbf{P}

A Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is called \textbf{polynomially bounded} if there is a polynomial p and for any input w there is no configuration C such that $(s, \sqcup w) \vdash^p_M |w| \ C$.

A language is called \textbf{polynomially decidable} if there is a polynomially bounded Turing Machine that \textit{decides} it.
A Turing Machine $M = (K, \Sigma, \Gamma, \delta, s, H)$ is called **polynomially bounded** if there is a polynomial p and for any input w there is no configuration C such that $(s, \sqcup w) \vdash_M^{p(|w|)} C$.

A language is called **polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

P is the class of *polynomially decidable* languages.

$$P = \bigcup_k \text{TIME}(n^k)$$
Recall: languages vs problems

- **Decision problem**: a problem with a yes/no answer

example

PATH: Given a graph $G = (V, E)$ and two nodes $s, t \in V$, is there a path from s to t?
Recall: languages vs problems

- **Decision problem**: a problem with a yes/no answer

- **Example**
 PATH: Given a graph $G = (V, E)$ and two nodes $s, t \in V$, is there a path from s to t?

- Is PATH a language?
Recall: languages vs problems

- **Decision problem**: a problem with a yes/no answer

- **Example**
 PATH: Given a graph $G = (V, E)$ and two nodes $s, t \in V$, is there a path from s to t?

- Is PATH a language? **No**

- How to define the language corresponding to PATH?
Recall: languages vs problems

▶ **Decision problem**: a problem with a yes/no answer

▶ **example**
PATH: Given a graph \(G = (V, E) \) and two nodes \(s, t \in V \), is there a path from \(s \) to \(t \)?

▶ Is PATH a language? **No**

▶ How to define the language corresponding to PATH?

\[
\text{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a graph that has a path from } s \text{ to } t \}
\]

▶ \(\langle G, s, t \rangle \) is the input
▶ \(|\langle G, s, t \rangle| \) is the size of the input
Recall: languages vs problems

- **Decision problem**: a problem with a yes/no answer

- **Example**

 PATH: Given a graph $G = (V, E)$ and two nodes $s, t \in V$, is there a path from s to t?

- Is PATH a language? **No**

- How to define the language corresponding to PATH?

 $\text{PATH} = \{\langle G, s, t \rangle \mid G \text{ is a graph that has a path from } s \text{ to } t \}$

 - $\langle G, s, t \rangle$ is the input
 - $|\langle G, s, t \rangle|$ is the size of the input

- $\text{PATH} \in \text{P?}$
Recall: languages vs problems

- **Decision problem**: a problem with a yes/no answer

- **example**

 PATH: Given a graph $G = (V, E)$ and two nodes $s, t \in V$, is there a path from s to t?

- **Is PATH a language?** No

- **How to define the language corresponding to PATH?**

 $\text{PATH} = \{ \langle G, s, t \rangle \mid G \text{ is a graph that has a path from } s \text{ to } t \}$

 - $\langle G, s, t \rangle$ is the input
 - $|\langle G, s, t \rangle|$ is the size of the input

- **PATH $\in \mathbb{P}$?**

 - Yes (i.e., Breadth First Search in $O(|V| + |E|)$)
Enhanced Turing Machine models

- Does the definition of the class P remains the same if we use multiple tapes?
Does the definition of the class P remains the same if we use multiple tapes? \textbf{YES}

Recall: if a multiple tape Turing Machine \textit{halts} on input w after t steps, then the corresponding single tape Turing Machine \textit{halts} after $O(t(|w| + t))$ steps.
Enhanced Turing Machine models

- Does the definition of the class P remains the same if we use multiple tapes? **YES**

- Recall: if a multiple tape Turing Machine *halts* on input w after t steps, then the corresponding single tape Turing Machine *halts* after $O(t(|w| + t))$ steps.

Example: $L = \{0^k 1^k \mid k \geq 0\}$
Does the definition of the class P remains the same if we use multiple tapes? **YES**

- Recall: if a multiple tape Turing Machine halts on input w after t steps, then the corresponding single tape Turing Machine halts after $O(t(|w| + t))$ steps.

