A Non-deterministic Turing Machine \((M)\) is a sixtuple \((K, \Sigma, \Gamma, \Delta, s, H)\), where \(K, \Sigma, \Gamma, s\) and \(H\) are as in the definition of the Deterministic Turing Machine, and \(\Delta\) describes the transitions and it is a \textit{subset} of

\[
((K \setminus H) \times \Gamma) \times (K \times (\Gamma \cup \{\leftarrow, \rightarrow\}))
\]
A Non-deterministic Turing Machine (M) is a sixtuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ, Γ, s and H are as in the definition of the Deterministic Turing Machine, and Δ describes the transitions and it is a subset of

$$((K \setminus H) \times \Gamma) \times (K \times (\Gamma \cup \{\leftarrow, \rightarrow\}))$$

- Δ is not a function
 - a single pair of (q, σ) can lead to multiple pairs (q', σ')
 - the empty string ϵ is allowed as a transition symbol
A Non-deterministic Turing Machine (M) is a sixtuple $(K, \Sigma, \Gamma, \Delta, s, H)$, where K, Σ, Γ, s and H are as in the definition of the Deterministic Turing Machine, and Δ describes the transitions and it is a subset of

$$
((K \setminus H) \times \Gamma) \times (K \times (\Gamma \cup \{\leftarrow, \rightarrow\}))
$$

- Δ is not a function
 - a single pair of (q, σ) can lead to multiple pairs (q', σ')
 - the empty string ϵ is allowed as a transition symbol

- A configuration may yield several configurations in a single step
 - \vdash_M is not necessarily uniquely identified
Non-determinism

- the next step is **not unique**

- start
- ...
- accept or reject

deterministic computation

Comparison deterministic vs non-deterministic
Non-deterministic Turing Machine

Definitions

Let $M = (K, \Sigma, \Gamma, \Delta, s, H)$ be a Non-deterministic Turing Machine. We say that M accepts an input $w \in \Sigma^*$ if

$$(s, \sqcup w) \vdash^* M (h, u\sigma v)$$

for some $h \in H$, $\sigma \in \Sigma$ and $u, v \in \Sigma^*$.
Non-deterministic Turing Machine

Definitions

Let $M = (K, \Sigma, \Gamma, \Delta, s, H)$ be a Non-deterministic Turing Machine. We say that M accepts an input $w \in \Sigma^*$ if

$$(s, \bot w) \vdash^* M (h, u\sigma v)$$

for some $h \in H$, $\sigma \in \Sigma$ and $u, v \in \Sigma^*$. We say that M decides a language L if for each $w \in \Sigma^*$ the following two conditions hold:

1. there is natural number $N \in \mathbb{N}$ (depending on M and $|w|$) such that there is no configuration c satisfying $(s, \bot w) \vdash^N_M c$

2. $w \in L$ if and only if $(s, \bot w) \vdash^*_M (h, u\sigma v)$ for some $\sigma \in \Sigma$ and $u, v \in \Sigma^*$
Let $M = (K, \Sigma, \Gamma, \Delta, s, H)$ be a Non-deterministic Turing Machine.

We say that M computes a function $f : \Sigma^* \rightarrow \Sigma^*$ if for each $w \in \Sigma^*$ the following two conditions hold:

1. $(s, \sqcup w) \vdash_{M}^* (h, \sqcup v)$ if and only if $v = f(w)$
A natural number \(m \in \mathbb{N} \) is called \textit{composite} if it can be written as the product of two natural numbers \(p, q \in \mathbb{N} \), i.e., \(m = p \cdot q \).

Describe (high-level) a Non-deterministic Turing Machine that recognizes the language \(L = \{1^m : m \text{ is a composite number}\} \).
Example

- A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m = p \cdot q$

Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m$ is a composite number$\}$.

1. choose two integers p and q non-deterministically
2. multiply p and q
3. compare a with $p \cdot q$ and if they are equal then accept
A natural number $m \in \mathbb{N}$ is called *composite* if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m = p \cdot q$

Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number} \}$.

1. choose two integers p and q *non-deterministically*
2. multiply p and q
3. compare a with $p \cdot q$ and if they are equal then *accept*

What does *non-deterministically* mean?
A natural number $m \in \mathbb{N}$ is called **composite** if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m = p \cdot q$

Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.

1. choose two integers p and q non-deterministically
2. multiply p and q
3. compare a with $p \cdot q$ and if they are equal then accept

What does **non-deterministically** mean?

- choose $(p, q) \in \{(1, 1), (1, 11), (1, 111), \ldots, (11, 1), (11, 11), \ldots\}$
A natural number \(m \in \mathbb{N} \) is called \textit{composite} if it can be written as the product of two natural numbers \(p, q \in \mathbb{N} \), i.e., \(m = p \cdot q \).