Example: $L = \{0^k1^k \mid k \geq 0\}$

$M_3 = \text{“On input } w:\$

1. Scan the tape and reject if a 0 is found on the right of a 1.
2. Copy the 0’s in tape 2.
3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2 and a single 1 from tape 1.
4. If no 0’s and no 1’s remain then accept, else reject."
Enhanced Turing Machine models

- Does the definition of the class \(P \) remains the same if we use multiple tapes? **YES**

 - Recall: if a multiple tape Turing Machine \(\text{halts} \) on input \(w \) after \(t \) steps, then the corresponding single tape Turing Machine \(\text{halts} \) after \(O(t(|w| + t)) \) steps.

Example: \(L = \{0^k1^k \mid k \geq 0\} \)

\(M_3 = \) “On input \(w \):

1. Scan the tape and \(\text{reject} \) if a 0 is found on the right of a 1.
2. Copy the 0’s in tape 2.
3. Scan tapes 1 & 2 simultaneously and delete a single 0 from tape 2 and a single 1 from tape 1.
4. If no 0’s and no 1’s remain then \(\text{accept} \), else \(\text{reject} \).”

- complexity: \(O(n) \quad \Rightarrow \quad L \in \text{TIME}(n^2) \quad \Rightarrow \quad L \in P \)
Extension to space complexity
Non-deterministic Turing Machines

- start
- deterministic computation
- non-deterministic computation
- f(n)
- accept or reject
- reject
- accept

The running time of a non-deterministic Turing Machine which decides a language is a function \(f: \mathbb{N} \rightarrow \mathbb{N} \), where \(f(n) \) is the maximum number of steps on any branch of the computation on any input of length \(n \).
The **running time** of a non-deterministic Turing Machine which *decides* a language is a function $f : \mathbb{N} \rightarrow \mathbb{N}$, where $f(n)$ is the maximum number of steps on any branch of the computation on any input of length n.
Theorem

Every $f(n)$ time non-deterministic Turing Machine $NDTM$ has an equivalent $2^{O(f(n))}$ time deterministic Turing Machine DTM.

Proof:

- Starting from $NDTM$, construct a 3-tapes DTM
 - tape 1: input (never changes)
 - tape 2: simulation
 - tape 3: address
Non-deterministic vs Deterministic Turing Machines

Theorem

Every \(f(n) \) time non-deterministic Turing Machine \(NDTM \) has an equivalent \(2^{O(f(n))} \) time deterministic Turing Machine \(DTM \).

Proof:

- Starting from \(NDTM \), construct a 3-tapes \(DTM \)
 - tape 1: input (never changes)
 - tape 2: simulation
 - tape 3: address

- data on tape 3:
 - each node of the computation tree of \(NDTM \) has at most \(c \) children: \(c \leq \Theta(|K|) \)
 - address of a node in \(\{1, 2, \ldots, c\}^* \)
Non-deterministic vs Deterministic Turing Machines

Simulation:
1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2.

Running time
- recall: $c \leq \Theta(|K|)$
- how many nodes in the computation tree?
Non-deterministic vs Deterministic Turing Machines

Simulation:
1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2.

Running time
- recall: $c \leq \Theta(|K|)$
- how many nodes in the computation tree?
 $$1 + c + c^2 + \ldots + c^f(n) = O(c^f(n))$$
Non-deterministic vs Deterministic Turing Machines

Simulation:
1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then $accept$.
4. Update the string in tape 3 with the lexicographic next string and go to 2.

Running time
- recall: $c \leq \Theta(|K|)$
- how many nodes in the computation tree?
 $1 + c + c^2 + \ldots + c^{f(n)} = O(c^{f(n)})$
- time to simulate each node: $O(f(n))$
Non-deterministic vs Deterministic Turing Machines

Simulation:
1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2.

Running time
- recall: $c \leq \Theta(|K|)$
- how many nodes in the computation tree?
 \[1 + c + c^2 + \ldots + c^f(n) = O(c^f(n)) \]
- time to simulate each node: $O(f(n))$
- in total $O(f(n) \cdot c^f(n)) = c^{O(f(n))}$
Non-deterministic vs Deterministic Turing Machines

Simulation:

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2.

Running time

- recall: $c \leq \Theta(|K|)$
- how many nodes in the computation tree?
 \[1 + c + c^2 + \ldots + c^f(n) = O(c^f(n))\]
- time to simulate each node: $O(f(n))$
- in total $O(f(n) \cdot c^f(n)) = c^{O(f(n))}$
- transformation to single tape: $(c^{O(f(n))})^2 = c^{O(f(n))}$
Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the non-deterministic time complexity class

$$\text{NTIME}(f(n)) = \{ L \mid L \text{ is a language decided by a non-deterministic Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the size of the input} \}$$
Non-deterministic time complexity class

Let \(f : \mathbb{N} \rightarrow \mathbb{N} \) be a function. We define the **non-deterministic time complexity class**

\[
NTIME(f(n)) = \{ L \mid L \text{ is a language decided by a non-deterministic Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the size of the input} \}
\]

Example: \(\text{COMPOSITES} = \{ x \mid x = p \cdot q, \text{ for some integers } p, q > 1 \} \)
Let \(f : \mathbb{N} \to \mathbb{N} \) be a function. We define the **non-deterministic time complexity class**

\[
\text{NTIME}(f(n)) = \{ L \mid L \text{ is a language decided by a non-deterministic Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the size of the input} \}
\]

Example: \(\text{COMPOSITES} = \{ x \mid x = p \cdot q, \text{ for some integers } p, q > 1 \} \)

\(M = \) “On input \(x \):

1. Non-deterministically generate two integers \(p, q \in [2, \sqrt{x}] \).
2. Compute the product \(p \cdot q \)
3. If \(x = p \cdot q \) then accept, else reject.”
Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the **non-deterministic time complexity class**

\[
\text{NTIME}(f(n)) = \{ L \mid L \text{ is a language decided by a non-deterministic Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the size of the input} \}
\]

Example: \(\text{COMPOSITES} = \{ x \mid x = p \cdot q, \text{ for some integers } p, q > 1 \} \)

\(M = \) “On input \(x \):
1. Non-deterministically generate two integers \(p, q \in [2, \sqrt{x}] \).
2. Compute the product \(p \cdot q \)
3. If \(x = p \cdot q \) then accept, else reject.”

\(M \) decides \(\text{COMPOSITES} \)

\(f(n) = O\left(n \cdot \log_2 n \cdot 2^{O\left(\log^* n\right)}\right) \) (Fürer’s algorithm for multiplication)
Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a function. We define the **non-deterministic time complexity class**

$$\text{NTIME}(f(n)) = \{ L | L \text{ is a language decided by a non-deterministic Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the size of the input} \}$$

Example:

$\text{HPATH} = \{ \langle G, s, t \rangle | G \text{ is a graph with a Hamiltonian path from } s \text{ to } t \}$
Non-deterministic time complexity class

Let \(f : \mathbb{N} \to \mathbb{N} \) be a function. We define the **non-deterministic time complexity class**

\[
\text{NTIME}(f(n)) = \{ L \mid L \text{ is a language decided by a non-deterministic Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the size of the input} \}
\]

Example:

\(\text{HPATH} = \{ \langle G, s, t \rangle \mid G \text{ is a graph with a Hamiltonian path from } s \text{ to } t \} \)

\(M = \text{“On input } \langle G, s, t \rangle \text{:"} \)

1. Non-deterministically generate a permutation of the vertex set, \(v_1, v_2, \ldots, v_n \).
2. If \(v_1 = s, v_n = t \) and \((v_i, v_{i+1}) \in E \) for each \(i = 1, 2, \ldots n - 1 \), then accept, else reject.”
Non-deterministic time complexity class