Describe (high-level) a Non-deterministic Turing Machine that recognizes the language \(L = \{1^m : m \text{ is a composite number}\} \).

1. choose two integers \(p \) and \(q \) non-deterministically
2. multiply \(p \) and \(q \)
3. compare \(a \) with \(p \cdot q \) and if they are equal then \textit{accept}

What does \textit{non-deterministically} mean?

- choose \((p, q) \in \{(1,1), (1,11), (1,111), \ldots, (11,1), (11,11), \ldots\} \)

How to transform the above machine to \textit{decide} the same language?
A natural number $m \in \mathbb{N}$ is called \textit{composite} if it can be written as the product of two natural numbers $p, q \in \mathbb{N}$, i.e., $m = p \cdot q$

Describe (high-level) a Non-deterministic Turing Machine that recognizes the language $L = \{1^m : m \text{ is a composite number}\}$.

1. choose two integers p and q \textit{non-deterministically}
2. multiply p and q
3. compare a with $p \cdot q$ and if they are equal then accept

What does \textit{non-deterministically} mean?

choose $(p, q) \in \{(1, 1), (1, 11), (1, 111), \ldots, (11, 1), (11, 11), \ldots\}$

How to transform the above machine to decide the same language?

1. choose two integers $p < m$ and $q < m$ \textit{non-deterministically}
2. multiply p and q
3. compare a with $p \cdot q$ and if they are equal then accept, else reject
Exercise

Consider a set \(A = \{a_1, a_2, \ldots, a_n\} \) of positive integers and an integer \(w \in \mathbb{N} \).

Give a Non-deterministic Turing Machine that recognizes the language \(L = \{A' \subseteq A : \sum_{a_i \in A'} a_i = w\} \).
Consider a set \(A = \{a_1, a_2, \ldots, a_n\} \) of positive integers and an integer \(w \in \mathbb{N} \).

Give a Non-deterministic Turing Machine that recognizes the language \(L = \{A' \subseteq A : \sum_{a_i \in A'} a_i = w\} \).

1. choose non-deterministically a set \(A' \subseteq A \)
2. add the elements of \(A' \)
3. if they sum up to \(w \), then accept
Exercise

Consider a set \(A = \{a_1, a_2, \ldots, a_n\} \) of positive integers and an integer \(w \in \mathbb{N} \).

Give a Non-deterministic Turing Machine that recognizes the language \(L = \{A' \subseteq A : \sum_{a_i \in A'} a_i = w\} \).

1. choose non-deterministically a set \(A' \subseteq A \)
2. add the elements of \(A' \)
3. if they sum up to \(w \), then accept

How to choose \(A' \) non-deterministically?

- produce all binary numbers of \(n \) digits
- start from 00\ldots0 and add 1 at each iteration
Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine \(NDTM = (K, \Sigma, \Gamma, \Delta, s, H) \) has an equivalent Deterministic Turing Machine \(DTM \).

Proof (sketch):
Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine $NDTM = (K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

Proof (sketch):

- Use a multiple tape deterministic Turing Machine
 - tape 1: input (never changes)
 - tape 2: simulation
 - tape 3: address
Non-deterministic Turing Machine

Theorem

Every Non-deterministic Turing Machine $NDTM = (K, \Sigma, \Gamma, \Delta, s, H)$ has an equivalent Deterministic Turing Machine DTM.

Proof (sketch):

- Use a multiple tape deterministic Turing Machine
 - tape 1: input (never changes)
 - tape 2: simulation
 - tape 3: address

- data on tape 3:
 - each node of the computation tree of $NDTM$ has at most c children
 - address of a node in $\{1, 2, \ldots, c\}^*$

```
1
11 12
111 112 122
1111 1122 1221 1222
```

```
12211
```
Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2.
Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2.

Observations:

- we perform a Breadth First Search of the computation tree
Non-deterministic Turing Machine

Proof (sketch):

1. Initialize tape 1 with the input w and tapes 2 & 3 to be empty.
2. Copy the contents of tape 1 to tape 2.
3. Simulate NDTM on tape 2 using the sequence of computations described in tape 3. If an accepting configuration is yielded, then accept.
4. Update the string in tape 3 with the lexicographic next string and go to 2.

Observations:
- we perform a Breadth First Search of the computation tree
- we need exponential time of steps with respect to NDTM!
Discussion

- Non-deterministic Turing Machines seem to be more powerful than deterministic ones
- We pay this in computation time
Non-deterministic Turing Machine

Discussion

- Non-deterministic Turing Machines seem to be more powerful than deterministic ones
- we pay this in computation time
- next lectures: we will see what does this mean