Let \(f : \mathbb{N} \rightarrow \mathbb{N} \) be a function. We define the **non-deterministic time complexity class**

\[
\text{NTIME}(f(n)) = \{ L | L \text{ is a language decided by a non-deterministic Turing Machine in } O(f(n)) \text{ time, where } n \text{ is the size of the input} \}
\]

Example:
HPATH = \{ ⟨G, s, t⟩ | G is a graph with a Hamiltonian path from s to t \}

\(M = \) “On input \(⟨G, s, t⟩ \):

1. Non-deterministically generate a permutation of the vertex set, \(v_1, v_2, \ldots, v_n \).
2. If \(v_1 = s, v_n = t \) and \((v_i, v_{i+1}) \in E \) for each \(i = 1, 2, \ldots n - 1 \), then accept, else reject.”

\(M \) decides HPATH

\(f(n) = O(n^2) \quad \Rightarrow \quad \text{HPATH} \in \text{NTIME}(n^2) \)
“non-deterministically generate” a string
check if the generated string has a certain property of the language
if this input is in the language, then at least one such string exists
we call this string a certificate
Certificates and Verifiers

- “non-deterministically generate” a string
- check if the generated string has a certain property of the language
- if this input is in the language, then at least one such string exists
- we call this string a **certificate**

Examples of certificates

- **COMPOSITES**: \(\langle p, q \rangle \text{ such } x = p \cdot q \)
- **HPATH**: \(\langle v_1, v_2, \ldots, v_n \rangle \text{ such that } s = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_n = t \) is a Hamiltonian path from \(s \) to \(t \)
Certificates and Verifiers

- “non-deterministically generate” a string
- check if the generated string has a certain property of the language
- if this input is in the language, then at least one such string exists
- we call this string a certificate

Examples of certificates

- COMPOSITES: \(\langle p, q \rangle \) such \(x = p \cdot q \)
- HPATH: \(\langle v_1, v_2, \ldots, v_n \rangle \) such that \(s = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_n = t \) is a Hamiltonian path from \(s \) to \(t \)

A verifier for a language \(L \) is an algorithm \(\mathcal{V} \) where

\[
L = \{ w \mid \mathcal{V} \text{ accepts } \langle w, c \rangle \text{ for each certificate } c \} \]
Certificates and Verifiers

- “non-deterministically generate” a string
- check if the generated string has a certain property of the language
- if this input is in the language, then at least one such string exists
- we call this string a certificate

Examples of certificates
- COMPOSITES: \(\langle p, q \rangle \) such \(x = p \cdot q \)
- HPATH: \(\langle v_1, v_2, \ldots, v_n \rangle \) such that \(s = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_n = t \) is a Hamiltonian path from \(s \) to \(t \)

A verifier for a language \(L \) is an algorithm \(\mathcal{V} \) where

\[
L = \{ w \mid \mathcal{V} \text{ accepts } \langle w, c \rangle \text{ for each certificate } c \}
\]

A polynomial time verifier runs in polynomial time with respect to the length of the input \(w \)
Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine $NDTM$ which decides it.

Proof: (\Rightarrow) Consider a polynomial time verifier \mathcal{V} for L
Theorem

A language \(L \) has a polynomial time verifier \(\mathcal{V} \) if and only if there is a polynomial time Non-deterministic Turing Machine \(NDTM \) which decides it.

Proof: \((\Rightarrow)\) Consider a polynomial time verifier \(\mathcal{V} \) for \(L \)

\(NDTM = \) “On input \(w \) of length \(n \):

1. Non-deterministically generate a string \(c \) of length \(n^k \).
2. Run \(\mathcal{V} \) on input \(\langle w, c \rangle \).
3. If \(\mathcal{V} \) accepts, then \text{accept}, else \text{reject}.”
Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine $NDTM$ which decides it.

Proof: \(\leftrightarrow \) Consider a polynomial time Non-deterministic Turing Machine $NDTM$ that decides L

\[\mathcal{V} = \]
Theorem

A language L has a polynomial time verifier \mathcal{V} if and only if there is a polynomial time Non-deterministic Turing Machine \mathcal{NDTM} which decides it.

Proof: (\Leftarrow) Consider a polynomial time Non-deterministic Turing Machine \mathcal{NDTM} that decides L

$\mathcal{V} =$ “On input $\langle w, c \rangle$:

1. Simulate \mathcal{NDTM} on input w using each symbol of c as the non-deterministically choice in order to decide the next step.
2. If this branch of computation accepts, then accept, else reject.”
A non-deterministic Turing Machine $M = (K, \Sigma, \Gamma, \Delta, s, H)$ is called \textbf{polynomially bounded} if there is a polynomial p and for any input w there is no configuration C such that $(s, \sqcup w) \vdash_M^{p(|w|)} C$.

A language is called \textbf{non-deterministically polynomially decidable} if there is a polynomially bounded Turing Machine that \textit{decides} it.
A non-deterministic Turing Machine $M = (K, \Sigma, \Gamma, \Delta, s, H)$ is called **polynomially bounded** if there is a polynomial p and for any input w there is no configuration C such that $(s, \sqcup w) \vdash_{M}^{p(|w|)} C$.

A language is called **non-deterministically polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

NP is the class of *non-deterministic polynomially decidable* languages.

$$\text{NP} = \bigcup_{k} \text{NTIME}(n^k)$$
The class \(\text{NP}\)

A non-deterministic Turing Machine \(M = (K, \Sigma, \Gamma, \Delta, s, H)\) is called **polynomially bounded** if there is a polynomial \(p\) and for any input \(w\) there is no configuration \(C\) such that \((s, \sqcup w) \vdash_{M}^{p(|w|)} C\).

A language is called **non-deterministically polynomially decidable** if there is a polynomially bounded Turing Machine that *decides* it.

\(\text{NP}\) is the class of *non-deterministic polynomially decidable* languages.

\[
\text{NP} = \bigcup_{k} \text{NTIME}(n^k)
\]

equivalently

\(\text{NP}\) is the class of languages that have a polynomial time verifier.
Be careful !!
NP means “non-deterministic polynomial” and not “non-polynomial”
Be careful !!
NP means “non-deterministic polynomial” and not “non-polynomial”
Be careful !!
NP means “non-deterministic polynomial” and not “non-polynomial”

What do we know? \[\text{NP} \subseteq \text{EXPTIME} = \bigcup_k \text{TIME}(2^{n^k}) \]
Definitions

A function \(f : \Sigma^* \rightarrow \Sigma^* \) is called **polynomial time computable** if there is a polynomially bounded Turing Machine that computes it.

A language \(A \) is **polynomial time reducible** to language \(B \), denoted \(A \leq_P B \), if there is a polynomial time computable function \(f : \Sigma^* \rightarrow \Sigma^* \), where for every input \(w \), it holds that \(w \in A \iff f(w) \in B \).

This function \(f \) is called a **polynomial time reduction** from \(A \) to \(B \).
Reductions

Definition

A function $f : \Sigma^* \rightarrow \Sigma^*$ is called **polynomial time computable** if there is a polynomially bounded Turing Machine that computes it.

A language A is **polynomial time reducible** to language B, denoted $A \leq_p B$, if there is a polynomial time computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every input w, it holds that

$$w \in A \iff f(w) \in B$$

This function f is called a **polynomial time reduction** from A to B.

![Diagram of reductions](image)
Theorem

If $A \leq_P B$ and $B \in P$, then $A \in P$.

Proof:
Theorem

If $A \leq_P B$ and $B \in P$, then $A \in P$.

Proof:

- M: a polynomially bounded Turing Machine deciding B
- f: a polynomial time reduction from A to B
- Create a polynomially bounded Turing Machine N deciding A
Theorem

If $A \leq_P B$ and $B \in P$, then $A \in P$.

Proof:

- M: a polynomially bounded Turing Machine deciding B
- f: a polynomial time reduction from A to B
- Create a polynomially bounded Turing Machine N deciding A

N = “On input w:

1. Compute $f(w)$.
2. Run M on $f(w)$ and output whatever M outputs.”
Example

HPATH = \{⟨G, s, t⟩ | G is a graph with a Hamiltonian path from s to t\}
HCYCLE = \{⟨G⟩ | G is a graph with a Hamiltonian cycle\}

Show that HPATH is polynomial time reducible to HCYCLE.

Solution:
Example

Example

HPATH = \{⟨G, s, t⟩ | G is a graph with a Hamiltonian path from s to t\}

HCYCLE = \{⟨G⟩ | G is a graph with a Hamiltonian cycle\}

Show that HPATH is polynomial time reducible to HCYCLE.

Solution:

- input of HPATH: a graph \(G = (V, E)\) and two vertices \(s, t \in V\)
- create an instance of HCYCLE
 - \(G' = (V', E')\) where \(V' = V \cup \{v_0\}\) and \(E' = E \cup \{(v_0, s), (v_0, t)\}\)
Example

HPATH = \{⟨G, s, t⟩ | G is a graph with a Hamiltonian path from s to t\}
HCYCLE = \{⟨G⟩ | G is a graph with a Hamiltonian cycle\}

Show that HPATH is polynomial time reducible to HCYCLE.

Solution:

▶ input of HPATH: a graph G = (V, E) and two vertices s, t ∈ V
▶ create an instance of HCYCLE
 ▶ G′ = (V′, E′) where V′ = V ∪ \{v_0\} and E′ = E ∪ \{(v_0, s), (v_0, t)\}

The reduction (transformation) is of polynomial time
Example

HPATH = \{\langle G, s, t \rangle \mid G \text{ is a graph with a Hamiltonian path from } s \text{ to } t\}
HCYCLE = \{\langle G \rangle \mid G \text{ is a graph with a Hamiltonian cycle}\}

Show that HPATH is polynomial time reducible to HCYCLE.

Solution:

- input of HPATH: a graph \(G = (V, E) \) and two vertices \(s, t \in V \)
- create an instance of HCYCLE
 - \(G' = (V', E') \) where \(V' = V \cup \{v_0\} \) and \(E' = E \cup \{(v_0, s), (v_0, t)\} \)

The reduction (transformation) is of polynomial time

We are not done!!!
Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G'.
Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G'

(\Rightarrow)

- consider a Hamiltonian Path from s to t in G:

 $s \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$
Solution (cont’d):

There is a Hamiltonian Path from \(s \) to \(t \) in \(G \) if and only if there is a Hamiltonian Cycle in \(G' \).

\((\Rightarrow)\)

\begin{itemize}
 \item consider a Hamiltonian Path from \(s \) to \(t \) in \(G \):
 \[s \to v_2 \to \ldots \to v_{n-1} \to t \]
 \item then \(v_0 \to s \to v_2 \to \ldots \to v_{n-1} \to t \to v_0 \) is a Hamiltonian Cycle in \(G' \).
\end{itemize}
Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G'

(\Rightarrow)

- consider a Hamiltonian Path from s to t in G:
 $s \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$

- then $v_0 \rightarrow s \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_0$ is a Hamiltonian Cycle in G'

(\Leftarrow)

- consider a Hamiltonian Cycle in G'
Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G'

(\Rightarrow)

- consider a Hamiltonian Path from s to t in G:

 $s \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$

- then $v_0 \rightarrow s \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_0$ is a Hamiltonian Cycle in G'

(\Leftarrow)

- consider a Hamiltonian Cycle in G'

- this cycle should pass from v_0
Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G'

(\Rightarrow)

- consider a Hamiltonian Path from s to t in G:
 \[s \to v_2 \to \ldots \to v_{n-1} \to t \]

- then $v_0 \to s \to v_2 \to \ldots \to v_{n-1} \to t \to v_0$ is a Hamiltonian Cycle in G'

(\Leftarrow)

- consider a Hamiltonian Cycle in G'

- this cycle should pass from v_0

- there are only two edges incident to v_0: (s, v_0) and (t, v_0)
Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G'

(\Rightarrow)

- consider a Hamiltonian Path from s to t in G:
 $s \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$
- then $v_0 \rightarrow s \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_0$ is a Hamiltonian Cycle in G'

(\Leftarrow)

- consider a Hamiltonian Cycle in G'
- this cycle should pass from v_0
- there are only two edges incident to v_0: (s, v_0) and (t, v_0)
- both (s, v_0) and (t, v_0) should be part of the Hamiltonian Cycle
Example

Solution (cont’d):

There is a Hamiltonian Path from \(s \) to \(t \) in \(G \) if and only if there is a
Hamiltonian Cycle in \(G' \)

\((\Rightarrow)\)

\>

- consider a Hamiltonian Path from \(s \) to \(t \) in \(G \):
 \[s \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \]

- then \(v_0 \rightarrow s \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_0 \) is a Hamiltonian Cycle in \(G' \)

\((\Leftarrow)\)

\>

- consider a Hamiltonian Cycle in \(G' \)

- this cycle should pass from \(v_0 \)

- there are only two edges incident to \(v_0 \): \((s, v_0)\) and \((t, v_0)\)

- both \((s, v_0)\) and \((t, v_0)\) should be part of the Hamiltonian Cycle

- Hamiltonian Cycle in \(G' \): \(t \rightarrow v_0 \rightarrow s \rightarrow \ldots \rightarrow t \)
Example

Solution (cont’d):

There is a Hamiltonian Path from s to t in G if and only if there is a Hamiltonian Cycle in G'

(\Rightarrow)

- consider a Hamiltonian Path from s to t in G:

 $s \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t$

- then $v_0 \rightarrow s \rightarrow v_2 \rightarrow \ldots \rightarrow v_{n-1} \rightarrow t \rightarrow v_0$ is a Hamiltonian Cycle in G'

(\Leftarrow)

- consider a Hamiltonian Cycle in G'

- this cycle should pass from v_0

- there are only two edges incident to v_0: (s, v_0) and (t, v_0)

- both (s, v_0) and (t, v_0) should be part of the Hamiltonian Cycle

- Hamiltonian Cycle in G': $t \rightarrow v_0 \rightarrow s \rightarrow \ldots \rightarrow t$

- there is a Hamiltonian Path from s to t in G
Steps of a reduction

Reduction from A to B

1. transform an instance I_A of A to an instance I_B of B
2. show that the reduction is of polynomial size
3. prove that:
 "there is a solution for the problem A on the instance I_A
 if and only if
 there is a solution for the problem B on the instance $I_B"
Steps of a reduction

Reduction from A to B

1. transform an instance I_A of A to an instance I_B of B
2. show that the reduction is of polynomial size
3. prove that:
 “there is a solution for the problem A on the instance I_A
 if and only if
 there is a solution for the problem B on the instance $I_B”$

Comments

▶ usually the one direction is trivial (due to the transformation)
▶ $|I_B|$ is polynomially bounded by $|I_A|$
List of problems

\[
\text{DIRHCYCLE} = \{ \langle G \rangle \mid G \text{ is a directed graph with a Hamiltonian cycle} \}
\]

\[
\text{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ is a graph with a } k\text{-clique} \}
\]

\[
\text{VERTEX-COVER} = \{ \langle G, k \rangle \mid G \text{ is a graph with a set } A \subseteq V \text{ such that } |A| = k \text{ and every } e \in E \text{ is incident to a vertex in } A \}
\]

\[
\text{INDEPENDENT-SET} = \{ \langle G, k \rangle \mid G \text{ is a graph with a set } A \subseteq V \text{ such that } |A| = k \text{ and there is no edge between any pair of vertices in } A \}
\]

\[
\text{LONGEST-PATH} = \{ \langle G, s, t, k \rangle \mid G \text{ is a graph with a path from } s \text{ to } t \text{ of length at least } k \}
\]
Show that HCYCLE is polynomial time reducible to HPATH.